Update Chest_Xray_Report_Generator-V2.py
Browse files- Chest_Xray_Report_Generator-V2.py +306 -306
Chest_Xray_Report_Generator-V2.py
CHANGED
@@ -1,307 +1,307 @@
|
|
1 |
-
import os
|
2 |
-
import transformers
|
3 |
-
from transformers import pipeline
|
4 |
-
import gradio as gr
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import pydicom
|
8 |
-
|
9 |
-
##### Libraries For Grad-Cam-View
|
10 |
-
import os
|
11 |
-
import cv2
|
12 |
-
import numpy as np
|
13 |
-
import torch
|
14 |
-
from functools import partial
|
15 |
-
from torchvision import transforms
|
16 |
-
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
|
17 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
18 |
-
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
19 |
-
from transformers import VisionEncoderDecoderModel
|
20 |
-
|
21 |
-
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
22 |
-
methods = {
|
23 |
-
"gradcam": GradCAM,
|
24 |
-
"scorecam": ScoreCAM,
|
25 |
-
"gradcam++": GradCAMPlusPlus,
|
26 |
-
"ablationcam": AblationCAM,
|
27 |
-
"xgradcam": XGradCAM,
|
28 |
-
"eigencam": EigenCAM,
|
29 |
-
"eigengradcam": EigenGradCAM,
|
30 |
-
"layercam": LayerCAM,
|
31 |
-
"fullgrad": FullGrad
|
32 |
-
}
|
33 |
-
|
34 |
-
if method not in methods:
|
35 |
-
raise ValueError(f"Method should be one of {list(methods.keys())}")
|
36 |
-
|
37 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
38 |
-
model.encoder.eval()
|
39 |
-
|
40 |
-
if use_cuda and torch.cuda.is_available():
|
41 |
-
model.encoder = model.encoder.cuda()
|
42 |
-
else:
|
43 |
-
use_cuda = False
|
44 |
-
|
45 |
-
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
46 |
-
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
47 |
-
target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
48 |
-
#target_layers = [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] ## For Swin-based VisionEncoderDecoder mode
|
49 |
-
|
50 |
-
|
51 |
-
if method == "ablationcam":
|
52 |
-
cam = methods[method](model=model.encoder,
|
53 |
-
target_layers=target_layers,
|
54 |
-
use_cuda=use_cuda,
|
55 |
-
reshape_transform=reshape_transform,
|
56 |
-
ablation_layer=AblationLayerVit())
|
57 |
-
else:
|
58 |
-
cam = methods[method](model=model.encoder,
|
59 |
-
target_layers=target_layers,
|
60 |
-
use_cuda=use_cuda,
|
61 |
-
reshape_transform=reshape_transform)
|
62 |
-
|
63 |
-
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
64 |
-
rgb_img = cv2.resize(rgb_img, (224, 224)) ## (224, 224)
|
65 |
-
rgb_img = np.float32(rgb_img) / 255
|
66 |
-
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
67 |
-
|
68 |
-
targets = None
|
69 |
-
cam.batch_size = 16
|
70 |
-
|
71 |
-
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
|
72 |
-
grayscale_cam = grayscale_cam[0, :]
|
73 |
-
|
74 |
-
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
|
75 |
-
output_file = os.path.join(output_path, 'gradcam_result.png')
|
76 |
-
cv2.imwrite(output_file, cam_image)
|
77 |
-
|
78 |
-
|
79 |
-
def reshape_transform(tensor, height=14, width=14): ### height=14, width=14 for ViT-based Model
|
80 |
-
batch_size, token_number, embed_dim = tensor.size()
|
81 |
-
if token_number < height * width:
|
82 |
-
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
83 |
-
tensor = torch.cat([tensor, pad], dim=1)
|
84 |
-
elif token_number > height * width:
|
85 |
-
tensor = tensor[:, :height * width, :]
|
86 |
-
|
87 |
-
result = tensor.reshape(batch_size, height, width, embed_dim)
|
88 |
-
result = result.transpose(2, 3).transpose(1, 2)
|
89 |
-
return result
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# Example usage:
|
95 |
-
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
96 |
-
model_path = "
|
97 |
-
output_path = "
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
def sentence_case(paragraph):
|
102 |
-
sentences = paragraph.split('. ')
|
103 |
-
formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
|
104 |
-
formatted_paragraph = '. '.join(formatted_sentences)
|
105 |
-
return formatted_paragraph
|
106 |
-
|
107 |
-
def dicom_to_png(dicom_file, png_file):
|
108 |
-
# Load DICOM file
|
109 |
-
dicom_data = pydicom.dcmread(dicom_file)
|
110 |
-
dicom_data.PhotometricInterpretation = 'MONOCHROME1'
|
111 |
-
|
112 |
-
# Normalize pixel values to 0-255
|
113 |
-
img = dicom_data.pixel_array
|
114 |
-
img = img.astype(np.float32)
|
115 |
-
|
116 |
-
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
|
117 |
-
img = img.astype(np.uint8)
|
118 |
-
|
119 |
-
# Save as PNG
|
120 |
-
cv2.imwrite(png_file, img)
|
121 |
-
return img
|
122 |
-
|
123 |
-
|
124 |
-
Image_Captioner = pipeline("image-to-text", model = "
|
125 |
-
|
126 |
-
data_dir =
|
127 |
-
|
128 |
-
def xray_report_generator(Image_file):
|
129 |
-
if Image_file[-4:] =='.dcm':
|
130 |
-
png_file = 'DCM2PNG.png'
|
131 |
-
dicom_to_png(Image_file, png_file)
|
132 |
-
Image_file = os.path.join(data_dir, png_file)
|
133 |
-
output = Image_Captioner(Image_file, max_new_tokens=512)
|
134 |
-
|
135 |
-
else:
|
136 |
-
output = Image_Captioner(Image_file, max_new_tokens=512)
|
137 |
-
|
138 |
-
result = output[0]['generated_text']
|
139 |
-
output_paragraph = sentence_case(result)
|
140 |
-
|
141 |
-
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
142 |
-
|
143 |
-
grad_cam_image = output_path + 'gradcam_result.png'
|
144 |
-
|
145 |
-
return Image_file,grad_cam_image, output_paragraph
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
def save_feedback(feedback):
|
150 |
-
feedback_dir = "
|
151 |
-
if not os.path.exists(feedback_dir):
|
152 |
-
os.makedirs(feedback_dir)
|
153 |
-
feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
154 |
-
with open(feedback_file, "a") as f:
|
155 |
-
f.write(feedback + "\n")
|
156 |
-
return "Feedback submitted successfully!"
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
# Custom CSS styles
|
162 |
-
custom_css = """
|
163 |
-
<style>
|
164 |
-
|
165 |
-
#title {
|
166 |
-
color: green;
|
167 |
-
font-size: 36px;
|
168 |
-
font-weight: bold;
|
169 |
-
}
|
170 |
-
#description {
|
171 |
-
color: green;
|
172 |
-
font-size: 22px;
|
173 |
-
}
|
174 |
-
|
175 |
-
|
176 |
-
#submit-btn {
|
177 |
-
background-color: #1E90FF; /* DodgerBlue */
|
178 |
-
color: green;
|
179 |
-
padding: 15px 32px;
|
180 |
-
text-align: center;
|
181 |
-
text-decoration: none;
|
182 |
-
display: inline-block;
|
183 |
-
font-size: 20px;
|
184 |
-
margin: 4px 2px;
|
185 |
-
cursor: pointer;
|
186 |
-
}
|
187 |
-
#submit-btn:hover {
|
188 |
-
background-color: #00FFFF;
|
189 |
-
}
|
190 |
-
|
191 |
-
.intext textarea {
|
192 |
-
color: green;
|
193 |
-
font-size: 20px;
|
194 |
-
font-weight: bold;
|
195 |
-
}
|
196 |
-
|
197 |
-
|
198 |
-
.small-button {
|
199 |
-
color: green;
|
200 |
-
padding: 5px 10px;
|
201 |
-
font-size: 20px;
|
202 |
-
}
|
203 |
-
|
204 |
-
</style>
|
205 |
-
"""
|
206 |
-
|
207 |
-
# Sample image paths
|
208 |
-
sample_images = [
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
#"sample4.png",
|
213 |
-
#"sample5.png"
|
214 |
-
]
|
215 |
-
|
216 |
-
def set_input_image(image_path):
|
217 |
-
return gr.update(value=image_path)
|
218 |
-
|
219 |
-
|
220 |
-
with gr.Blocks(css = custom_css) as demo:
|
221 |
-
|
222 |
-
#gr.HTML(custom_css) # Inject custom CSS
|
223 |
-
|
224 |
-
gr.Markdown(
|
225 |
-
"""
|
226 |
-
<h1 style="color:blue; font-size: 36px; font-weight: bold">Chest X-ray Report Generator</h1>
|
227 |
-
<p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
228 |
-
"""
|
229 |
-
)
|
230 |
-
|
231 |
-
with gr.Row():
|
232 |
-
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
233 |
-
|
234 |
-
with gr.Row():
|
235 |
-
with gr.Column(scale=1, min_width=300):
|
236 |
-
outputs1 = gr.Image(label="Image Viewer")
|
237 |
-
with gr.Column(scale=1, min_width=300):
|
238 |
-
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
239 |
-
with gr.Column(scale=1, min_width=300):
|
240 |
-
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
241 |
-
|
242 |
-
|
243 |
-
submit_btn = gr.Button("Generate Report", elem_id="submit-btn")
|
244 |
-
submit_btn.click(
|
245 |
-
fn=xray_report_generator,
|
246 |
-
inputs=inputs,
|
247 |
-
outputs=[outputs1, outputs2, outputs3])
|
248 |
-
|
249 |
-
|
250 |
-
gr.Markdown(
|
251 |
-
"""
|
252 |
-
<h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
|
253 |
-
"""
|
254 |
-
)
|
255 |
-
|
256 |
-
with gr.Row():
|
257 |
-
for idx, sample_image in enumerate(sample_images):
|
258 |
-
with gr.Column(scale=1):
|
259 |
-
#sample_image_component = gr.Image(value=sample_image, interactive=False)
|
260 |
-
select_button = gr.Button(f"Select Sample Image {idx+1}")
|
261 |
-
select_button.click(
|
262 |
-
fn=set_input_image,
|
263 |
-
inputs=gr.State(value=sample_image),
|
264 |
-
outputs=inputs
|
265 |
-
)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
# Feedback section
|
270 |
-
gr.Markdown(
|
271 |
-
"""
|
272 |
-
<h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
|
273 |
-
"""
|
274 |
-
)
|
275 |
-
|
276 |
-
with gr.Row():
|
277 |
-
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
278 |
-
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button")
|
279 |
-
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
280 |
-
|
281 |
-
feedback_submit_btn.click(
|
282 |
-
fn=save_feedback,
|
283 |
-
inputs=feedback_input,
|
284 |
-
outputs=feedback_output
|
285 |
-
)
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
demo.launch(share=True)
|
290 |
-
|
291 |
-
|
292 |
-
# inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
293 |
-
# outputs1 =gr.Image(label="Image Viewer")
|
294 |
-
# outputs2 =gr.Image(label="Grad_CAM-Visualization")
|
295 |
-
# outputs3 = gr.Textbox(label="Generated Report")
|
296 |
-
|
297 |
-
|
298 |
-
# interface = gr.Interface(
|
299 |
-
# fn=xray_report_generator,
|
300 |
-
# inputs=inputs,
|
301 |
-
# outputs=[outputs1, outputs2, outputs3],
|
302 |
-
# title="Chest X-ray Report Generator",
|
303 |
-
# description="Upload an X-ray image and get its report.",
|
304 |
-
# )
|
305 |
-
|
306 |
-
|
307 |
# interface.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import transformers
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import pydicom
|
8 |
+
|
9 |
+
##### Libraries For Grad-Cam-View
|
10 |
+
import os
|
11 |
+
import cv2
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from functools import partial
|
15 |
+
from torchvision import transforms
|
16 |
+
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
|
17 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
18 |
+
from pytorch_grad_cam.ablation_layer import AblationLayerVit
|
19 |
+
from transformers import VisionEncoderDecoderModel
|
20 |
+
|
21 |
+
def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
|
22 |
+
methods = {
|
23 |
+
"gradcam": GradCAM,
|
24 |
+
"scorecam": ScoreCAM,
|
25 |
+
"gradcam++": GradCAMPlusPlus,
|
26 |
+
"ablationcam": AblationCAM,
|
27 |
+
"xgradcam": XGradCAM,
|
28 |
+
"eigencam": EigenCAM,
|
29 |
+
"eigengradcam": EigenGradCAM,
|
30 |
+
"layercam": LayerCAM,
|
31 |
+
"fullgrad": FullGrad
|
32 |
+
}
|
33 |
+
|
34 |
+
if method not in methods:
|
35 |
+
raise ValueError(f"Method should be one of {list(methods.keys())}")
|
36 |
+
|
37 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
38 |
+
model.encoder.eval()
|
39 |
+
|
40 |
+
if use_cuda and torch.cuda.is_available():
|
41 |
+
model.encoder = model.encoder.cuda()
|
42 |
+
else:
|
43 |
+
use_cuda = False
|
44 |
+
|
45 |
+
#target_layers = [model.blocks[-1].norm1] ## For ViT model
|
46 |
+
#target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
|
47 |
+
target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
|
48 |
+
#target_layers = [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] ## For Swin-based VisionEncoderDecoder mode
|
49 |
+
|
50 |
+
|
51 |
+
if method == "ablationcam":
|
52 |
+
cam = methods[method](model=model.encoder,
|
53 |
+
target_layers=target_layers,
|
54 |
+
use_cuda=use_cuda,
|
55 |
+
reshape_transform=reshape_transform,
|
56 |
+
ablation_layer=AblationLayerVit())
|
57 |
+
else:
|
58 |
+
cam = methods[method](model=model.encoder,
|
59 |
+
target_layers=target_layers,
|
60 |
+
use_cuda=use_cuda,
|
61 |
+
reshape_transform=reshape_transform)
|
62 |
+
|
63 |
+
rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
|
64 |
+
rgb_img = cv2.resize(rgb_img, (224, 224)) ## (224, 224)
|
65 |
+
rgb_img = np.float32(rgb_img) / 255
|
66 |
+
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
67 |
+
|
68 |
+
targets = None
|
69 |
+
cam.batch_size = 16
|
70 |
+
|
71 |
+
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
|
72 |
+
grayscale_cam = grayscale_cam[0, :]
|
73 |
+
|
74 |
+
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
|
75 |
+
output_file = os.path.join(output_path, 'gradcam_result.png')
|
76 |
+
cv2.imwrite(output_file, cam_image)
|
77 |
+
|
78 |
+
|
79 |
+
def reshape_transform(tensor, height=14, width=14): ### height=14, width=14 for ViT-based Model
|
80 |
+
batch_size, token_number, embed_dim = tensor.size()
|
81 |
+
if token_number < height * width:
|
82 |
+
pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
|
83 |
+
tensor = torch.cat([tensor, pad], dim=1)
|
84 |
+
elif token_number > height * width:
|
85 |
+
tensor = tensor[:, :height * width, :]
|
86 |
+
|
87 |
+
result = tensor.reshape(batch_size, height, width, embed_dim)
|
88 |
+
result = result.transpose(2, 3).transpose(1, 2)
|
89 |
+
return result
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# Example usage:
|
95 |
+
#image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
|
96 |
+
model_path = "./Mimic_test/"
|
97 |
+
output_path = "./CAM-Result/"
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
def sentence_case(paragraph):
|
102 |
+
sentences = paragraph.split('. ')
|
103 |
+
formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
|
104 |
+
formatted_paragraph = '. '.join(formatted_sentences)
|
105 |
+
return formatted_paragraph
|
106 |
+
|
107 |
+
def dicom_to_png(dicom_file, png_file):
|
108 |
+
# Load DICOM file
|
109 |
+
dicom_data = pydicom.dcmread(dicom_file)
|
110 |
+
dicom_data.PhotometricInterpretation = 'MONOCHROME1'
|
111 |
+
|
112 |
+
# Normalize pixel values to 0-255
|
113 |
+
img = dicom_data.pixel_array
|
114 |
+
img = img.astype(np.float32)
|
115 |
+
|
116 |
+
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
|
117 |
+
img = img.astype(np.uint8)
|
118 |
+
|
119 |
+
# Save as PNG
|
120 |
+
cv2.imwrite(png_file, img)
|
121 |
+
return img
|
122 |
+
|
123 |
+
|
124 |
+
Image_Captioner = pipeline("image-to-text", model = "./Mimic_test/")
|
125 |
+
|
126 |
+
data_dir = output_path
|
127 |
+
|
128 |
+
def xray_report_generator(Image_file):
|
129 |
+
if Image_file[-4:] =='.dcm':
|
130 |
+
png_file = 'DCM2PNG.png'
|
131 |
+
dicom_to_png(Image_file, png_file)
|
132 |
+
Image_file = os.path.join(data_dir, png_file)
|
133 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
134 |
+
|
135 |
+
else:
|
136 |
+
output = Image_Captioner(Image_file, max_new_tokens=512)
|
137 |
+
|
138 |
+
result = output[0]['generated_text']
|
139 |
+
output_paragraph = sentence_case(result)
|
140 |
+
|
141 |
+
generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
|
142 |
+
|
143 |
+
grad_cam_image = output_path + 'gradcam_result.png'
|
144 |
+
|
145 |
+
return Image_file,grad_cam_image, output_paragraph
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
def save_feedback(feedback):
|
150 |
+
feedback_dir = "./Feedback/" # Update this to your desired directory
|
151 |
+
if not os.path.exists(feedback_dir):
|
152 |
+
os.makedirs(feedback_dir)
|
153 |
+
feedback_file = os.path.join(feedback_dir, "feedback.txt")
|
154 |
+
with open(feedback_file, "a") as f:
|
155 |
+
f.write(feedback + "\n")
|
156 |
+
return "Feedback submitted successfully!"
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
# Custom CSS styles
|
162 |
+
custom_css = """
|
163 |
+
<style>
|
164 |
+
|
165 |
+
#title {
|
166 |
+
color: green;
|
167 |
+
font-size: 36px;
|
168 |
+
font-weight: bold;
|
169 |
+
}
|
170 |
+
#description {
|
171 |
+
color: green;
|
172 |
+
font-size: 22px;
|
173 |
+
}
|
174 |
+
|
175 |
+
|
176 |
+
#submit-btn {
|
177 |
+
background-color: #1E90FF; /* DodgerBlue */
|
178 |
+
color: green;
|
179 |
+
padding: 15px 32px;
|
180 |
+
text-align: center;
|
181 |
+
text-decoration: none;
|
182 |
+
display: inline-block;
|
183 |
+
font-size: 20px;
|
184 |
+
margin: 4px 2px;
|
185 |
+
cursor: pointer;
|
186 |
+
}
|
187 |
+
#submit-btn:hover {
|
188 |
+
background-color: #00FFFF;
|
189 |
+
}
|
190 |
+
|
191 |
+
.intext textarea {
|
192 |
+
color: green;
|
193 |
+
font-size: 20px;
|
194 |
+
font-weight: bold;
|
195 |
+
}
|
196 |
+
|
197 |
+
|
198 |
+
.small-button {
|
199 |
+
color: green;
|
200 |
+
padding: 5px 10px;
|
201 |
+
font-size: 20px;
|
202 |
+
}
|
203 |
+
|
204 |
+
</style>
|
205 |
+
"""
|
206 |
+
|
207 |
+
# Sample image paths
|
208 |
+
sample_images = [
|
209 |
+
"./Test-Images/p19565388/s54621108/a9510716-02da91b0-61532c26-a65b2efc-c9dfa6f1.jpg",
|
210 |
+
"./Test-Images/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
|
211 |
+
"./Test-Images/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
|
212 |
+
#"sample4.png",
|
213 |
+
#"sample5.png"
|
214 |
+
]
|
215 |
+
|
216 |
+
def set_input_image(image_path):
|
217 |
+
return gr.update(value=image_path)
|
218 |
+
|
219 |
+
|
220 |
+
with gr.Blocks(css = custom_css) as demo:
|
221 |
+
|
222 |
+
#gr.HTML(custom_css) # Inject custom CSS
|
223 |
+
|
224 |
+
gr.Markdown(
|
225 |
+
"""
|
226 |
+
<h1 style="color:blue; font-size: 36px; font-weight: bold">Chest X-ray Report Generator</h1>
|
227 |
+
<p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
|
228 |
+
"""
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.Row():
|
232 |
+
inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
233 |
+
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column(scale=1, min_width=300):
|
236 |
+
outputs1 = gr.Image(label="Image Viewer")
|
237 |
+
with gr.Column(scale=1, min_width=300):
|
238 |
+
outputs2 = gr.Image(label="Grad_CAM-Visualization")
|
239 |
+
with gr.Column(scale=1, min_width=300):
|
240 |
+
outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
|
241 |
+
|
242 |
+
|
243 |
+
submit_btn = gr.Button("Generate Report", elem_id="submit-btn")
|
244 |
+
submit_btn.click(
|
245 |
+
fn=xray_report_generator,
|
246 |
+
inputs=inputs,
|
247 |
+
outputs=[outputs1, outputs2, outputs3])
|
248 |
+
|
249 |
+
|
250 |
+
gr.Markdown(
|
251 |
+
"""
|
252 |
+
<h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
|
253 |
+
"""
|
254 |
+
)
|
255 |
+
|
256 |
+
with gr.Row():
|
257 |
+
for idx, sample_image in enumerate(sample_images):
|
258 |
+
with gr.Column(scale=1):
|
259 |
+
#sample_image_component = gr.Image(value=sample_image, interactive=False)
|
260 |
+
select_button = gr.Button(f"Select Sample Image {idx+1}")
|
261 |
+
select_button.click(
|
262 |
+
fn=set_input_image,
|
263 |
+
inputs=gr.State(value=sample_image),
|
264 |
+
outputs=inputs
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
# Feedback section
|
270 |
+
gr.Markdown(
|
271 |
+
"""
|
272 |
+
<h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
|
273 |
+
"""
|
274 |
+
)
|
275 |
+
|
276 |
+
with gr.Row():
|
277 |
+
feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
|
278 |
+
feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button")
|
279 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
280 |
+
|
281 |
+
feedback_submit_btn.click(
|
282 |
+
fn=save_feedback,
|
283 |
+
inputs=feedback_input,
|
284 |
+
outputs=feedback_output
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
demo.launch(share=True)
|
290 |
+
|
291 |
+
|
292 |
+
# inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
|
293 |
+
# outputs1 =gr.Image(label="Image Viewer")
|
294 |
+
# outputs2 =gr.Image(label="Grad_CAM-Visualization")
|
295 |
+
# outputs3 = gr.Textbox(label="Generated Report")
|
296 |
+
|
297 |
+
|
298 |
+
# interface = gr.Interface(
|
299 |
+
# fn=xray_report_generator,
|
300 |
+
# inputs=inputs,
|
301 |
+
# outputs=[outputs1, outputs2, outputs3],
|
302 |
+
# title="Chest X-ray Report Generator",
|
303 |
+
# description="Upload an X-ray image and get its report.",
|
304 |
+
# )
|
305 |
+
|
306 |
+
|
307 |
# interface.launch(share=True)
|