Spaces:
Sleeping
Sleeping
Commit
·
03a0fd1
0
Parent(s):
Duplicate from Chitranshu/Dashboard-Zomato
Browse files- .gitattributes +35 -0
- Dockerfile +16 -0
- README.md +11 -0
- app.py +305 -0
- requirements.txt +8 -0
- zomato.png +0 -0
- zomato_data.csv +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
7 |
+
RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["panel", "serve", "/code/app.py", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "*"]
|
12 |
+
|
13 |
+
RUN mkdir /.cache
|
14 |
+
RUN chmod 777 /.cache
|
15 |
+
RUN mkdir .chroma
|
16 |
+
RUN chmod 777 .chroma
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Zomato-Dashboard
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
duplicated_from: Chitranshu/Dashboard-Zomato
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pandas as pd
|
3 |
+
import panel as pn
|
4 |
+
import hvplot.pandas
|
5 |
+
from itertools import cycle
|
6 |
+
from bokeh.palettes import Reds9
|
7 |
+
import folium
|
8 |
+
raw_df = pd.read_csv('zomato_data.csv')
|
9 |
+
zomato_df = raw_df.copy()
|
10 |
+
rating_type_df = zomato_df['RATING_TYPE'].value_counts().reset_index()
|
11 |
+
rating_type_df.rename(columns={'index':'RATING TYPE', 'RATING_TYPE':'COUNT OF RESTAURANTS'}, inplace=True)
|
12 |
+
foodtruck_df = zomato_df[zomato_df['CUSINE TYPE'] == 'Food Truck']
|
13 |
+
foodtruck_df.sort_values(by='RATING',ascending=False)
|
14 |
+
|
15 |
+
|
16 |
+
# Read the CSV file into a DataFrame
|
17 |
+
zomato_df = pd.read_csv('zomato_data.csv')
|
18 |
+
|
19 |
+
# Count the occurrences of each cuisine type
|
20 |
+
cuisine_counts = zomato_df['CUSINE TYPE'].value_counts()
|
21 |
+
|
22 |
+
# Create the bar plot using hvplot
|
23 |
+
bar_plot_cuisine = cuisine_counts.hvplot.bar(
|
24 |
+
color='#E10F14',
|
25 |
+
title='No. of Restaurants by Cuisine Type',
|
26 |
+
xlabel='Cuisine Type',
|
27 |
+
ylabel='Count',
|
28 |
+
width=900,
|
29 |
+
height=500
|
30 |
+
).opts(xrotation=90)
|
31 |
+
|
32 |
+
# Wrap the bar plot in a Panel object
|
33 |
+
panel_cuisine = pn.panel(bar_plot_cuisine)
|
34 |
+
|
35 |
+
# Create a DataFrame with the given data
|
36 |
+
rating_type_df = pd.DataFrame({
|
37 |
+
'RATING TYPE': ['Average', 'Good', 'Very Good', 'Excellent', 'Poor', 'Very Poor'],
|
38 |
+
'COUNT OF RESTAURANTS': [4983, 4263, 1145, 96, 56, 4]
|
39 |
+
})
|
40 |
+
|
41 |
+
# Define the hvplot chart
|
42 |
+
bar_plot_rating = rating_type_df.hvplot.bar(
|
43 |
+
x='RATING TYPE',
|
44 |
+
y='COUNT OF RESTAURANTS',
|
45 |
+
color='#E10F14',
|
46 |
+
title='Count of Restaurants by Rating Type',
|
47 |
+
xlabel='Rating Type',
|
48 |
+
ylabel='Count',
|
49 |
+
width=900,
|
50 |
+
height=500
|
51 |
+
)
|
52 |
+
|
53 |
+
# Wrap the bar plot in a Panel object
|
54 |
+
panel_rating = pn.panel(bar_plot_rating)
|
55 |
+
|
56 |
+
# Filter food trucks in Mumbai
|
57 |
+
foodtruck_df = zomato_df[zomato_df['CUSINE TYPE'] == 'Food Truck']
|
58 |
+
|
59 |
+
# Sort by rating in descending order and select the top result
|
60 |
+
best_food_truck = foodtruck_df.sort_values(by='RATING', ascending=False).head()
|
61 |
+
|
62 |
+
# Create the bar plot using hvplot
|
63 |
+
bar_plot_best_food_truck = best_food_truck.hvplot.bar(
|
64 |
+
x='NAME',
|
65 |
+
y='PRICE',
|
66 |
+
color='#E10F14',
|
67 |
+
title='Best Food Truck in Mumbai: Price vs. Name',
|
68 |
+
xlabel='Food Truck Name',
|
69 |
+
ylabel='Price',
|
70 |
+
hover_cols=['RATING', 'REGION', 'CUSINE_CATEGORY'],
|
71 |
+
rot=90,
|
72 |
+
width=900,
|
73 |
+
height=500
|
74 |
+
)
|
75 |
+
|
76 |
+
# Wrap the bar plot in a Panel object
|
77 |
+
panel_best_food_truck = pn.panel(bar_plot_best_food_truck)
|
78 |
+
|
79 |
+
# Filter seafood restaurants in Mumbai
|
80 |
+
seafood_df = zomato_df[zomato_df['CUSINE_CATEGORY'].notna() & zomato_df['CUSINE_CATEGORY'].str.contains('Seafood')]
|
81 |
+
|
82 |
+
# Get top 10 seafood restaurants in Mumbai, sorted by rating
|
83 |
+
top_seafood_df = seafood_df.sort_values(by='RATING', ascending=False).head(10)
|
84 |
+
|
85 |
+
# Create the bar plot using hvplot
|
86 |
+
bar_plot_top_seafood = top_seafood_df.hvplot.bar(
|
87 |
+
x='NAME',
|
88 |
+
y='PRICE',
|
89 |
+
color='#E10F14',
|
90 |
+
title='Top 10 Seafood Restaurants in Mumbai: Price vs. Name',
|
91 |
+
xlabel='Restaurant Name',
|
92 |
+
ylabel='Price',
|
93 |
+
hover_cols=['RATING', 'REGION', 'CUSINE_CATEGORY'],
|
94 |
+
rot=90,
|
95 |
+
width=900,
|
96 |
+
height=500
|
97 |
+
)
|
98 |
+
|
99 |
+
# Wrap the bar plot in a Panel object
|
100 |
+
panel_top_seafood = pn.panel(bar_plot_top_seafood)
|
101 |
+
|
102 |
+
# Define Panel widgets
|
103 |
+
yaxis_radio = pn.widgets.RadioButtonGroup(
|
104 |
+
name='Y axis',
|
105 |
+
options=['Cuisine Type', 'Rating Type', 'Best Food Truck', 'Top 10 Seafood', 'Highest Rated', 'Top Avg Price', 'Chinese Resto', 'Price vs Rating', 'Region vs Price', 'Map'],
|
106 |
+
button_type='danger',
|
107 |
+
inline=True,
|
108 |
+
value='Cuisine Type'
|
109 |
+
)
|
110 |
+
|
111 |
+
# Define the Panel layout
|
112 |
+
panel_layout = pn.Column(
|
113 |
+
pn.Row(yaxis_radio)
|
114 |
+
)
|
115 |
+
|
116 |
+
# Create the map centered at Mumbai with dark mode
|
117 |
+
mumbai_map = folium.Map(location=[19.0760, 72.8777], zoom_start=12, tiles="StamenTonerBackground")
|
118 |
+
|
119 |
+
# Add a marker for Mumbai
|
120 |
+
folium.Marker(
|
121 |
+
location=[19.0760, 72.8777],
|
122 |
+
popup='<b>Mumbai</b>',
|
123 |
+
icon=folium.Icon(color='red', icon_color='white', icon='heart', prefix='fa')
|
124 |
+
).add_to(mumbai_map)
|
125 |
+
|
126 |
+
# Add markers for the specified locations
|
127 |
+
locations = [
|
128 |
+
{'name': 'Hitchki', 'region': 'Bandra', 'rating': '4.8', 'latitude': 19.0590, 'longitude': 72.8292, 'cuisine': 'Indian'},
|
129 |
+
{'name': 'Downtown China', 'region': 'Andheri', 'rating': '4.9', 'latitude': 19.1136, 'longitude': 72.8697, 'cuisine': 'Chinese'},
|
130 |
+
{'name': 'The Northern Vibe', 'region': 'Powai', 'rating': '4.7', 'latitude': 19.1187, 'longitude': 72.9073, 'cuisine': 'Continental'},
|
131 |
+
{'name': 'Rajdhani', 'region': 'Ghatkopar', 'rating': '4.8', 'latitude': 19.0866, 'longitude': 72.9081, 'cuisine': 'Indian'},
|
132 |
+
{'name': 'Trumpet Sky Lounge', 'region': 'Andheri', 'rating': '4.9', 'latitude': 19.1189, 'longitude': 72.8537, 'cuisine': 'International'},
|
133 |
+
{'name': 'Dessertino', 'region': 'Kandivali', 'rating': '4.7', 'latitude': 19.2128, 'longitude': 72.8376, 'cuisine': 'Desserts'}
|
134 |
+
]
|
135 |
+
|
136 |
+
for location in locations:
|
137 |
+
popup_content = f"<b>Name:</b> {location['name']}<br><b>Region:</b> {location['region']}<br><b>Rating:</b> {location['rating']}<br><b>Cuisine:</b> {location['cuisine']}"
|
138 |
+
if location['name'] == 'Dessertino':
|
139 |
+
icon = folium.Icon(color='red', icon_color='white', icon='coffee', prefix='fa')
|
140 |
+
else:
|
141 |
+
icon = folium.Icon(color='red', icon_color='white', icon='cutlery', prefix='fa')
|
142 |
+
folium.Marker(
|
143 |
+
location=[location['latitude'], location['longitude']],
|
144 |
+
popup=popup_content,
|
145 |
+
icon=icon
|
146 |
+
).add_to(mumbai_map)
|
147 |
+
|
148 |
+
title_html = """
|
149 |
+
<div style="font-size: 17px; font-weight: bold; text-align: left;">The best Restaurant to order food with best price and Quality</div>
|
150 |
+
"""
|
151 |
+
# Wrap the map in a Panel object
|
152 |
+
panel_map = pn.pane.HTML(title_html + mumbai_map._repr_html_(), width=800, height=600)
|
153 |
+
|
154 |
+
# Define the callback function for the radio button
|
155 |
+
def update_chart(event):
|
156 |
+
if event.new == 'Cuisine Type':
|
157 |
+
panel_layout[1:] = [panel_cuisine]
|
158 |
+
elif event.new == 'Rating Type':
|
159 |
+
panel_layout[1:]= [panel_rating]
|
160 |
+
elif event.new == 'Best Food Truck':
|
161 |
+
panel_layout[1:] = [panel_best_food_truck]
|
162 |
+
elif event.new == 'Top 10 Seafood':
|
163 |
+
panel_layout[1:] = [panel_top_seafood]
|
164 |
+
elif event.new == 'Highest Rated':
|
165 |
+
# Filter the DataFrame for highest rated restaurants
|
166 |
+
highest_rated = zomato_df[zomato_df['RATING'] >= 4.7]
|
167 |
+
|
168 |
+
# Create the bar plot using hvplot
|
169 |
+
bar_plot_highest_rated = highest_rated.hvplot.bar(
|
170 |
+
x='NAME',
|
171 |
+
y='PRICE',
|
172 |
+
color='#E10F14',
|
173 |
+
title='Highest Rated Restaurants in Mumbai: Price vs. Name',
|
174 |
+
xlabel='Restaurant Name',
|
175 |
+
ylabel='Price',
|
176 |
+
hover_cols=['RATING', 'REGION', 'CUSINE_CATEGORY'],
|
177 |
+
rot=90,
|
178 |
+
width=900,
|
179 |
+
height=500
|
180 |
+
)
|
181 |
+
|
182 |
+
# Wrap the bar plot in a Panel object
|
183 |
+
panel_highest_rated = pn.panel(bar_plot_highest_rated)
|
184 |
+
panel_layout[1:] = [panel_highest_rated]
|
185 |
+
elif event.new == 'Top Avg Price':
|
186 |
+
# Filter the DataFrame for ratings greater than or equal to 4.5
|
187 |
+
filtered_df = zomato_df[zomato_df['RATING'] >= 4.5]
|
188 |
+
|
189 |
+
# Calculate the mean price for each combination of 'REGION' and 'CUSINE TYPE'
|
190 |
+
highest_rated_price_df = filtered_df.groupby(['REGION', 'CUSINE TYPE'])['PRICE'].mean().reset_index()
|
191 |
+
|
192 |
+
# Sort the DataFrame by 'REGION' in alphabetical order
|
193 |
+
highest_rated_price_df = highest_rated_price_df.sort_values('REGION')
|
194 |
+
|
195 |
+
# Create a scatter plot with rotated labels and star marker
|
196 |
+
scatter_plot_top_avg_price = highest_rated_price_df.hvplot.scatter(
|
197 |
+
x='REGION',
|
198 |
+
y='PRICE',
|
199 |
+
c='CUSINE TYPE',
|
200 |
+
cmap='Category10',
|
201 |
+
title='Avg Price Distribution of High-rated restaurants for each Cuisine Type',
|
202 |
+
size=100, # Increase the marker size
|
203 |
+
rot=90,
|
204 |
+
width=900,
|
205 |
+
height=500,
|
206 |
+
marker='*',
|
207 |
+
)
|
208 |
+
|
209 |
+
# Create a Panel object with the scatter plot
|
210 |
+
panel_top_avg_price = pn.panel(scatter_plot_top_avg_price)
|
211 |
+
panel_layout[1:] = [panel_top_avg_price]
|
212 |
+
elif event.new == 'Chinese Resto':
|
213 |
+
zomato_df_cleaned = zomato_df.dropna(subset=['CUSINE_CATEGORY'])
|
214 |
+
chinese_df = zomato_df_cleaned[zomato_df_cleaned['CUSINE_CATEGORY'].str.contains('Chinese')]
|
215 |
+
chinese_rest_df = chinese_df.groupby(by='REGION').agg({'NAME': 'count', 'PRICE': 'mean'}).rename(columns={'NAME': 'COUNT OF RESTAURANTS'}).reset_index()
|
216 |
+
chinese_rest_df = chinese_rest_df.sort_values('COUNT OF RESTAURANTS', ascending=False).head(25)
|
217 |
+
bar_plot = chinese_rest_df.hvplot.bar(
|
218 |
+
x='REGION',
|
219 |
+
y='COUNT OF RESTAURANTS',
|
220 |
+
color='#E10F14', # Set the color to red
|
221 |
+
title='No. of Chinese Restaurants by Places',
|
222 |
+
xlabel='Region',
|
223 |
+
ylabel='Count of Restaurants',
|
224 |
+
rot=90,
|
225 |
+
height=500,
|
226 |
+
width=900
|
227 |
+
)
|
228 |
+
layout = pn.Column(bar_plot)
|
229 |
+
panel_layout[1:] = [bar_plot]
|
230 |
+
elif event.new == 'Price vs Rating':
|
231 |
+
# Calculate the mean price and rating for each cuisine type
|
232 |
+
price_rating_df = zomato_df.groupby(['CUSINE TYPE', 'RATING'])['PRICE'].mean().reset_index()
|
233 |
+
hvplot_price_rating = price_rating_df.hvplot.line(
|
234 |
+
x='RATING',
|
235 |
+
y='PRICE',
|
236 |
+
by='CUSINE TYPE',
|
237 |
+
title='Price vs Rating by Cuisine Type',
|
238 |
+
xlabel='Rating',
|
239 |
+
ylabel='Price',
|
240 |
+
width=900,
|
241 |
+
height=500,
|
242 |
+
legend='bottom' # Set the position of the legend to 'bottom'
|
243 |
+
)
|
244 |
+
|
245 |
+
# Set the number of legend columns
|
246 |
+
hvplot_price_rating.opts(legend_cols=6) # Adjust the value to your desired maximum number of legend items per row
|
247 |
+
|
248 |
+
# Wrap the Hvplot plot in a Panel object
|
249 |
+
panel_price_vs_rating = pn.panel(hvplot_price_rating)
|
250 |
+
panel_layout[1:] = [panel_price_vs_rating]
|
251 |
+
elif event.new == 'Region vs Price':
|
252 |
+
region_price_df = zomato_df.groupby(['REGION'])['PRICE'].mean().reset_index()
|
253 |
+
scatter_plot = region_price_df.hvplot.scatter(
|
254 |
+
x='REGION',
|
255 |
+
y='PRICE',
|
256 |
+
cmap='Category10',
|
257 |
+
title='Relation between Region and Price',
|
258 |
+
size=100, # Increase the marker size
|
259 |
+
rot=90,
|
260 |
+
width=900,
|
261 |
+
height=600,
|
262 |
+
marker='*',
|
263 |
+
color='red'
|
264 |
+
)
|
265 |
+
panel_region_vs_price = pn.Column(scatter_plot)
|
266 |
+
panel_layout[1:] = [panel_region_vs_price]
|
267 |
+
elif event.new == 'Map':
|
268 |
+
panel_layout[1:] = [panel_map]
|
269 |
+
|
270 |
+
yaxis_radio.param.watch(update_chart, 'value')
|
271 |
+
|
272 |
+
# Display the initial chart
|
273 |
+
panel_layout.append(panel_cuisine)
|
274 |
+
|
275 |
+
# Display the Panel layout
|
276 |
+
panel_layout
|
277 |
+
dashboard = panel_layout
|
278 |
+
import panel as pn
|
279 |
+
pn.extension() # Add this line to load the Panel extension
|
280 |
+
|
281 |
+
# Layout using Template
|
282 |
+
template = pn.template.FastListTemplate(
|
283 |
+
title='Zomato Mumbai Dashboard',
|
284 |
+
sidebar=[
|
285 |
+
pn.pane.PNG('zomato.png', sizing_mode='scale_both'),
|
286 |
+
pn.pane.Markdown("# Performing Exploratory Data Analysis"),
|
287 |
+
pn.pane.Markdown("1. How many restaurants are in Mumbai for each type of cuisine?"),
|
288 |
+
pn.pane.Markdown("2. What are the percentage of restaurants by Rating Type in Mumbai?"),
|
289 |
+
pn.pane.Markdown("3. Which are the Top 10 highest rated Seafood Restaurant in Mumbai?"),
|
290 |
+
pn.pane.Markdown("4. Which is the best Food Truck in Mumbai?"),
|
291 |
+
pn.pane.Markdown("5. Which places have the highest rated restaurant for each Cuisine Type in Mumbai?"),
|
292 |
+
pn.pane.Markdown("6. What is the Avg Price Distibution of highest rated restaurant for each Cuisine Type in Mumbai?"),
|
293 |
+
pn.pane.Markdown("7. Which areas have a large number of Chinese Restaurant Market?"),
|
294 |
+
pn.pane.Markdown("8. Is there a relation between Price and Rating by each Cuisine Type?"),
|
295 |
+
pn.pane.Markdown("9. Is there a relation between Region and Price?"),
|
296 |
+
pn.pane.Markdown("10. Can we map the best restraunt with high quality food?"),
|
297 |
+
],
|
298 |
+
main = [pn.Row(pn.Column(dashboard)),
|
299 |
+
pn.Row(pn.pane.Markdown("Designed and Developed with ❤️ by Chitranshu Nagdawane © 2023"))
|
300 |
+
],
|
301 |
+
accent_base_color="#E10F14",
|
302 |
+
header_background="#E10F14"
|
303 |
+
)
|
304 |
+
|
305 |
+
template.servable()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
panel
|
2 |
+
jupyter
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
hvplot
|
6 |
+
bokeh
|
7 |
+
seaborn
|
8 |
+
folium
|
zomato.png
ADDED
![]() |
zomato_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|