from fastai.vision.all import * import gradio as gr learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} examples = ['/kaggle/input/butterfly-images40-species/test/ADONIS/1.jpg', '/kaggle/input/butterfly-images40-species/test/AFRICAN GIANT SWALLOWTAIL/2.jpg', '/kaggle/input/butterfly-images40-species/test/AMERICAN SNOOT/3.jpg'] title = "ButterFly Image Classifier Classifier 🦋" description = "A ResNet18 feature extractor computer vision model to classify images of butterfly in 100 classes!." article = "[Chris Olande.](https://github.com/Chrisolande)" image = gr.Image() label = gr.Label(num_top_classes = 3) gr.Interface(fn=predict, inputs=image, outputs=label, examples = examples, title = title, description = ).launch(share=True)