import streamlit as st from streamlit import components from utils import get_roberta, get_gpt, get_distilbert, softmax from models import load_custom_model import torch import plotly.express as px from plotly.subplots import make_subplots import plotly.graph_objects as go from bertviz.neuron_view import show from bertviz import model_view, head_view import pandas as pd import warnings warnings.filterwarnings('ignore') st.set_page_config(page_title="Sentence Entailment",layout="wide") with st.sidebar: st.title('Sentence Entailment') sentence1 = st.text_input('Premise') sentence2 = st.text_input('Hypothesis') btn = st.button("Submit") # At least for roberta n_layers = 12 n_heads = 12 col1, col2 = st.columns([1,1]) with col1: #layer = st.slider('Layer', 0, n_layers-1) layer = st.number_input('Layer', min_value=0, max_value=11) with col2: #head = st.slider('Head', 0, n_heads-1) head = st.number_input('Head', min_value=0, max_value=11) label_dict = { 0 : 'entailment', 1 : 'neutral', 2 : 'contradiction' } if btn: preds_tab, roberta_tab, distilbert_tab, gpt_tab, lstm_tab = st.tabs([ 'Predictions', 'RoBERTa', 'DistilBERT', 'GPT', 'LSTM' ]) # Get Roberta Output roberta_tokenizer, roberta_model = get_roberta() roberta_input = roberta_tokenizer( sentence1, sentence2, return_tensors="pt", padding=True, truncation=True, max_length=512 ) roberta_outputs = roberta_model(**roberta_input) roberta_logits = roberta_outputs['logits'] #roberta_attentions = roberta_outputs.attentions #roberta_tokens = roberta_tokenizer.convert_ids_to_tokens(roberta_input['input_ids'][0]) #st.write('ROBERTA', label_dict[roberta_logits.argmax().item()]) roberta_prediction = label_dict[roberta_logits.argmax().item()] roberta_probas = softmax(roberta_logits) distilbert_tokenizer, distilbert_model = get_distilbert() distilbert_input = distilbert_tokenizer( sentence1, sentence2, return_tensors="pt", padding=True, truncation=True, max_length=512 ) distilbert_output = distilbert_model(**distilbert_input) distilbert_logits = distilbert_output['logits'] distilbert_prediction = label_dict[distilbert_logits.argmax().item()] distilbert_probas = softmax(distilbert_logits) gpt_tokenizer, gpt_model = get_gpt() gpt_input = gpt_tokenizer( sentence1 + ' [SEP] ' + sentence2, truncation=True, padding='max_length', max_length=512, return_tensors='pt' ) gpt_outputs = gpt_model(**gpt_input) gpt_logits = gpt_outputs['logits'] gpt_prediction = label_dict[gpt_logits.argmax().item()] gpt_probas = softmax(gpt_logits) lstm_model = load_custom_model('model_lstm.pth', model_type='lstm') bos_token = roberta_tokenizer.bos_token # Token de début de séquence sep_token = roberta_tokenizer.sep_token # Token de séparation eos_token = roberta_tokenizer.eos_token # Token de fin de séquence sentence = bos_token + ' ' + sentence1 + ' ' + sep_token + ' ' + sentence2 + ' ' + eos_token lstm_input = roberta_tokenizer.encode(sentence, add_special_tokens=False, padding='max_length', max_length=130, return_tensors="pt") with torch.no_grad(): lstm_logits = lstm_model(lstm_input) lstm_prediction = label_dict[lstm_logits.argmax().item()] lstm_probas = softmax(lstm_logits) with preds_tab: col1, col2, col3, col4 = st.columns([1,1,1,1]) with col1: # Pie RoBERTa probabilities fig = px.pie(title=f'RoBERTa : {roberta_prediction}', names=label_dict.values(), values=roberta_probas) fig.update_layout(margin=dict(t=100, l=0, r=0, b=0), showlegend=False) st.plotly_chart(fig, use_container_width=True) with col2: # Pie DistilBERT probabilities fig = px.pie(title=f'DistilBERT : {distilbert_prediction}', names=label_dict.values(), values=distilbert_probas) fig.update_layout(margin=dict(t=100, l=0, r=0, b=0), showlegend=False) st.plotly_chart(fig, use_container_width=True) with col3: # Pie GPT probabilities fig = px.pie(title=f'GPT : {gpt_prediction}', names=label_dict.values(), values=gpt_probas) fig.update_layout(margin=dict(t=100, l=0, r=0, b=0), showlegend=False) st.plotly_chart(fig, use_container_width=True) with col4: # Pie RoBERTa probabilities fig = px.pie(title=f'LSTM : {lstm_prediction}', names=label_dict.values(), values=lstm_probas) fig.update_layout(margin=dict(t=100, l=0, r=0, b=0), showlegend=False) st.plotly_chart(fig, use_container_width=True) with roberta_tab: with st.expander('Why RoBERTa?'): st.write(""" Compared to BERT, RoBERTa introduces several optimizations in the pre-training process, such as training with larger batch sizes, omitting the next sentence prediction (NSP) pre-training phase, and using a larger corpus. These modifications demonstrated significant improvements on several NLP benchmarks.RoBERTa excels in tasks that require a deep understanding of the context and semantic relationships between sentences, which is essential in this case where SNLI is used and the objective is to determine the relationship (entailment, contradiction, neutral) between a premise and a hypothesis. """) attentions = roberta_outputs.attentions tokens = roberta_tokenizer.convert_ids_to_tokens(roberta_input['input_ids'][0]) with st.expander('Model View'): st.write('Click on a cell for details') components.v1.html( model_view( attention=attentions, tokens=tokens, html_action='return' )._repr_html_(), height=775, width=1000, scrolling=True) with st.expander('Attention at selected layer and head'): attention_matrix = attentions[layer][0, head].detach().numpy() separator_token = roberta_tokenizer.sep_token sep_token_index = tokens.index(separator_token) if separator_token in tokens else len(tokens) - 1 tokens_a = tokens[1:sep_token_index] # tokens de la première phrase tokens_b = tokens[sep_token_index + 1:-1] # tokens de la deuxième phrase attention_matrix_adjusted = attention_matrix[1:sep_token_index, sep_token_index + 1:-1] df = pd.DataFrame(attention_matrix_adjusted) tokens_a = [tok.split('Ġ')[-1] for tok in tokens_a] tokens_b = [tok.split('Ġ')[-1] for tok in tokens_b] df.index = tokens_a df.columns = tokens_b fig = px.imshow(df, text_auto=True) fig.update_layout(margin=dict(t=0,r=0,l=0,b=0)) st.plotly_chart(fig) with distilbert_tab: with st.expander('Why DistilBERT?'): st.write("""DistilBERT represents a lightweight, optimized version of BERT, designed to deliver much of BERT's performance with a fraction of its computational resources. The knowledge of a pre-trained BERT model is "distilled" in DistilBERT, reducing the size of the model while retaining much of its learning capacity. This reduction in size translates into a significant acceleration in training and inference time, as well as a reduction in memory usage. DistilBERT is therefore a wise choice for a wide range of NLP tasks, offering an effective compromise between performance and efficiency.""") attentions = distilbert_output[-1] tokens = distilbert_tokenizer.convert_ids_to_tokens(distilbert_input['input_ids'][0]) with st.expander('Model View'): st.write('Click on a cell for details') if layer > 5: st.info('Please select Layer index smaller or equal to 5 for DistilBERT') else: components.v1.html( model_view( attention=attentions, tokens=tokens, html_action='return' )._repr_html_(), height=375, width=1000, scrolling=True) with st.expander('Attention at selected layer and head'): attention_matrix = attentions[layer][0, head].detach().numpy() separator_token = distilbert_tokenizer.sep_token sep_token_index = tokens.index(separator_token) if separator_token in tokens else len(tokens) - 1 tokens_a = tokens[1:sep_token_index] # tokens de la première phrase tokens_b = tokens[sep_token_index + 1:-1] # tokens de la deuxième phrase attention_matrix_adjusted = attention_matrix[1:sep_token_index, sep_token_index + 1:-1] df = pd.DataFrame(attention_matrix_adjusted) tokens_a = [tok.split('Ġ')[-1] for tok in tokens_a] tokens_b = [tok.split('Ġ')[-1] for tok in tokens_b] df.index = tokens_a df.columns = tokens_b fig = px.imshow(df, text_auto=True) fig.update_layout(margin=dict(t=0,r=0,l=0,b=0)) st.plotly_chart(fig) with gpt_tab: with st.expander('Why GPT?'): st.write("""The use of GPT for sequence classification exploits its text generation capabilities for classification applications.Originally developed to generate text, GPT possesses a deep understanding of language that proves beneficial even for categorizing text.To adapt GPT to classification tasks, we perform model fine-tuning on our dataset. This tuning process enables GPT to efficiently link text sequences to defined categories, adjusting its internal weights to optimize label prediction from training data.""") attentions = gpt_outputs[-1] tokens = gpt_tokenizer.convert_ids_to_tokens(gpt_input['input_ids'][0]) with st.expander('Visualizations'): st.warning('Not displayed for UX reasons (creates use lags and crashes), but the same as RoBERTa and DistilBERT could in theory be displayed as it is a transformers model too.') with lstm_tab: with st.expander('Why LSTM?'): st.write("""We need a contextual analysis of word sequences in this premise-hypothesis problem. LSTMs are designed to process data sequences by capturing long-term dependencies, making them suitable for this tp where context and word order are important.""") with st.expander('Architecture'): st.write("""Embedding Layer: Converts word indices into dense vectors. Using an embedding layer is essential here to represent words in a vector space where semantic relationships can be learned. For the SNLI dataset in our case, where understanding the meaning of words in context is essential, this choice is consistent.""") st.write("""Bidirectional: Using a bidirectional LSTM allows the model to capture contextual information both before and after each word in the sequence, giving us a richer understanding of the overall meaning of the premise and hypothesis.""") st.write("""Number of LSTM layers: Having several LSTM layers enables the model to capture higher levels of semantic and syntactic abstraction. However, it's important to strike a balance to avoid overlearning and the training difficulties associated with deep networks. The choice of 6 layers gives us the best results""") else: st.info('Enter 2 sentences')