# Ci-Dave from BSCS-AI # Description: This Python script creates a Streamlit web application for image analysis using computer vision techniques and AI-generated explanations. # The app allows users to upload an image, apply edge detection, segmentation, feature extraction, and AI classification. # The explanations for each technique are generated using the Gemini API for AI-generated content. import streamlit as st # Streamlit library to create the web interface import numpy as np # Library for numerical operations import google.generativeai as genai # Gemini API for AI-generated explanations # Random Forest and Logistic Regression model for classification from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from skimage.filters import sobel # Sobel edge detection filter from skimage from skimage.segmentation import watershed # Watershed segmentation method from skimage.feature import canny, hog # Canny edge detection and HOG feature extraction from skimage.color import rgb2gray # Convert RGB images to grayscale from skimage import io # I/O functions for reading images from sklearn.preprocessing import StandardScaler # Standardization of image data # Load Gemini API key from Streamlit Secrets configuration api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets genai.configure(api_key=api_key) # Configure the Gemini API with the API keyimport streamlit as st import numpy as np import google.generativeai as genai import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from skimage.filters import sobel from skimage.segmentation import watershed from skimage.feature import canny, hog from skimage.color import rgb2gray from skimage import io from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score # Load Gemini API key api_key = st.secrets["gemini"]["api_key"] genai.configure(api_key=api_key) MODEL_ID = "gemini-1.5-flash" gen_model = genai.GenerativeModel(MODEL_ID) def explain_ai(prompt): try: response = gen_model.generate_content(prompt) return response.text except Exception as e: return f"Error: {str(e)}" # Sidebar navigation st.sidebar.title("Navigation") page = st.sidebar.radio("Go to", ["Home", "Edge Detection", "Segmentation", "Feature Extraction", "AI Classification"]) # Home Page if page == "Home": uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = io.imread(uploaded_file) if image.shape[-1] == 4: image = image[:, :, :3] gray = rgb2gray(image) st.image(image, caption="Uploaded Image", use_container_width=True) st.session_state["gray"] = gray # Store for use in other pages # Edge Detection Page elif page == "Edge Detection": st.title("Edge Detection") gray = st.session_state.get("gray") if gray is not None: edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"]) edges = canny(gray) if edge_method == "Canny" else sobel(gray) st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True) st.text_area("Explanation", explain_ai(f"Explain how {edge_method} edge detection works in computer vision."), height=300) else: st.warning("Please upload an image on the Home page.") # Segmentation Page elif page == "Segmentation": st.title("Image Segmentation") gray = st.session_state.get("gray") if gray is not None: seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"]) if seg_method == "Watershed": elevation_map = sobel(gray) markers = np.zeros_like(gray) markers[gray < 0.3] = 1 markers[gray > 0.7] = 2 segmented = watershed(elevation_map, markers.astype(np.int32)) else: threshold_value = st.slider("Choose threshold value", 0, 255, 127) segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255 st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True) st.text_area("Explanation", explain_ai(f"Explain how {seg_method} segmentation works in image processing."), height=300) else: st.warning("Please upload an image on the Home page.") # Feature Extraction Page elif page == "Feature Extraction": st.title("HOG Feature Extraction") gray = st.session_state.get("gray") if gray is not None: fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True) st.image(hog_image, caption="HOG Features", use_container_width=True) st.text_area("Explanation", explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works."), height=300) else: st.warning("Please upload an image on the Home page.") # AI Classification Page elif page == "AI Classification": st.title("AI Classification") gray = st.session_state.get("gray") if gray is not None: model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"]) flat_image = gray.flatten().reshape(-1, 1) labels = (flat_image > 0.5).astype(int).flatten() ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression() scaler = StandardScaler() flat_image_scaled = scaler.fit_transform(flat_image) ai_model.fit(flat_image_scaled, labels) predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape) predictions = (predictions * 255).astype(np.uint8) accuracy = accuracy_score(labels, ai_model.predict(flat_image_scaled)) st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True) st.text_area("Explanation", explain_ai(f"Explain how {model_choice} is used for image classification."), height=300) st.write(f"### Accuracy: {accuracy:.2f}") fig, ax = plt.subplots() ax.bar(["Accuracy"], [accuracy], color='blue') ax.set_ylim([0, 1]) st.pyplot(fig) else: st.warning("Please upload an image on the Home page.") MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model # Function to generate explanations using the Gemini API def explain_ai(prompt): """Generate an explanation using Gemini API with error handling.""" try: response = gen_model.generate_content(prompt) # Get AI-generated content based on prompt return response.text # Return the explanation text except Exception as e: return f"Error: {str(e)}" # Return error message if there's an issue # App title st.title("Imaize: Smart Image Analyzer with XAI") # # Image upload section # uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) # Allow user to upload an image file # App Description st.markdown(""" This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation. It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**. Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable. The main functionalities of the app include: - **Edge Detection**: Choose between the Canny and Sobel edge detection methods. - **Segmentation**: Apply Watershed or Thresholding methods to segment images. - **Feature Extraction**: Extract Histogram of Oriented Gradients (HOG) features from images. - **AI Classification**: Classify images using Random Forest or Logistic Regression models. Whether you're exploring computer vision or simply curious about how these techniques work, this app will guide you through the process with easy-to-understand explanations. """) # Instructions on how to use the app st.markdown(""" ### How to Use the App: 1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format) for analysis. 2. **Select Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods. The app will process the image and display the result. 3. **Apply Segmentation**: Select **Watershed** or **Thresholding** segmentation. You can also adjust the threshold for thresholding segmentation. 4. **Extract HOG Features**: Visualize the HOG (Histogram of Oriented Gradients) features from the image. 5. **Choose AI Model for Classification**: Select either **Random Forest** or **Logistic Regression** to classify the image based on pixel information. 6. **Read the Explanations**: For each technique, you'll find a detailed explanation of how it works, powered by AI. Simply read the generated explanation to understand the underlying processes. ### Enjoy exploring and understanding image analysis techniques with AI! """) # If an image is uploaded, proceed with the analysis if uploaded_file is not None: image = io.imread(uploaded_file) # Read the uploaded image using skimage if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel image = image[:, :, :3] gray = rgb2gray(image) # Convert the image to grayscale for processing st.image(image, caption="Uploaded Image", use_container_width=True) # Display the uploaded image # Edge Detection Section st.subheader("Edge Detection") # Title for edge detection section edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge") # Select edge detection method edges = canny(gray) if edge_method == "Canny" else sobel(gray) # Apply chosen edge detection method edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format col1, col2 = st.columns([1, 1]) # Create two columns for layout with col1: st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True) # Display the edge detection result with col2: explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.") # Get explanation from AI st.text_area("Explanation", explanation, height=300) # Display explanation in a text area # Segmentation Section st.subheader("Segmentation") # Title for segmentation section seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg") # Select segmentation method # Perform segmentation based on chosen method if seg_method == "Watershed": elevation_map = sobel(gray) # Create elevation map using Sobel filter markers = np.zeros_like(gray) # Initialize marker array markers[gray < 0.3] = 1 # Mark low-intensity regions markers[gray > 0.7] = 2 # Mark high-intensity regions segmented = watershed(elevation_map, markers.astype(np.int32)) # Apply watershed segmentation else: threshold_value = st.slider("Choose threshold value", 0, 255, 127) # Slider to choose threshold value segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255 # Apply thresholding segmentation col1, col2 = st.columns([1, 1]) # Create two columns for layout with col1: st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True) # Display segmentation result with col2: explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.") # Get explanation from AI st.text_area("Explanation", explanation, height=300) # Display explanation in a text area # HOG Feature Extraction Section st.subheader("HOG Feature Extraction") # Title for HOG feature extraction section fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True) # Extract HOG features col1, col2 = st.columns([1, 1]) # Create two columns for layout with col1: st.image(hog_image, caption="HOG Features", use_container_width=True) # Display HOG feature image with col2: explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.") # Get explanation from AI st.text_area("Explanation", explanation, height=300) # Display explanation in a text area # AI Classification Section st.subheader("AI Classification") # Title for AI classification section model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model") # Select AI model for classification flat_image = gray.flatten().reshape(-1, 1) # Flatten the grayscale image into a 1D array for classification labels = (flat_image > 0.5).astype(int).flatten() # Generate binary labels based on intensity threshold # Choose model (Random Forest or Logistic Regression) ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression() # Initialize the model scaler = StandardScaler() # Standardize the image data for better classification flat_image_scaled = scaler.fit_transform(flat_image) # Scale the image data ai_model.fit(flat_image_scaled, labels) # Train the AI model on the image data predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape) # Make predictions on the image predictions = (predictions * 255).astype(np.uint8) # Convert predictions to 8-bit image format col1, col2 = st.columns([1, 1]) # Create two columns for layout with col1: st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True) # Display classification result with col2: explanation = explain_ai(f"Explain how {model_choice} is used for image classification.") # Get explanation from AI st.text_area("Explanation", explanation, height=300) # Display explanation in a text area