Update services/strategy.py
Browse files- services/strategy.py +8 -1
services/strategy.py
CHANGED
@@ -54,6 +54,7 @@ class MajorityVotingStrategy(GenerationStrategy):
|
|
54 |
|
55 |
|
56 |
class BestOfN(GenerationStrategy):
|
|
|
57 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
58 |
scored_outputs = []
|
59 |
for _ in range(num_samples):
|
@@ -65,9 +66,14 @@ class BestOfN(GenerationStrategy):
|
|
65 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
66 |
|
67 |
# Tokenize the response for scoring with the PRM model
|
|
|
68 |
response_inputs = generator.tokenizer(response, return_tensors="pt").to(generator.device)
|
|
|
|
|
69 |
prm_output = generator.prm_model(**response_inputs) # Pass the inputs correctly to the model
|
70 |
-
|
|
|
|
|
71 |
|
72 |
# Append the response and its score
|
73 |
scored_outputs.append((response, score))
|
@@ -76,6 +82,7 @@ class BestOfN(GenerationStrategy):
|
|
76 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
77 |
|
78 |
|
|
|
79 |
class BeamSearch(GenerationStrategy):
|
80 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
81 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
|
|
|
54 |
|
55 |
|
56 |
class BestOfN(GenerationStrategy):
|
57 |
+
@observe()
|
58 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
59 |
scored_outputs = []
|
60 |
for _ in range(num_samples):
|
|
|
66 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
67 |
|
68 |
# Tokenize the response for scoring with the PRM model
|
69 |
+
#TODO use the real tokenizer from generator
|
70 |
response_inputs = generator.tokenizer(response, return_tensors="pt").to(generator.device)
|
71 |
+
|
72 |
+
# Pass the response inputs correctly to the PRM model
|
73 |
prm_output = generator.prm_model(**response_inputs) # Pass the inputs correctly to the model
|
74 |
+
|
75 |
+
# Check the expected output structure for prm_model and use it accordingly
|
76 |
+
score = prm_output.logits.mean().item() if hasattr(prm_output, 'logits') else 0.0
|
77 |
|
78 |
# Append the response and its score
|
79 |
scored_outputs.append((response, score))
|
|
|
82 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
83 |
|
84 |
|
85 |
+
|
86 |
class BeamSearch(GenerationStrategy):
|
87 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
88 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
|