Spaces:
Running
Running
import os | |
import gradio as gr | |
import re | |
import pandas as pd | |
from io import StringIO | |
import rdkit | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, Draw | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from io import BytesIO | |
import tempfile | |
from rdkit import Chem | |
class PeptideAnalyzer: | |
def __init__(self): | |
self.bond_patterns = [ | |
(r'OC\(=O\)', 'ester'), # Ester bond | |
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond | |
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond | |
(r'NC\(=O\)', 'peptide'), # Standard peptide bond | |
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated | |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond | |
] | |
# Three to one letter code mapping | |
self.three_to_one = { | |
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E', | |
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I', | |
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N', | |
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S', | |
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y' | |
} | |
def is_peptide(self, smiles): | |
"""Check if the SMILES represents a peptide structure""" | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return False | |
# Look for peptide bonds: NC(=O) pattern | |
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') | |
if mol.HasSubstructMatch(peptide_bond_pattern): | |
return True | |
# Look for N-methylated peptide bonds: N(C)C(=O) pattern | |
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') | |
if mol.HasSubstructMatch(n_methyl_pattern): | |
return True | |
return False | |
def is_cyclic(self, smiles): | |
"""Improved cyclic peptide detection""" | |
# Check for C-terminal carboxyl | |
if smiles.endswith('C(=O)O'): | |
return False, [], [] | |
# Find all numbers used in ring closures | |
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles) | |
# Find aromatic ring numbers | |
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles) | |
aromatic_cycles = [] | |
for match in aromatic_matches: | |
numbers = re.findall(r'[0-9]', match) | |
aromatic_cycles.extend(numbers) | |
# Numbers that aren't part of aromatic rings are peptide cycles | |
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles] | |
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O') | |
return is_cyclic, peptide_cycles, aromatic_cycles | |
def split_on_bonds(self, smiles): | |
positions = [] | |
used = set() | |
# Find Gly pattern first | |
gly_pattern = r'NCC\(=O\)' | |
for match in re.finditer(gly_pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': 'gly', | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
for pattern, bond_type in self.bond_patterns: | |
for match in re.finditer(pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': bond_type, | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
# Sort by position | |
positions.sort(key=lambda x: x['start']) | |
# Create segments | |
segments = [] | |
if positions: | |
# First segment | |
if positions[0]['start'] > 0: | |
segments.append({ | |
'content': smiles[0:positions[0]['start']], | |
'bond_after': positions[0]['pattern'] | |
}) | |
# Process segments | |
for i in range(len(positions)-1): | |
current = positions[i] | |
next_pos = positions[i+1] | |
if current['type'] == 'gly': | |
segments.append({ | |
'content': 'NCC(=O)', | |
'bond_before': positions[i-1]['pattern'] if i > 0 else None, | |
'bond_after': next_pos['pattern'] | |
}) | |
segments.append({ | |
'content': smiles[current['start']+7:next_pos['start']], | |
'bond_before': 'gly_bond', | |
'bond_after': next_pos['pattern'] | |
}) | |
else: | |
content = smiles[current['end']:next_pos['start']] | |
if content: | |
segments.append({ | |
'content': content, | |
'bond_before': current['pattern'], | |
'bond_after': next_pos['pattern'] | |
}) | |
# Last segment | |
if positions[-1]['end'] < len(smiles): | |
segments.append({ | |
'content': smiles[positions[-1]['end']:], | |
'bond_before': positions[-1]['pattern'] | |
}) | |
return segments | |
def clean_terminal_carboxyl(self, segment): | |
"""Remove C-terminal carboxyl only if it's the true terminus""" | |
content = segment['content'] | |
# Only clean if: | |
# 1. Contains C(=O)O | |
# 2. No bond_after exists (meaning it's the last segment) | |
# 3. C(=O)O is at the end of the content | |
if 'C(=O)O' in content and not segment.get('bond_after'): | |
print('recognized?') | |
# Remove C(=O)O pattern regardless of position | |
cleaned = re.sub(r'\(C\(=O\)O\)', '', content) | |
# Remove any leftover empty parentheses | |
cleaned = re.sub(r'\(\)', '', cleaned) | |
print(cleaned) | |
return cleaned | |
return content | |
def identify_residue(self, segment): | |
"""Identify residue with Pro reconstruction""" | |
# Only clean terminal carboxyl if this is the last segment | |
content = self.clean_terminal_carboxyl(segment) | |
mods = self.get_modifications(segment) | |
# Proline (P) - flexible ring numbers | |
if any([ | |
# Check for any ring number in bond patterns | |
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and | |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) | |
for n in '123456789' | |
]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and | |
any(f'CCC{n}' for n in '123456789')) | |
for n in '123456789' | |
]) or any([ | |
# Check ending patterns with any ring number | |
(f'CCCN{n}' in content and content.endswith('=O') and | |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789')) | |
for n in '123456789' | |
]) or any([ | |
# Handle CCC[C@H]n patterns | |
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or | |
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or | |
# N-terminal Pro with any ring number | |
(f'N{n}CCC[C@H]{n}' in content) or | |
(f'N{n}CCC[C@@H]{n}' in content) | |
for n in '123456789' | |
]): | |
return 'Pro', mods | |
# Tryptophan (W) - more specific indole pattern | |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \ | |
'c[nH]c' in content.replace(' ', ''): | |
return 'Trp', mods | |
# Lysine (K) | |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content: | |
return 'Lys', mods | |
# Arginine (R) | |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content: | |
return 'Arg', mods | |
if ('NCC(=O)' in content) or (content == 'C'): | |
if segment.get('bond_before') and segment.get('bond_after'): | |
if ('C(=O)N' in segment['bond_before'] or 'C(=O)N(C)' in segment['bond_before']): | |
return 'Gly', mods | |
elif segment.get('bond_before') and segment.get('bond_before').startswith('C(=O)N'): | |
return 'Gly', mods | |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None): | |
return 'Leu', mods | |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content: | |
return 'Thr', mods | |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content): | |
return 'Phe', mods | |
if ('[C@H](C(C)C)' in content or | |
'[C@@H](C(C)C)' in content or | |
'[C@H]C(C)C' in content or | |
'[C@@H]C(C)C' in content | |
): | |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']): # Still check not Leu | |
return 'Val', mods | |
if any([ | |
'CC[C@H](C)' in content, | |
'CC[C@@H](C)' in content, | |
'[C@@H](CC)C' in content, | |
'[C@H](CC)C' in content, | |
'C(C)C[C@H]' in content and 'CC(C)C' not in content, | |
'C(C)C[C@@H]' in content and 'CC(C)C' not in content | |
]): | |
return 'Ile', mods | |
if ('[C@H](C)' in content or '[C@@H](C)' in content): | |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']): | |
return 'Ala', mods | |
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain | |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content): | |
return 'Tyr', mods | |
# Serine (Ser) - Hydroxymethyl side chain | |
if '[C@H](CO)' in content or '[C@@H](CO)' in content: | |
if not ('C(C)O' in content or 'COC' in content): | |
return 'Ser', mods | |
# Threonine (Thr) - 1-hydroxyethyl side chain | |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H](C)O' in content or '[C@H](C)O' in content: | |
return 'Thr', mods | |
# Cysteine (Cys) - Thiol side chain | |
if '[C@H](CS)' in content or '[C@@H](CS)' in content: | |
return 'Cys', mods | |
# Methionine (Met) - Methylthioethyl side chain | |
if ('CCSC' in content): | |
return 'Met', mods | |
# Glutamine (Gln) - Carbamoylethyl side chain | |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content): | |
return 'Gln', mods | |
# Asparagine (Asn) - Carbamoylmethyl side chain | |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content): | |
return 'Asn', mods | |
# Glutamic acid (Glu) - Carboxyethyl side chain | |
if ('CCC(=O)O' in content): | |
return 'Glu', mods | |
# Aspartic acid (Asp) - Carboxymethyl side chain | |
if ('CC(=O)O' in content): | |
return 'Asp', mods | |
# Arginine (Arg) - 3-guanidinopropyl side chain | |
if ('CCCNC(=N)N' in content): | |
return 'Arg', mods | |
# Histidine (His) - Imidazole side chain | |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content): | |
return 'His', mods | |
############UAA | |
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content: | |
return 'O-tBu', mods | |
if re.search(r'c\d+ccccc\d+', content): | |
if '[C@@H](c1ccccc1)' in content or '[C@H](c1ccccc1)' in content: | |
return '4', mods # Base phenylglycine | |
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content: | |
return 'Nle', mods | |
# Ornithine (Orn) - 3-carbon chain with NH2 | |
if ('C[C@H](CCCN)' in content or 'C[C@@H](CCCN)' in content) and 'CC(C)' not in content: | |
return 'Orn', mods | |
# 2-Naphthylalanine (2Nal) | |
if ('Cc3cc2ccccc2c3' in content): | |
return '2Nal', mods | |
# Cyclohexylalanine (Cha) | |
if 'N2CCCCC2' in content or 'CCCCC2' in content: | |
return 'Cha', mods | |
# Aminobutyric acid (Abu) - 2-carbon chain | |
if ('C[C@H](CC)' in content or 'C[C@@H](CC)' in content) and not any(p in content for p in ['CC(C)', 'CCCC', 'CCC(C)']): | |
return 'Abu', mods | |
# Pipecolic acid (Pip) | |
if ('N3CCCCC3' in content or 'CCCCC3' in content): | |
return 'Pip', mods | |
# Cyclohexylglycine (Chg) - direct cyclohexyl without CH2 | |
if ('C[C@H](C1CCCCC1)' in content or 'C[C@@H](C1CCCCC1)' in content): | |
return 'Chg', mods | |
# 4-Fluorophenylalanine (4F-Phe) | |
if ('Cc2ccc(F)cc2' in content): | |
return '4F-Phe', mods | |
# 4-substituted phenylalanines | |
if 'Cc1ccc' in content: | |
if 'OMe' in content or 'OCc1ccc' in content: | |
return '0A1', mods # 4-methoxy-Phenylalanine | |
elif 'Clc1ccc' in content: | |
return '200', mods # 4-chloro-Phenylalanine | |
elif 'Brc1ccc' in content: | |
return '4BF', mods # 4-Bromo-phenylalanine | |
elif 'C#Nc1ccc' in content: | |
return '4CF', mods # 4-cyano-phenylalanine | |
elif 'Ic1ccc' in content: | |
return 'PHI', mods # 4-Iodo-phenylalanine | |
elif 'Fc1ccc' in content: | |
return 'PFF', mods # 4-Fluoro-phenylalanine | |
# Modified tryptophans | |
if 'c[nH]c2' in content: | |
if 'Oc2cccc2' in content: | |
return '0AF', mods # 7-hydroxy-tryptophan | |
elif 'Fc2cccc2' in content: | |
return '4FW', mods # 4-fluoro-tryptophan | |
elif 'Clc2cccc2' in content: | |
return '6CW', mods # 6-chloro-tryptophan | |
elif 'Brc2cccc2' in content: | |
return 'BTR', mods # 6-bromo-tryptophan | |
elif 'COc2cccc2' in content: | |
return 'MOT5', mods # 5-Methoxy-tryptophan | |
elif 'Cc2cccc2' in content: | |
return 'MTR5', mods # 5-Methyl-tryptophan | |
# Special amino acids | |
if 'CC(C)(C)[C@@H]' in content or 'CC(C)(C)[C@H]' in content: | |
return 'BUG', mods # Tertleucine | |
if 'CCCNC(=N)N' in content: | |
return 'CIR', mods # Citrulline | |
if '[SeH]' in content: | |
return 'CSE', mods # Selenocysteine | |
if '[NH3]CC[C@@H]' in content or '[NH3]CC[C@H]' in content: | |
return 'DAB', mods # Diaminobutyric acid | |
if 'C1CCCCC1' in content: | |
if 'C1CCCCC1[C@@H]' in content or 'C1CCCCC1[C@H]' in content: | |
return 'CHG', mods # Cyclohexylglycine | |
elif 'C1CCCCC1C[C@@H]' in content or 'C1CCCCC1C[C@H]' in content: | |
return 'ALC', mods # 3-cyclohexyl-alanine | |
# Naphthalene derivatives | |
if 'c1cccc2c1cccc2' in content: | |
if 'c1cccc2c1cccc2[C@@H]' in content or 'c1cccc2c1cccc2[C@H]' in content: | |
return 'NAL', mods # 2-Naphthyl-alanine | |
# Heteroaromatic derivatives | |
if 'c1cncc' in content: | |
return 'PYR4', mods # 3-(4-Pyridyl)-alanine | |
if 'c1cscc' in content: | |
return 'THA3', mods # 3-(3-thienyl)-alanine | |
if 'c1nnc' in content: | |
return 'TRZ4', mods # 3-(1,2,4-Triazol-1-yl)-alanine | |
# Modified serines and threonines | |
if 'OP(O)(O)O' in content: | |
if '[C@@H](COP' in content or '[C@H](COP' in content: | |
return 'SEP', mods # phosphoserine | |
elif '[C@@H](OP' in content or '[C@H](OP' in content: | |
return 'TPO', mods # phosphothreonine | |
# Specialized ring systems | |
if 'c1c2ccccc2cc2c1cccc2' in content: | |
return 'ANTH', mods # 3-(9-anthryl)-alanine | |
if 'c1csc2c1cccc2' in content: | |
return 'BTH3', mods # 3-(3-benzothienyl)-alanine | |
if '[C@]12C[C@H]3C[C@@H](C2)C[C@@H](C1)C3' in content: | |
return 'ADAM', mods # Adamanthane | |
# Fluorinated derivatives | |
if 'FC(F)(F)' in content: | |
if 'CC(F)(F)F' in content: | |
return 'FLA', mods # Trifluoro-alanine | |
if 'C(F)(F)F)c1' in content: | |
if 'c1ccccc1C(F)(F)F' in content: | |
return 'TFG2', mods # 2-(Trifluoromethyl)-phenylglycine | |
if 'c1cccc(c1)C(F)(F)F' in content: | |
return 'TFG3', mods # 3-(Trifluoromethyl)-phenylglycine | |
if 'c1ccc(cc1)C(F)(F)F' in content: | |
return 'TFG4', mods # 4-(Trifluoromethyl)-phenylglycine | |
# Multiple halogen patterns | |
if 'F' in content and 'c1' in content: | |
if 'c1ccc(c(c1)F)F' in content: | |
return 'F2F', mods # 3,4-Difluoro-phenylalanine | |
if 'cc(F)cc(c1)F' in content: | |
return 'WFP', mods # 3,5-Difluoro-phenylalanine | |
if 'Cl' in content and 'c1' in content: | |
if 'c1ccc(cc1Cl)Cl' in content: | |
return 'CP24', mods # 2,4-dichloro-phenylalanine | |
if 'c1ccc(c(c1)Cl)Cl' in content: | |
return 'CP34', mods # 3,4-dichloro-phenylalanine | |
# Hydroxy and amino derivatives | |
if 'O' in content and 'c1' in content: | |
if 'c1cc(O)cc(c1)O' in content: | |
return '3FG', mods # (2s)-amino(3,5-dihydroxyphenyl)-ethanoic acid | |
if 'c1ccc(c(c1)O)O' in content: | |
return 'DAH', mods # 3,4-Dihydroxy-phenylalanine | |
# Modified histidines | |
if 'c1cnc' in content: | |
if '[C@@H]1CN[C@@H](N1)F' in content: | |
return '2HF', mods # 2-fluoro-l-histidine | |
if 'c1cnc([nH]1)F' in content: | |
return '2HF1', mods # 2-fluoro-l-histidine variant | |
if 'c1c[nH]c(n1)F' in content: | |
return '2HF2', mods # 2-fluoro-l-histidine variant | |
if '[SeH]' in content: | |
return 'CSE', mods # Selenocysteine | |
if 'S' in content: | |
if 'CSCc1ccccc1' in content: | |
return 'BCS', mods # benzylcysteine | |
if 'CCSC' in content: | |
return 'ESC', mods # Ethionine | |
if 'CCS' in content: | |
return 'HCS', mods # homocysteine | |
if 'CN=[N]=N' in content: | |
return 'AZDA', mods # azido-alanine | |
if '[NH]=[C](=[NH2])=[NH2]' in content: | |
if 'CCC[NH]=' in content: | |
return 'AGM', mods # 5-methyl-arginine | |
if 'CC[NH]=' in content: | |
return 'GDPR', mods # 2-Amino-3-guanidinopropionic acid | |
# Others | |
if 'C1CCCC1' in content: | |
return 'CPA3', mods # 3-Cyclopentyl-alanine | |
if 'C1CCCCC1' in content: | |
if 'CC1CCCCC1' in content: | |
return 'ALC', mods # 3-cyclohexyl-alanine | |
else: | |
return 'CHG', mods # Cyclohexylglycine | |
if 'CCC[C@@H]' in content or 'CCC[C@H]' in content: | |
return 'NLE', mods # Norleucine | |
if 'CC[C@@H]' in content or 'CC[C@H]' in content: | |
if not any(x in content for x in ['CC(C)', 'COC', 'CN(']): | |
return 'ABA', mods # 2-Aminobutyric acid | |
if 'CCON' in content: | |
return 'CAN', mods # canaline | |
if '[C@@H]1C=C[C@@H](C=C1)' in content: | |
return 'ACZ', mods # cis-amiclenomycin | |
if 'CCC(=O)[NH3]' in content: | |
return 'ONL', mods # 5-oxo-l-norleucine | |
if 'c1ccncc1' in content: | |
return 'PYR4', mods # 3-(4-Pyridyl)-alanine | |
if 'c1ccco1' in content: | |
return 'FUA2', mods # (2-furyl)-alanine | |
if 'c1ccc' in content: | |
if 'c1ccc(cc1)c1ccccc1' in content: | |
return 'BIF', mods # 4,4-biphenylalanine | |
if 'c1ccc(cc1)C(=O)c1ccccc1' in content: | |
return 'PBF', mods # 4-benzoyl-phenylalanine | |
if 'c1ccc(cc1)C(C)(C)C' in content: | |
return 'TBP4', mods # 4-tert-butyl-phenylalanine | |
if 'c1ccc(cc1)[C](=[NH2])=[NH2]' in content: | |
return '0BN', mods # 4-carbamimidoyl-l-phenylalanine | |
if 'c1cccc(c1)[C](=[NH2])=[NH2]' in content: | |
return 'APM', mods # m-amidinophenyl-3-alanine | |
if 'O' in content: | |
if '[C@H]([C@H](C)O)O' in content: | |
return 'ILX', mods # 4,5-dihydroxy-isoleucine | |
if '[C@H]([C@@H](C)O)O' in content: | |
return 'ALO', mods # Allo-threonine | |
if '[C@H](COP(O)(O)O)' in content: | |
return 'SEP', mods # phosphoserine | |
if '[C@H]([C@@H](C)OP(O)(O)O)' in content: | |
return 'TPO', mods # phosphothreonine | |
if '[C@H](c1ccc(O)cc1)O' in content: | |
return 'OMX', mods # (betar)-beta-hydroxy-l-tyrosine | |
if '[C@H](c1ccc(c(Cl)c1)O)O' in content: | |
return 'OMY', mods # (betar)-3-chloro-beta-hydroxy-l-tyrosine | |
if 'n1' in content: | |
if 'n1cccn1' in content: | |
return 'PYZ1', mods # 3-(1-Pyrazolyl)-alanine | |
if 'n1nncn1' in content: | |
return 'TEZA', mods # 3-(2-Tetrazolyl)-alanine | |
if 'c2c(n1)cccc2' in content: | |
return 'QU32', mods # 3-(2-Quinolyl)-alanine | |
if 'c1cnc2c(c1)cccc2' in content: | |
return 'QU33', mods # 3-(3-quinolyl)-alanine | |
if 'c1ccnc2c1cccc2' in content: | |
return 'QU34', mods # 3-(4-quinolyl)-alanine | |
if 'c1ccc2c(c1)nccc2' in content: | |
return 'QU35', mods # 3-(5-Quinolyl)-alanine | |
if 'c1ccc2c(c1)cncc2' in content: | |
return 'QU36', mods # 3-(6-Quinolyl)-alanine | |
if 'c1cnc2c(n1)cccc2' in content: | |
return 'QX32', mods # 3-(2-quinoxalyl)-alanine | |
if 'N' in content: | |
if '[NH3]CC[C@@H]' in content: | |
return 'DAB', mods # Diaminobutyric acid | |
if '[NH3]C[C@@H]' in content: | |
return 'DPP', mods # 2,3-Diaminopropanoic acid | |
if '[NH3]CCCCCC[C@@H]' in content: | |
return 'HHK', mods # (2s)-2,8-diaminooctanoic acid | |
if 'CCC[NH]=[C](=[NH2])=[NH2]' in content: | |
return 'GBUT', mods # 2-Amino-4-guanidinobutryric acid | |
if '[NH]=[C](=S)=[NH2]' in content: | |
return 'THIC', mods # Thio-citrulline | |
if 'CC' in content: | |
if 'CCCC[C@@H]' in content: | |
return 'AHP', mods # 2-Aminoheptanoic acid | |
if 'CCC([C@@H])(C)C' in content: | |
return 'I2M', mods # 3-methyl-l-alloisoleucine | |
if 'CC[C@H]([C@@H])C' in content: | |
return 'IIL', mods # Allo-Isoleucine | |
if '[C@H](CCC(C)C)' in content: | |
return 'HLEU', mods # Homoleucine | |
if '[C@@H]([C@@H](C)O)C' in content: | |
return 'HLU', mods # beta-hydroxyleucine | |
if '[C@@H]' in content: | |
if '[C@@H](C[C@@H](F))' in content: | |
return 'FGA4', mods # 4-Fluoro-glutamic acid | |
if '[C@@H](C[C@@H](O))' in content: | |
return '3GL', mods # 4-hydroxy-glutamic-acid | |
if '[C@@H](C[C@H](C))' in content: | |
return 'LME', mods # (3r)-3-methyl-l-glutamic acid | |
if '[C@@H](CC[C@H](C))' in content: | |
return 'MEG', mods # (3s)-3-methyl-l-glutamic acid | |
if 'S' in content: | |
if 'SCC[C@@H]' in content: | |
return 'HSER', mods # homoserine | |
if 'SCCN' in content: | |
return 'SLZ', mods # thialysine | |
if 'SC(=O)' in content: | |
return 'CSA', mods # s-acetonylcysteine | |
if '[S@@](=O)' in content: | |
return 'SME', mods # Methionine sulfoxide | |
if 'S(=O)(=O)' in content: | |
return 'OMT', mods # Methionine sulfone | |
if 'C=' in content: | |
if 'C=C[C@@H]' in content: | |
return '2AG', mods # 2-Allyl-glycine | |
if 'C=C[C@@H]' in content: | |
return 'LVG', mods # vinylglycine | |
if 'C=Cc1ccccc1' in content: | |
return 'STYA', mods # Styrylalanine | |
if '[C@@H]1Cc2c(C1)cccc2' in content: | |
return 'IGL', mods # alpha-amino-2-indanacetic acid | |
if '[C](=[C](=O)=O)=O' in content: | |
return '26P', mods # 2-amino-6-oxopimelic acid | |
if '[C](=[C](=O)=O)=C' in content: | |
return '2NP', mods # l-2-amino-6-methylene-pimelic acid | |
if 'c1cccc2c1cc(O)cc2' in content: | |
return 'NAO1', mods # 5-hydroxy-1-naphthalene | |
if 'c1ccc2c(c1)cc(O)cc2' in content: | |
return 'NAO2', mods # 6-hydroxy-2-naphthalene | |
return None, mods | |
def get_modifications(self, segment): | |
"""Get modifications based on bond types""" | |
mods = [] | |
if segment.get('bond_after'): | |
if 'N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'): | |
mods.append('N-Me') | |
if 'OC(=O)' in segment['bond_after']: | |
mods.append('O-linked') | |
return mods | |
def analyze_structure(self, smiles): | |
"""Main analysis function with debug output""" | |
print("\nAnalyzing structure:", smiles) | |
# Split into segments | |
segments = self.split_on_bonds(smiles) | |
print("\nSegment Analysis:") | |
sequence = [] | |
for i, segment in enumerate(segments): | |
print(f"\nSegment {i}:") | |
print(f"Content: {segment['content']}") | |
print(f"Bond before: {segment.get('bond_before', 'None')}") | |
print(f"Bond after: {segment.get('bond_after', 'None')}") | |
residue, mods = self.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence.append(residue) | |
print(f"Identified as: {residue}") | |
print(f"Modifications: {mods}") | |
else: | |
print(f"Warning: Could not identify residue in segment: {segment['content']}") | |
# Check if cyclic | |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles) | |
three_letter = '-'.join(sequence) | |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence) | |
if is_cyclic: | |
three_letter = f"cyclo({three_letter})" | |
one_letter = f"cyclo({one_letter})" | |
print(f"\nFinal sequence: {three_letter}") | |
print(f"One-letter code: {one_letter}") | |
print(f"Is cyclic: {is_cyclic}") | |
#print(f"Peptide cycles: {peptide_cycles}") | |
#print(f"Aromatic cycles: {aromatic_cycles}") | |
return { | |
'three_letter': three_letter, | |
'one_letter': one_letter, | |
'is_cyclic': is_cyclic | |
} | |
def annotate_cyclic_structure(mol, sequence): | |
"""Create structure visualization""" | |
AllChem.Compute2DCoords(mol) | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) | |
# Draw molecule first | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
try: | |
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
except OSError: | |
try: | |
small_font = ImageFont.truetype("arial.ttf", 60) | |
except OSError: | |
print("Warning: TrueType fonts not available, using default font") | |
small_font = ImageFont.load_default() | |
# Header | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((1000, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
def create_enhanced_linear_viz(sequence, smiles): | |
""""Linear visualization""" | |
analyzer = PeptideAnalyzer() | |
fig = plt.figure(figsize=(15, 10)) | |
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2]) | |
ax_struct = fig.add_subplot(gs[0]) | |
ax_detail = fig.add_subplot(gs[1]) | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
segments = analyzer.split_on_bonds(smiles) | |
print(f"Number of residues: {len(residues)}") | |
print(f"Number of segments: {len(segments)}") | |
ax_struct.set_xlim(0, 10) | |
ax_struct.set_ylim(0, 2) | |
num_residues = len(residues) | |
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0 | |
y_pos = 1.5 | |
for i in range(num_residues): | |
x_pos = 0.5 + i * spacing | |
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, | |
facecolor='lightblue', edgecolor='black') | |
ax_struct.add_patch(rect) | |
if i < num_residues - 1: | |
segment = segments[i] if i < len(segments) else None | |
if segment: | |
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide' | |
is_n_methylated = 'N-Me' in segment.get('bond_after', '') | |
bond_color = 'red' if bond_type == 'ester' else 'black' | |
linestyle = '--' if bond_type == 'ester' else '-' | |
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], | |
color=bond_color, linestyle=linestyle, linewidth=2) | |
mid_x = x_pos + spacing/2 | |
bond_label = f"{bond_type}" | |
if is_n_methylated: | |
bond_label += "\n(N-Me)" | |
ax_struct.text(mid_x, y_pos+0.1, bond_label, | |
ha='center', va='bottom', fontsize=10, | |
color=bond_color) | |
ax_struct.text(x_pos, y_pos-0.5, residues[i], | |
ha='center', va='top', fontsize=14) | |
ax_detail.set_ylim(0, len(segments)+1) | |
ax_detail.set_xlim(0, 1) | |
segment_y = len(segments) | |
for i, segment in enumerate(segments): | |
y = segment_y - i | |
# Check if this is a bond or residue | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
text = f"Residue {i+1}: {residue}" | |
if mods: | |
text += f" ({', '.join(mods)})" | |
color = 'blue' | |
else: | |
# Must be a bond | |
text = f"Bond {i}: " | |
if 'O-linked' in segment.get('bond_after', ''): | |
text += "ester" | |
elif 'N-Me' in segment.get('bond_after', ''): | |
text += "peptide (N-methylated)" | |
else: | |
text += "peptide" | |
color = 'red' | |
ax_detail.text(0.05, y, text, fontsize=12, color=color) | |
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray') | |
# If cyclic, add connection indicator | |
if sequence.startswith('cyclo('): | |
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos), | |
arrowprops=dict(arrowstyle='<->', color='red', lw=2)) | |
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', | |
ha='center', color='red', fontsize=14) | |
ax_struct.set_title("Peptide Structure Overview", pad=20) | |
ax_detail.set_title("Segment Analysis Breakdown", pad=20) | |
for ax in [ax_struct, ax_detail]: | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
class PeptideStructureGenerator: | |
"""Generate 3D structures of peptides using different embedding methods""" | |
def prepare_molecule(smiles): | |
"""Prepare molecule with proper hydrogen handling""" | |
mol = Chem.MolFromSmiles(smiles, sanitize=False) | |
if mol is None: | |
raise ValueError("Failed to create molecule from SMILES") | |
for atom in mol.GetAtoms(): | |
atom.UpdatePropertyCache(strict=False) | |
# Sanitize with reduced requirements | |
Chem.SanitizeMol(mol, | |
sanitizeOps=Chem.SANITIZE_FINDRADICALS| | |
Chem.SANITIZE_KEKULIZE| | |
Chem.SANITIZE_SETAROMATICITY| | |
Chem.SANITIZE_SETCONJUGATION| | |
Chem.SANITIZE_SETHYBRIDIZATION| | |
Chem.SANITIZE_CLEANUPCHIRALITY) | |
mol = Chem.AddHs(mol) | |
return mol | |
def get_etkdg_params(attempt=0): | |
"""Get ETKDG parameters""" | |
params = AllChem.ETKDGv3() | |
params.randomSeed = -1 | |
params.maxIterations = 200 | |
params.numThreads = 4 # Reduced for web interface | |
params.useBasicKnowledge = True | |
params.enforceChirality = True | |
params.useExpTorsionAnglePrefs = True | |
params.useSmallRingTorsions = True | |
params.useMacrocycleTorsions = True | |
params.ETversion = 2 | |
params.pruneRmsThresh = -1 | |
params.embedRmsThresh = 0.5 | |
if attempt > 10: | |
params.bondLength = 1.5 + (attempt - 10) * 0.02 | |
params.useExpTorsionAnglePrefs = False | |
return params | |
def generate_structure_etkdg(self, smiles, max_attempts=20): | |
"""Generate 3D structure using ETKDG without UFF optimization""" | |
success = False | |
mol = None | |
for attempt in range(max_attempts): | |
try: | |
mol = self.prepare_molecule(smiles) | |
params = self.get_etkdg_params(attempt) | |
if AllChem.EmbedMolecule(mol, params) == 0: | |
success = True | |
break | |
except Exception as e: | |
continue | |
if not success: | |
raise ValueError("Failed to generate structure with ETKDG") | |
return mol | |
def generate_structure_uff(self, smiles, max_attempts=20): | |
"""Generate 3D structure using ETKDG followed by UFF optimization""" | |
best_mol = None | |
lowest_energy = float('inf') | |
for attempt in range(max_attempts): | |
try: | |
test_mol = self.prepare_molecule(smiles) | |
params = self.get_etkdg_params(attempt) | |
if AllChem.EmbedMolecule(test_mol, params) == 0: | |
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000, | |
vdwThresh=10.0, confId=0, | |
ignoreInterfragInteractions=True) | |
if res == 0: | |
ff = AllChem.UFFGetMoleculeForceField(test_mol) | |
if ff: | |
current_energy = ff.CalcEnergy() | |
if current_energy < lowest_energy: | |
lowest_energy = current_energy | |
best_mol = Chem.Mol(test_mol) | |
except Exception: | |
continue | |
if best_mol is None: | |
raise ValueError("Failed to generate optimized structure") | |
return best_mol | |
def mol_to_sdf_bytes(mol): | |
"""Convert RDKit molecule to SDF file bytes""" | |
sio = StringIO() | |
writer = Chem.SDWriter(sio) | |
writer.write(mol) | |
writer.close() | |
return sio.getvalue().encode('utf-8') | |
def process_input(smiles_input=None, file_obj=None, show_linear=False, | |
show_segment_details=False, generate_3d=False, use_uff=False): | |
"""Process input and create visualizations using PeptideAnalyzer""" | |
analyzer = PeptideAnalyzer() | |
temp_dir = tempfile.mkdtemp() if generate_3d else None | |
structure_files = [] | |
# Handle direct SMILES input | |
if smiles_input: | |
smiles = smiles_input.strip() | |
if not analyzer.is_peptide(smiles): | |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None | |
try: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return "Error: Invalid SMILES notation.", None, None | |
if generate_3d: | |
generator = PeptideStructureGenerator() | |
try: | |
# Generate ETKDG structure | |
mol_etkdg = generator.generate_structure_etkdg(smiles) | |
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf") | |
writer = Chem.SDWriter(etkdg_path) | |
writer.write(mol_etkdg) | |
writer.close() | |
structure_files.append(etkdg_path) | |
# Generate UFF structure if requested | |
if use_uff: | |
mol_uff = generator.generate_structure_uff(smiles) | |
uff_path = os.path.join(temp_dir, "structure_uff.sdf") | |
writer = Chem.SDWriter(uff_path) | |
writer.write(mol_uff) | |
writer.close() | |
structure_files.append(uff_path) | |
except Exception as e: | |
return f"Error generating 3D structures: {str(e)}", None, None, None | |
segments = analyzer.split_on_bonds(smiles) | |
sequence_parts = [] | |
output_text = "" | |
# Only include segment analysis in output if requested | |
if show_segment_details: | |
output_text += "Segment Analysis:\n" | |
for i, segment in enumerate(segments): | |
output_text += f"\nSegment {i}:\n" | |
output_text += f"Content: {segment['content']}\n" | |
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" | |
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
output_text += f"Identified as: {residue}\n" | |
output_text += f"Modifications: {mods}\n" | |
else: | |
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n" | |
output_text += "\n" | |
else: | |
for segment in segments: | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) | |
three_letter = '-'.join(sequence_parts) | |
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts) | |
if is_cyclic: | |
three_letter = f"cyclo({three_letter})" | |
one_letter = f"cyclo({one_letter})" | |
img_cyclic = annotate_cyclic_structure(mol, three_letter) | |
# Create linear representation if requested | |
img_linear = None | |
if show_linear: | |
fig_linear = create_enhanced_linear_viz(three_letter, smiles) | |
buf = BytesIO() | |
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300) | |
buf.seek(0) | |
img_linear = Image.open(buf) | |
plt.close(fig_linear) | |
summary = "Summary:\n" | |
summary += f"Sequence: {three_letter}\n" | |
summary += f"One-letter code: {one_letter}\n" | |
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
#if is_cyclic: | |
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" | |
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n" | |
if structure_files: | |
summary += "\n3D Structures Generated:\n" | |
for filepath in structure_files: | |
summary += f"- {os.path.basename(filepath)}\n" | |
return summary + output_text, img_cyclic, img_linear, structure_files if structure_files else None | |
except Exception as e: | |
return f"Error processing SMILES: {str(e)}", None, None, None | |
# Handle file input | |
if file_obj is not None: | |
try: | |
if hasattr(file_obj, 'name'): | |
with open(file_obj.name, 'r') as f: | |
content = f.read() | |
else: | |
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj) | |
output_text = "" | |
for line in content.splitlines(): | |
smiles = line.strip() | |
if smiles: | |
if not analyzer.is_peptide(smiles): | |
output_text += f"Skipping non-peptide SMILES: {smiles}\n" | |
continue | |
segments = analyzer.split_on_bonds(smiles) | |
sequence_parts = [] | |
if show_segment_details: | |
output_text += f"\nSegment Analysis for SMILES: {smiles}\n" | |
for i, segment in enumerate(segments): | |
output_text += f"\nSegment {i}:\n" | |
output_text += f"Content: {segment['content']}\n" | |
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" | |
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
output_text += f"Identified as: {residue}\n" | |
output_text += f"Modifications: {mods}\n" | |
else: | |
for segment in segments: | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) | |
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts) | |
output_text += f"\nSummary for SMILES: {smiles}\n" | |
output_text += f"Sequence: {sequence}\n" | |
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
if is_cyclic: | |
output_text += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" | |
output_text += "-" * 50 + "\n" | |
return output_text, None, None | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None, None | |
return "No input provided.", None, None | |
iface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox( | |
label="Enter SMILES string", | |
placeholder="Enter SMILES notation of peptide...", | |
lines=2 | |
), | |
gr.File( | |
label="Or upload a text file with SMILES", | |
file_types=[".txt"] | |
), | |
gr.Checkbox( | |
label="Show linear representation", | |
value=False | |
), | |
gr.Checkbox( | |
label="Show segment details", | |
value=False | |
), | |
gr.Checkbox( | |
label="Generate 3D structure (sdf file format)", | |
value=False | |
), | |
gr.Checkbox( | |
label="Use UFF optimization (may take long)", | |
value=False | |
) | |
], | |
outputs=[ | |
gr.Textbox( | |
label="Analysis Results", | |
lines=10 | |
), | |
gr.Image( | |
label="2D Structure with Annotations", | |
type="pil" | |
), | |
gr.Image( | |
label="Linear Representation", | |
type="pil" | |
), | |
gr.File( | |
label="3D Structure Files", | |
file_count="multiple" | |
) | |
], | |
title="Peptide Structure Analyzer and Visualizer", | |
description=""" | |
Analyze and visualize peptide structures from SMILES notation: | |
1. Validates if the input is a peptide structure | |
2. Determines if the peptide is cyclic | |
3. Parses the amino acid sequence | |
4. Creates 2D structure visualization with residue annotations | |
5. Optional linear representation | |
6. Optional 3D structure generation (ETKDG and UFF methods) | |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings | |
Example SMILES strings (copy and paste): | |
``` | |
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O | |
``` | |
``` | |
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O | |
``` | |
``` | |
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C | |
``` | |
""", | |
flagging_mode="never" | |
) | |
if __name__ == "__main__": | |
iface.launch(share=True) |