from diffusers import CycleDiffusionPipeline, DDIMScheduler import gradio as gr import torch from PIL import Image import utils import streamlit as st is_colab = utils.is_google_colab() if False: scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False) model_id_or_path = "CompVis/stable-diffusion-v1-4" pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler) if torch.cuda.is_available(): pipe = pipe.to("cuda") device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100, width=512, height=512, seed=0, img=None, strength=0.7): torch.manual_seed(seed) ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio))) result = pipe(prompt=target_prompt, source_prompt=source_prompt, init_image=img, num_inference_steps=num_inference_steps, eta=0.1, strength=strength, guidance_scale=guidance_scale, source_guidance_scale=source_guidance_scale, ).images[0] return replace_nsfw_images(result) def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images[0] css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""
""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) img = gr.Image(label="Source image", height=256, tool="editor", type="pil") image_out = gr.Image(height=512) # gallery = gr.Gallery( # label="Generated images", show_label=False, elem_id="gallery" # ).style(grid=[1], height="auto") with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image") target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image") with gr.Row(): source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10) guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10) with gr.Row(): num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1) strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01) with gr.Row(): width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1) inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, width, height, seed, img, strength] generate.click(inference, inputs=inputs, outputs=image_out) ex = gr.Examples( [ ["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.8], ], [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, width, height, seed, img, strength], image_out, inference, cache_examples=False) gr.Markdown(''' Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu) ![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion) ''') if not is_colab: demo.queue(concurrency_count=1) demo.launch(debug=is_colab, share=is_colab)