import re from langchain_openai import OpenAIEmbeddings from langchain_openai import ChatOpenAI from langchain_openai.embeddings import OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import StrOutputParser from langchain_community.document_loaders import PyMuPDFLoader from langchain_community.vectorstores import Qdrant from langchain_core.runnables import RunnablePassthrough, RunnableParallel from langchain_core.documents import Document from operator import itemgetter import os from dotenv import load_dotenv import chainlit as cl load_dotenv() ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load() ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load() def metadata_generator(document, name): fixed_text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100, separators=["\n\n", "\n", ".", "!", "?"] ) collection = fixed_text_splitter.split_documents(document) for doc in collection: doc.metadata["source"] = name return collection recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework") recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint") combined_documents = recursive_framework_document + recursive_blueprint_document embeddings = OpenAIEmbeddings(model="text-embedding-3-small") vectorstore = Qdrant.from_documents( documents=combined_documents, embedding=embeddings, location=":memory:", collection_name="ai_policy" ) alt_retriever = vectorstore.as_retriever() ## Generation LLM llm = ChatOpenAI(model="gpt-4o-mini") RAG_PROMPT = """\ You are an AI Policy Expert. Given a provided context and question, you must answer the question based only on context. Think through your answer carefully and step by step. Context: {context} Question: {question} """ rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) retrieval_augmented_qa_chain = ( # INVOKE CHAIN WITH: {"question" : "<>"} # "question" : populated by getting the value of the "question" key # "context" : populated by getting the value of the "question" key and chaining it into the base_retriever {"context": itemgetter("question") | alt_retriever, "question": itemgetter("question")} # "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step) # by getting the value of the "context" key from the previous step | RunnablePassthrough.assign(context=itemgetter("context")) # "response" : the "context" and "question" values are used to format our prompt object and then piped # into the LLM and stored in a key called "response" # "context" : populated by getting the value of the "context" key from the previous step | {"response": rag_prompt | llm, "context": itemgetter("context")} ) #alt_rag_chain.invoke({"question" : "What is the AI framework all about?"}) @cl.on_message async def handle_message(message): try: # Process the incoming question using the RAG chain result = retrieval_augmented_qa_chain.invoke({"question": message.content}) # Create a new message for the response response_message = cl.Message(content=result["response"].content) # Send the response back to the user await response_message.send() except Exception as e: # Handle any exception and log it or send a response back to the user error_message = cl.Message(content=f"An error occurred: {str(e)}") await error_message.send() print(f"Error occurred: {e}") # Run the ChainLit server if __name__ == "__main__": try: cl.run() except Exception as e: print(f"Server error occurred: {e}")