ChijoTheDatascientist
commited on
Commit
·
cd8911f
1
Parent(s):
bebb6bb
chatbot code to summarize and give insight
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
from langchain_core.prompts import PromptTemplate
|
7 |
+
from langchain_core.output_parsers import StrOutputParser
|
8 |
+
|
9 |
+
# Load HF_TOKEN securely
|
10 |
+
hf_token = os.getenv("HF_TOKEN")
|
11 |
+
|
12 |
+
# Set up the Hugging Face Inference Client with the Bearer token
|
13 |
+
client = InferenceClient(api_key=f"Bearer {hf_token}")
|
14 |
+
|
15 |
+
# Model paths and IDs
|
16 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
17 |
+
bart_model_path = "ChijoTheDatascientist/summarization-model"
|
18 |
+
|
19 |
+
# Load BART model for summarization
|
20 |
+
device = torch.device('cpu')
|
21 |
+
bart_tokenizer = AutoTokenizer.from_pretrained(bart_model_path)
|
22 |
+
bart_model = AutoModelForSeq2SeqLM.from_pretrained(bart_model_path).to(device)
|
23 |
+
|
24 |
+
@st.cache_data
|
25 |
+
def summarize_review(review_text):
|
26 |
+
inputs = bart_tokenizer(review_text, max_length=1024, truncation=True, return_tensors="pt")
|
27 |
+
summary_ids = bart_model.generate(inputs["input_ids"], max_length=40, min_length=10, length_penalty=2.0, num_beams=8, early_stopping=True)
|
28 |
+
summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
29 |
+
return summary
|
30 |
+
|
31 |
+
def generate_response(system_message, user_input, chat_history, max_new_tokens=128):
|
32 |
+
try:
|
33 |
+
# Prepare the messages for the Hugging Face Inference API
|
34 |
+
messages = [{"role": "user", "content": user_input}]
|
35 |
+
|
36 |
+
# Call the Inference API
|
37 |
+
completion = client.chat.completions.create(
|
38 |
+
model=model_id,
|
39 |
+
messages=messages,
|
40 |
+
max_tokens=max_new_tokens,
|
41 |
+
)
|
42 |
+
|
43 |
+
# Get the response from the API
|
44 |
+
response = completion.choices[0].message["content"]
|
45 |
+
return response
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error generating response: {e}"
|
49 |
+
|
50 |
+
# Streamlit app configuration
|
51 |
+
st.set_page_config(page_title="Insight Snap & Summarizer")
|
52 |
+
st.title("Insight Snap & Summarizer")
|
53 |
+
|
54 |
+
st.markdown("""
|
55 |
+
- Use specific keywords in your queries to get targeted responses:
|
56 |
+
- **"summarize"**: To summarize customer reviews.
|
57 |
+
- **"Feedback or insights"**: Get actionable business insights based on feedback.
|
58 |
+
""")
|
59 |
+
|
60 |
+
# Initialize session state for chat history
|
61 |
+
if "chat_history" not in st.session_state:
|
62 |
+
st.session_state.chat_history = []
|
63 |
+
|
64 |
+
# Chat interface
|
65 |
+
user_input = st.text_area("Enter customer reviews or a question:")
|
66 |
+
|
67 |
+
if st.button("Submit"):
|
68 |
+
if user_input:
|
69 |
+
# Summarize if the query is feedback-related
|
70 |
+
if "summarize" in user_input.lower():
|
71 |
+
summary = summarize_review(user_input)
|
72 |
+
st.markdown(f"**Summary:** \n{summary}")
|
73 |
+
elif "insight" in user_input.lower() or "feedback" in user_input.lower():
|
74 |
+
system_message = (
|
75 |
+
"You are a helpful assistant providing actionable insights "
|
76 |
+
"from customer feedback to help businesses improve their services."
|
77 |
+
)
|
78 |
+
# Use the last summarized text if available
|
79 |
+
last_summary = st.session_state.get("last_summary", "")
|
80 |
+
query_input = last_summary if last_summary else user_input
|
81 |
+
response = generate_response(system_message, query_input, st.session_state.chat_history)
|
82 |
+
|
83 |
+
if response:
|
84 |
+
# Update chat history
|
85 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
86 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
87 |
+
st.markdown(f"**Insight:** \n{response}")
|
88 |
+
else:
|
89 |
+
st.warning("No response generated. Please try again later.")
|
90 |
+
else:
|
91 |
+
st.warning("Please specify if you want to 'summarize' or get 'insights'.")
|
92 |
+
|
93 |
+
# Store the last summary for insights
|
94 |
+
if "summarize" in user_input.lower():
|
95 |
+
st.session_state["last_summary"] = summary
|
96 |
+
else:
|
97 |
+
st.warning("Please enter customer reviews or ask for insights.")
|
98 |
+
|
99 |
+
|