Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -253,16 +253,16 @@ def g_sheet_log(myinput, output):
|
|
| 253 |
).execute()
|
| 254 |
|
| 255 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
| 256 |
-
duration = 5
|
| 257 |
-
fs = 44100
|
| 258 |
-
channels = 1
|
| 259 |
-
filename = "output.wav"
|
| 260 |
-
|
| 261 |
-
def record_audio():
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
# p = pyaudio.PyAudio()
|
| 267 |
|
| 268 |
# # Open the microphone stream
|
|
@@ -326,6 +326,7 @@ all with the help of HyperBot! 🤖 ✨
|
|
| 326 |
|
| 327 |
option_ = ['Random Questions','Questions based on custom CSV data']
|
| 328 |
Usage = st.selectbox('Select an option:', option_)
|
|
|
|
| 329 |
if Usage == 'Questions based on custom CSV data':
|
| 330 |
st.text('''
|
| 331 |
You can use your own custom csv files to test this feature or
|
|
@@ -372,13 +373,13 @@ if Usage == 'Questions based on custom CSV data':
|
|
| 372 |
st.success('loaded')
|
| 373 |
with col4:
|
| 374 |
try:
|
| 375 |
-
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
|
| 376 |
warning(sqlOutput)
|
| 377 |
cars=pd.read_csv('cars.csv')
|
| 378 |
result_tab2=ps.sqldf(sqlOutput)
|
| 379 |
st.write(result_tab2)
|
| 380 |
with open("fewshot_matplot.txt", "r") as file:
|
| 381 |
-
|
| 382 |
|
| 383 |
result_tab = result_tab2.reset_index(drop=True)
|
| 384 |
result_tab_string = result_tab.to_string()
|
|
@@ -428,57 +429,58 @@ if Usage == 'Questions based on custom CSV data':
|
|
| 428 |
|
| 429 |
with st.form(key='columns_in_form2'):
|
| 430 |
col3, col4 = st.columns(2)
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
try:
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
with col4:
|
| 442 |
-
try:
|
| 443 |
-
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
|
| 444 |
-
warning(sqlOutput)
|
| 445 |
-
cars=pd.read_csv('cars.csv')
|
| 446 |
-
result_tab2=ps.sqldf(sqlOutput)
|
| 447 |
-
st.write(result_tab2)
|
| 448 |
-
with open("fewshot_matplot.txt", "r") as file:
|
| 449 |
-
text_plot = file.read()
|
| 450 |
-
|
| 451 |
-
result_tab = result_tab2.reset_index(drop=True)
|
| 452 |
-
result_tab_string = result_tab.to_string()
|
| 453 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
| 454 |
-
|
| 455 |
-
if len(gr_prompt) > 4097:
|
| 456 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
| 457 |
-
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
| 458 |
-
|
| 459 |
-
elif len(result_tab2.columns) < 2:
|
| 460 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
| 461 |
-
|
| 462 |
-
else:
|
| 463 |
-
st.success("Plotting...")
|
| 464 |
-
response_graph = openai.Completion.create(
|
| 465 |
-
engine="text-davinci-003",
|
| 466 |
-
prompt = gr_prompt,
|
| 467 |
-
max_tokens=1024,
|
| 468 |
-
n=1,
|
| 469 |
-
stop=None,
|
| 470 |
-
temperature=0.5,
|
| 471 |
-
)
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
|
|
|
|
|
|
|
|
|
|
| 477 |
else:
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
|
| 484 |
elif Usage == 'Random Questions':
|
|
@@ -614,93 +616,161 @@ elif Usage == 'Random Questions':
|
|
| 614 |
g_sheet_log(mytext, string_temp)
|
| 615 |
|
| 616 |
elif Input_type == 'SPEECH':
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
}
|
| 629 |
}
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
events="GET_TEXT",
|
| 640 |
-
key="listen",
|
| 641 |
-
refresh_on_update=False,
|
| 642 |
-
override_height=75,
|
| 643 |
-
debounce_time=0)
|
| 644 |
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 648 |
response = openai.Completion.create(
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
|
| 705 |
# except:
|
| 706 |
# pass
|
|
|
|
| 253 |
).execute()
|
| 254 |
|
| 255 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
| 256 |
+
# duration = 5
|
| 257 |
+
# fs = 44100
|
| 258 |
+
# channels = 1
|
| 259 |
+
# filename = "output.wav"
|
| 260 |
+
|
| 261 |
+
# def record_audio():
|
| 262 |
+
# myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
|
| 263 |
+
# sd.wait()
|
| 264 |
+
# sf.write(filename, myrecording, fs)
|
| 265 |
+
# return filename
|
| 266 |
# p = pyaudio.PyAudio()
|
| 267 |
|
| 268 |
# # Open the microphone stream
|
|
|
|
| 326 |
|
| 327 |
option_ = ['Random Questions','Questions based on custom CSV data']
|
| 328 |
Usage = st.selectbox('Select an option:', option_)
|
| 329 |
+
|
| 330 |
if Usage == 'Questions based on custom CSV data':
|
| 331 |
st.text('''
|
| 332 |
You can use your own custom csv files to test this feature or
|
|
|
|
| 373 |
st.success('loaded')
|
| 374 |
with col4:
|
| 375 |
try:
|
| 376 |
+
sqlOutput = gpt3(col_p) #st.text_area('SQL Query', value=gpt3(col_p))
|
| 377 |
warning(sqlOutput)
|
| 378 |
cars=pd.read_csv('cars.csv')
|
| 379 |
result_tab2=ps.sqldf(sqlOutput)
|
| 380 |
st.write(result_tab2)
|
| 381 |
with open("fewshot_matplot.txt", "r") as file:
|
| 382 |
+
text_plot = file.read()
|
| 383 |
|
| 384 |
result_tab = result_tab2.reset_index(drop=True)
|
| 385 |
result_tab_string = result_tab.to_string()
|
|
|
|
| 429 |
|
| 430 |
with st.form(key='columns_in_form2'):
|
| 431 |
col3, col4 = st.columns(2)
|
| 432 |
+
with col3:
|
| 433 |
+
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
| 434 |
+
submitButton = st.form_submit_button(label = 'Submit')
|
| 435 |
+
if submitButton:
|
| 436 |
+
try:
|
| 437 |
+
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
| 438 |
+
result = gpt3(col_p)
|
| 439 |
+
except:
|
| 440 |
+
results = gpt3(userPrompt)
|
| 441 |
+
st.success('loaded')
|
| 442 |
+
with col4:
|
| 443 |
try:
|
| 444 |
+
sqlOutput = gpt3(col_p) #st.text_area('SQL Query', value=gpt3(col_p))
|
| 445 |
+
warning(sqlOutput)
|
| 446 |
+
cars=pd.read_csv('cars.csv')
|
| 447 |
+
result_tab2=ps.sqldf(sqlOutput)
|
| 448 |
+
st.write(result_tab2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
+
with open("fewshot_matplot.txt", "r") as file:
|
| 451 |
+
text_plot = file.read()
|
| 452 |
+
|
| 453 |
+
result_tab = result_tab2.reset_index(drop=True)
|
| 454 |
+
result_tab_string = result_tab.to_string()
|
| 455 |
+
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
| 456 |
+
|
| 457 |
+
if len(gr_prompt) > 4097:
|
| 458 |
+
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
| 459 |
+
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
| 460 |
|
| 461 |
+
elif len(result_tab2.columns) < 2:
|
| 462 |
+
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
| 463 |
+
|
| 464 |
else:
|
| 465 |
+
st.success("Plotting...")
|
| 466 |
+
response_graph = openai.Completion.create(
|
| 467 |
+
engine="text-davinci-003",
|
| 468 |
+
prompt = gr_prompt,
|
| 469 |
+
max_tokens=1024,
|
| 470 |
+
n=1,
|
| 471 |
+
stop=None,
|
| 472 |
+
temperature=0.5,
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
if response_graph['choices'][0]['text'] != "":
|
| 476 |
+
print(response_graph['choices'][0]['text'])
|
| 477 |
+
exec(response_graph['choices'][0]['text'])
|
| 478 |
+
|
| 479 |
+
else:
|
| 480 |
+
print('Retry! Graph could not be plotted *_*')
|
| 481 |
+
|
| 482 |
+
except:
|
| 483 |
+
pass
|
| 484 |
|
| 485 |
|
| 486 |
elif Usage == 'Random Questions':
|
|
|
|
| 616 |
g_sheet_log(mytext, string_temp)
|
| 617 |
|
| 618 |
elif Input_type == 'SPEECH':
|
| 619 |
+
option_speech = st.selectbox(
|
| 620 |
+
'Choose from below: (Options for Transcription)',
|
| 621 |
+
('Use Microphone', 'OpenAI Whisper (Upload audio file)')
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
if option_speech == 'Use Microphone':
|
| 625 |
+
stt_button = Button(label="Speak", width=100)
|
| 626 |
+
stt_button.js_on_event("button_click", CustomJS(code="""
|
| 627 |
+
var recognition = new webkitSpeechRecognition();
|
| 628 |
+
recognition.continuous = true;
|
| 629 |
+
recognition.interimResults = true;
|
| 630 |
+
|
| 631 |
+
recognition.onresult = function (e) {
|
| 632 |
+
var value = "";
|
| 633 |
+
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
| 634 |
+
if (e.results[i].isFinal) {
|
| 635 |
+
value += e.results[i][0].transcript;
|
| 636 |
+
}
|
| 637 |
+
}
|
| 638 |
+
if ( value != "") {
|
| 639 |
+
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
| 640 |
}
|
| 641 |
}
|
| 642 |
+
recognition.start();
|
| 643 |
+
"""))
|
| 644 |
+
|
| 645 |
+
result = streamlit_bokeh_events(
|
| 646 |
+
stt_button,
|
| 647 |
+
events="GET_TEXT",
|
| 648 |
+
key="listen",
|
| 649 |
+
refresh_on_update=False,
|
| 650 |
+
override_height=75,
|
| 651 |
+
debounce_time=0)
|
| 652 |
+
|
| 653 |
+
if result:
|
| 654 |
+
if "GET_TEXT" in result:
|
| 655 |
+
question = result.get("GET_TEXT")
|
| 656 |
+
response = openai.Completion.create(
|
| 657 |
+
model="text-davinci-003",
|
| 658 |
+
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
| 659 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 660 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 661 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 662 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 663 |
+
\nQuestion-{question}
|
| 664 |
+
\nAnswer -''',
|
| 665 |
+
temperature=0.49,
|
| 666 |
+
max_tokens=256,
|
| 667 |
+
top_p=1,
|
| 668 |
+
frequency_penalty=0,
|
| 669 |
+
presence_penalty=0
|
| 670 |
+
)
|
| 671 |
+
string_temp=response.choices[0].text
|
| 672 |
+
|
| 673 |
+
if ("gen_draw" in string_temp):
|
| 674 |
+
st.write('*image is being generated please wait..* ')
|
| 675 |
+
def extract_image_description(input_string):
|
| 676 |
+
return input_string.split('gen_draw("')[1].split('")')[0]
|
| 677 |
+
prompt=extract_image_description(string_temp)
|
| 678 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
| 679 |
+
model_id='runwayml/stable-diffusion-v1-5'
|
| 680 |
+
device = "cuda"
|
| 681 |
|
| 682 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 683 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 684 |
|
| 685 |
+
# prompt = "a photo of an astronaut riding a horse on mars"
|
| 686 |
+
image = pipe(prompt).images[0]
|
| 687 |
+
|
| 688 |
+
image.save("astronaut_rides_horse.png")
|
| 689 |
+
st.image(image)
|
| 690 |
+
# image
|
| 691 |
+
|
| 692 |
+
elif ("vid_tube" in string_temp):
|
| 693 |
+
s = Search(question)
|
| 694 |
+
search_res = s.results
|
| 695 |
+
first_vid = search_res[0]
|
| 696 |
+
print(first_vid)
|
| 697 |
+
string = str(first_vid)
|
| 698 |
+
video_id = string[string.index('=') + 1:-1]
|
| 699 |
+
# print(video_id)
|
| 700 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 701 |
+
OurURL = YoutubeURL + video_id
|
| 702 |
+
st.write(OurURL)
|
| 703 |
+
st_player(OurURL)
|
| 704 |
+
|
| 705 |
+
elif ("don't" in string_temp or "internet" in string_temp ):
|
| 706 |
+
st.write('*searching internet*')
|
| 707 |
+
search_internet(question)
|
| 708 |
+
else:
|
| 709 |
+
st.write(string_temp)
|
| 710 |
+
|
| 711 |
+
elif option_speech == 'OpenAI Whisper (Upload audio file)':
|
| 712 |
+
audio_file = st.file_uploader("Upload Audio file",type=['wav', 'mp3'])
|
| 713 |
+
if audio_file is not None:
|
| 714 |
+
file = open(audio_file, "rb")
|
| 715 |
+
st.audio(audio_file)
|
| 716 |
+
transcription = openai.Audio.transcribe("whisper-1", file)
|
| 717 |
+
st.write(transcription["text"])
|
| 718 |
+
result = transcription["text"]
|
| 719 |
+
question = result
|
| 720 |
response = openai.Completion.create(
|
| 721 |
+
model="text-davinci-003",
|
| 722 |
+
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
| 723 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 724 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 725 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 726 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 727 |
+
\nQuestion-{question}
|
| 728 |
+
\nAnswer -''',
|
| 729 |
+
temperature=0.49,
|
| 730 |
+
max_tokens=256,
|
| 731 |
+
top_p=1,
|
| 732 |
+
frequency_penalty=0,
|
| 733 |
+
presence_penalty=0
|
| 734 |
+
)
|
| 735 |
+
string_temp=response.choices[0].text
|
| 736 |
+
|
| 737 |
+
if ("gen_draw" in string_temp):
|
| 738 |
+
st.write('*image is being generated please wait..* ')
|
| 739 |
+
def extract_image_description(input_string):
|
| 740 |
+
return input_string.split('gen_draw("')[1].split('")')[0]
|
| 741 |
+
prompt=extract_image_description(string_temp)
|
| 742 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
| 743 |
+
model_id='runwayml/stable-diffusion-v1-5'
|
| 744 |
+
device = "cuda"
|
| 745 |
+
|
| 746 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 747 |
+
pipe = pipe.to(device)
|
| 748 |
+
|
| 749 |
+
# prompt = "a photo of an astronaut riding a horse on mars"
|
| 750 |
+
image = pipe(prompt).images[0]
|
| 751 |
+
|
| 752 |
+
image.save("astronaut_rides_horse.png")
|
| 753 |
+
st.image(image)
|
| 754 |
+
# image
|
| 755 |
+
|
| 756 |
+
elif ("vid_tube" in string_temp):
|
| 757 |
+
s = Search(question)
|
| 758 |
+
search_res = s.results
|
| 759 |
+
first_vid = search_res[0]
|
| 760 |
+
print(first_vid)
|
| 761 |
+
string = str(first_vid)
|
| 762 |
+
video_id = string[string.index('=') + 1:-1]
|
| 763 |
+
# print(video_id)
|
| 764 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 765 |
+
OurURL = YoutubeURL + video_id
|
| 766 |
+
st.write(OurURL)
|
| 767 |
+
st_player(OurURL)
|
| 768 |
+
|
| 769 |
+
elif ("don't" in string_temp or "internet" in string_temp ):
|
| 770 |
+
st.write('*searching internet*')
|
| 771 |
+
search_internet(question)
|
| 772 |
+
else:
|
| 773 |
+
st.write(string_temp)
|
|
|
|
|
|
|
| 774 |
|
| 775 |
# except:
|
| 776 |
# pass
|