import torch from torch import nn from torchvision import datasets from torchvision.transforms import ToTensor # Define model class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork() model.load_state_dict(torch.load("model_mnist_mlp.pth")) model.eval() import gradio as gr from torchvision import transforms def predict(image): tsr_image = transforms.ToTensor()(image) with torch.no_grad(): pred = model(tsr_image) prob = torch.nn.functional.softmax(pred[0], dim=0) confidences = {i: float(prob[i]) for i in range(10)} return confidences with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="テスト" ) as demo: gr.HTML('
') with gr.Row(): with gr.Tab("キャンバス"): input_image1 = gr.Image(label="画像入力", source="canvas", type="pil", image_mode="L", shape=(28,28), invert_colors=True) send_btn1 = gr.Button("予測する") with gr.Tab("画像ファイル"): input_image2 = gr.Image(label="画像入力", type="pil", image_mode="L", shape=(28, 28), invert_colors=True) send_btn2 = gr.Button("予測する") gr.Examples(['examples/example02.png', 'examples/example04.png'], inputs=input_image2) output_label=gr.Label(label="予測確率", num_top_classes=5) send_btn1.click(fn=predict, inputs=input_image1, outputs=output_label) send_btn2.click(fn=predict, inputs=input_image2, outputs=output_label) # demo.queue(concurrency_count=3) demo.launch() ### EOF ###