Spaces:
Runtime error
Runtime error
from diffusers import CycleDiffusionPipeline, DDIMScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import utils | |
import streamlit as st | |
is_colab = utils.is_google_colab() | |
if False: | |
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", | |
num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False) | |
model_id_or_path = "CompVis/stable-diffusion-v1-4" | |
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, | |
use_auth_token=st.secrets["USER_TOKEN"], | |
scheduler=scheduler) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
device = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά" | |
def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100, | |
width=512, height=512, seed=0, img=None, strength=0.7): | |
torch.manual_seed(seed) | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio))) | |
result = pipe(prompt=target_prompt, | |
source_prompt=source_prompt, | |
init_image=img, | |
num_inference_steps=num_inference_steps, | |
eta=0.1, | |
strength=strength, | |
guidance_scale=guidance_scale, | |
source_guidance_scale=source_guidance_scale, | |
).images[0] | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images[0] | |
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>CycleDiffusion with Stable Diffusion</h1> | |
</div> | |
<p> | |
Demo for CycleDiffusion with Stable Diffusion, built with Diffusers 𧨠by HuggingFace π€. | |
</p> | |
<p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p> | |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")} | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
with gr.Row(): | |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) | |
img = gr.Image(label="Source image", height=256, tool="editor", type="pil") | |
image_out = gr.Image(height=512) | |
# gallery = gr.Gallery( | |
# label="Generated images", show_label=False, elem_id="gallery" | |
# ).style(grid=[1], height="auto") | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image") | |
target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image") | |
with gr.Row(): | |
source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10) | |
guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10) | |
with gr.Row(): | |
num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01) | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) | |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) | |
seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1) | |
inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, | |
width, height, seed, img, strength] | |
generate.click(inference, inputs=inputs, outputs=image_out) | |
ex = gr.Examples( | |
[ | |
["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.8], | |
], | |
[source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps, | |
width, height, seed, img, strength], | |
image_out, inference, cache_examples=False) | |
gr.Markdown(''' | |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu) | |
![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion) | |
''') | |
if not is_colab: | |
demo.queue(concurrency_count=1) | |
demo.launch(debug=is_colab, share=is_colab) | |