ChristopherMarais commited on
Commit
6fc56b6
·
1 Parent(s): 89c1167

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -18,18 +18,8 @@ if huggingface_token is None:
18
  raise ValueError("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
19
 
20
 
21
- # Define a custom transform for Gaussian blur
22
- def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=9, sigma_min=0.1, sigma_max=2):
23
- if x.ndim == 4:
24
- for i in range(x.shape[0]):
25
- if random.random() < p:
26
- kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
27
- sigma = random.uniform(sigma_min, sigma_max)
28
- x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
29
- return x
30
-
31
  # # Define a custom transform for Gaussian blur
32
- # def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
33
  # if x.ndim == 4:
34
  # for i in range(x.shape[0]):
35
  # if random.random() < p:
@@ -38,6 +28,16 @@ def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=9, sigma_min=0.1,
38
  # x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
39
  # return x
40
 
 
 
 
 
 
 
 
 
 
 
41
  # this function only describes how much a singular value in al ist stands out.
42
  # if all values in the lsit are high or low this is 1
43
  # the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
 
18
  raise ValueError("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
19
 
20
 
 
 
 
 
 
 
 
 
 
 
21
  # # Define a custom transform for Gaussian blur
22
+ # def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=9, sigma_min=0.1, sigma_max=2):
23
  # if x.ndim == 4:
24
  # for i in range(x.shape[0]):
25
  # if random.random() < p:
 
28
  # x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
29
  # return x
30
 
31
+ # Define a custom transform for Gaussian blur
32
+ def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
33
+ if x.ndim == 4:
34
+ for i in range(x.shape[0]):
35
+ if random.random() < p:
36
+ kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
37
+ sigma = random.uniform(sigma_min, sigma_max)
38
+ x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
39
+ return x
40
+
41
  # this function only describes how much a singular value in al ist stands out.
42
  # if all values in the lsit are high or low this is 1
43
  # the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number