from diffusers import CycleDiffusionPipeline, DDIMScheduler import gradio as gr import torch from PIL import Image import utils import streamlit as st import ptp_utils import seq_aligner import torch.nn.functional as nnf from typing import Optional, Union, Tuple, List, Callable, Dict import abc LOW_RESOURCE = False MAX_NUM_WORDS = 77 is_colab = utils.is_google_colab() if True: model_id_or_path = "CompVis/stable-diffusion-v1-4" scheduler = DDIMScheduler.from_config(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], subfolder="scheduler") pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler) tokenizer = pipe.tokenizer if torch.cuda.is_available(): pipe = pipe.to("cuda") device_print = "GPU ๐Ÿ”ฅ" if torch.cuda.is_available() else "CPU ๐Ÿฅถ" device = "cuda" if torch.cuda.is_available() else "cpu" class LocalBlend: def __call__(self, x_t, attention_store): k = 1 maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] maps = torch.cat(maps, dim=1) maps = (maps * self.alpha_layers).sum(-1).mean(1) mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k)) mask = nnf.interpolate(mask, size=(x_t.shape[2:])) mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] mask = mask.gt(self.threshold) mask = (mask[:1] + mask[1:]).float() x_t = x_t[:1] + mask * (x_t - x_t[:1]) return x_t def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3): alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) for i, (prompt, words_) in enumerate(zip(prompts, words)): if type(words_) is str: words_ = [words_] for word in words_: ind = ptp_utils.get_word_inds(prompt, word, tokenizer) alpha_layers[i, :, :, :, :, ind] = 1 self.alpha_layers = alpha_layers.to(device) self.threshold = threshold class AttentionControl(abc.ABC): def step_callback(self, x_t): return x_t def between_steps(self): return @property def num_uncond_att_layers(self): return self.num_att_layers if LOW_RESOURCE else 0 @abc.abstractmethod def forward(self, attn, is_cross: bool, place_in_unet: str): raise NotImplementedError def __call__(self, attn, is_cross: bool, place_in_unet: str): if self.cur_att_layer >= self.num_uncond_att_layers: if LOW_RESOURCE: attn = self.forward(attn, is_cross, place_in_unet) else: h = attn.shape[0] attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: self.cur_att_layer = 0 self.cur_step += 1 self.between_steps() return attn def reset(self): self.cur_step = 0 self.cur_att_layer = 0 def __init__(self): self.cur_step = 0 self.num_att_layers = -1 self.cur_att_layer = 0 class EmptyControl(AttentionControl): def forward(self, attn, is_cross: bool, place_in_unet: str): return attn class AttentionStore(AttentionControl): @staticmethod def get_empty_store(): return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" if attn.shape[1] <= 32 ** 2: # avoid memory overhead self.step_store[key].append(attn) return attn def between_steps(self): if len(self.attention_store) == 0: self.attention_store = self.step_store else: for key in self.attention_store: for i in range(len(self.attention_store[key])): self.attention_store[key][i] += self.step_store[key][i] self.step_store = self.get_empty_store() def get_average_attention(self): average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} return average_attention def reset(self): super(AttentionStore, self).reset() self.step_store = self.get_empty_store() self.attention_store = {} def __init__(self): super(AttentionStore, self).__init__() self.step_store = self.get_empty_store() self.attention_store = {} class AttentionControlEdit(AttentionStore, abc.ABC): def step_callback(self, x_t): if self.local_blend is not None: x_t = self.local_blend(x_t, self.attention_store) return x_t def replace_self_attention(self, attn_base, att_replace): if att_replace.shape[2] <= 16 ** 2: return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) else: return att_replace @abc.abstractmethod def replace_cross_attention(self, attn_base, att_replace): raise NotImplementedError def forward(self, attn, is_cross: bool, place_in_unet: str): super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): h = attn.shape[0] // self.batch_size attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) attn_base, attn_repalce = attn[0], attn[1:] if is_cross: alpha_words = self.cross_replace_alpha[self.cur_step] attn_replace_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce attn[1:] = attn_replace_new else: attn[1:] = self.replace_self_attention(attn_base, attn_repalce) attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) return attn def __init__(self, prompts, num_steps: int, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], self_replace_steps: Union[float, Tuple[float, float]], local_blend: Optional[LocalBlend]): super(AttentionControlEdit, self).__init__() self.batch_size = len(prompts) self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) if type(self_replace_steps) is float: self_replace_steps = 0, self_replace_steps self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) self.local_blend = local_blend class AttentionReplace(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None): super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) class AttentionRefine(AttentionControlEdit): def replace_cross_attention(self, attn_base, att_replace): attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) return attn_replace def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, local_blend: Optional[LocalBlend] = None): super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) self.mapper, alphas = self.mapper.to(device), alphas.to(device) self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]): if type(word_select) is int or type(word_select) is str: word_select = (word_select,) equalizer = torch.ones(len(values), 77) values = torch.tensor(values, dtype=torch.float32) for word in word_select: inds = ptp_utils.get_word_inds(text, word, tokenizer) equalizer[:, inds] = values return equalizer def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100, width=512, height=512, seed=0, img=None, strength=0.7, cross_attention_control="None", cross_replace_steps=0.8, self_replace_steps=0.4): torch.manual_seed(seed) ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio))) # create the CAC controller. assert cross_attention_control in ['Replace', 'Refine', "None"] if cross_attention_control == "replace": controller = AttentionReplace([source_prompt, target_prompt], num_inference_steps, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, ) ptp_utils.register_attention_control(pipe, controller) elif cross_attention_control == "refine": controller = AttentionRefine([source_prompt, target_prompt], num_inference_steps, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, ) ptp_utils.register_attention_control(pipe, controller) results = pipe(prompt=target_prompt, source_prompt=source_prompt, init_image=img, num_inference_steps=num_inference_steps, eta=0.1, strength=strength, guidance_scale=guidance_scale, source_guidance_scale=source_guidance_scale, ) return replace_nsfw_images(results) def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images[0] css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

CycleDiffusion with Stable Diffusion

Demo for CycleDiffusion with Stable Diffusion.
CycleDiffusion (๐Ÿ“„ Paper link | ๐Ÿงจ Pipeline doc) is an image-to-image translation method that supports stochastic samplers for diffusion models.
It also supports Cross Attention Control (๐Ÿ“„ Paper link), which is a technique to transfer the attention map from the source prompt to the target prompt.

You can skip the queue in the colab: Open In Colab

Running on {device_print}{(" in a Google Colab." if is_colab else "")}

""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): img = gr.Image(label="Input image", height=512, tool="editor", type="pil") image_out = gr.Image(label="Output image", height=512) # gallery = gr.Gallery( # label="Generated images", show_label=False, elem_id="gallery" # ).style(grid=[1], height="auto") with gr.Column(scale=45): with gr.Tab("Edit options"): with gr.Group(): with gr.Row(): source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image") source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10) with gr.Row(): target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image") guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10) with gr.Row(): strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01) with gr.Row(): generate1 = gr.Button(value="Edit") with gr.Tab("Basic options"): with gr.Group(): with gr.Row(): num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1) width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) with gr.Row(): seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1) with gr.Row(): generate2 = gr.Button(value="Edit") with gr.Tab("CAC options"): with gr.Group(): with gr.Row(): cross_attention_control = gr.Radio(label="CAC type", choices=["None", "Replace", "Refine"], value="None") with gr.Row(): # If not "None", the following two parameters will be used. cross_replace_steps = gr.Slider(label="Cross replace steps", value=0.8, minimum=0.0, maximum=1, step=0.01) self_replace_steps = gr.Slider(label="Self replace steps", value=0.4, minimum=0.0, maximum=1, step=0.01) with gr.Row(): generate3 = gr.Button(value="Edit") inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, width, height, seed, img, strength, cross_attention_control, cross_replace_steps, self_replace_steps] generate1.click(inference, inputs=inputs, outputs=image_out) generate2.click(inference, inputs=inputs, outputs=image_out) generate3.click(inference, inputs=inputs, outputs=image_out) ex = gr.Examples( [ ["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, "images/astronaut_horse.png", 0.8, "None", 0, 0], ["An astronaut riding a horse", "An astronaut riding a elephant", 1, 2, 100, "images/astronaut_horse.png", 0.9, "Replace", 0.15, 0.10], ["A black colored car.", "A blue colored car.", 1, 2, 100, "images/black_car.png", 0.85, "None", 0, 0], ["A black colored car.", "A blue colored car.", 1, 5, 100, "images/black_car.png", 0.95, "Replace", 0.8, 0.4], ["A black colored car.", "A red colored car.", 1, 5, 100, "images/black_car.png", 1, "Replace", 0.8, 0.4], ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 0.9, "None", 0.0, 0.0], ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 1, "Replace", 0.8, 0.4], ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "None", 0.0, 0.0], ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "Replace", 0.8, 0.4], ], [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, img, strength, cross_attention_control, cross_replace_steps, self_replace_steps], image_out, inference, cache_examples=False) gr.Markdown(''' Space built with Diffusers ๐Ÿงจ by HuggingFace ๐Ÿค—. [![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu) ![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion) ''') if not is_colab: demo.queue(concurrency_count=1) demo.launch(debug=is_colab, share=is_colab)