import torch from torch import nn from torchvision import datasets from torchvision.transforms import ToTensor # Define model class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork() model.load_state_dict(torch.load("model_mnist_mlp.pth")) model.eval() import gradio as gr from torchvision import transforms def predict(image): tsr_image = transforms.ToTensor()(image) with torch.no_grad(): pred = model(tsr_image) prob = torch.nn.functional.softmax(pred[0], dim=0) confidences = {i: float(prob[i]) for i in range(10)} return confidences with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="テスト" ) as demo: gr.HTML('