Hanf Chase
commited on
Commit
·
71e7eab
1
Parent(s):
e3adb87
v1
Browse files- app.py +134 -0
- latex2layout_object_detection_yolov8.pt +3 -0
- requirements.txt +4 -0
- test_yolo.py +58 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
# 加载YOLOv8模型
|
9 |
+
model_path = "docgenome_object_detection_yolov8.pt"
|
10 |
+
model = YOLO(model_path)
|
11 |
+
|
12 |
+
def detect_and_visualize(image):
|
13 |
+
"""
|
14 |
+
对上传的图像进行目标检测并可视化结果
|
15 |
+
|
16 |
+
Args:
|
17 |
+
image: 上传的图像
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
annotated_image: 带有检测框的图像
|
21 |
+
yolo_annotations: YOLO格式的标注内容
|
22 |
+
"""
|
23 |
+
# 运行检测
|
24 |
+
results = model(image)
|
25 |
+
|
26 |
+
# 获取第一帧的结果
|
27 |
+
result = results[0]
|
28 |
+
|
29 |
+
# 创建图像副本用于可视化
|
30 |
+
annotated_image = image.copy()
|
31 |
+
|
32 |
+
# 准备YOLO格式的标注内容
|
33 |
+
yolo_annotations = []
|
34 |
+
|
35 |
+
# 获取图像尺寸
|
36 |
+
img_height, img_width = image.shape[:2]
|
37 |
+
|
38 |
+
# 在原图上绘制检测结果
|
39 |
+
for box in result.boxes:
|
40 |
+
# 获取边界框坐标
|
41 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
42 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
43 |
+
|
44 |
+
# 获取置信度
|
45 |
+
conf = float(box.conf[0])
|
46 |
+
|
47 |
+
# 获取类别ID和名称
|
48 |
+
cls_id = int(box.cls[0])
|
49 |
+
cls_name = result.names[cls_id]
|
50 |
+
|
51 |
+
# 为每个类别生成不同的颜色
|
52 |
+
color = tuple(np.random.randint(0, 255, 3).tolist())
|
53 |
+
|
54 |
+
# 绘制边界框
|
55 |
+
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
56 |
+
|
57 |
+
# 准备标签文本
|
58 |
+
label = f'{cls_name} {conf:.2f}'
|
59 |
+
|
60 |
+
# 计算标签大小
|
61 |
+
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
62 |
+
|
63 |
+
# 绘制标签背景
|
64 |
+
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
65 |
+
|
66 |
+
# 绘制标签文本
|
67 |
+
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
68 |
+
|
69 |
+
# 转换为YOLO格式 (x_center, y_center, width, height) 归一化到0-1
|
70 |
+
x_center = (x1 + x2) / (2 * img_width)
|
71 |
+
y_center = (y1 + y2) / (2 * img_height)
|
72 |
+
width = (x2 - x1) / img_width
|
73 |
+
height = (y2 - y1) / img_height
|
74 |
+
|
75 |
+
# 添加到YOLO标注列表
|
76 |
+
yolo_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
77 |
+
|
78 |
+
# 将YOLO标注转换为字符串
|
79 |
+
yolo_annotations_str = "\n".join(yolo_annotations)
|
80 |
+
|
81 |
+
return annotated_image, yolo_annotations_str
|
82 |
+
|
83 |
+
def save_yolo_annotations(yolo_annotations_str):
|
84 |
+
"""
|
85 |
+
保存YOLO标注到临时文件并返回文件路径
|
86 |
+
|
87 |
+
Args:
|
88 |
+
yolo_annotations_str: YOLO格式的标注字符串
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
file_path: 保存的标注文件路径
|
92 |
+
"""
|
93 |
+
# 创建临时文件
|
94 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
95 |
+
temp_file_path = temp_file.name
|
96 |
+
|
97 |
+
# 写入标注内容
|
98 |
+
with open(temp_file_path, "w") as f:
|
99 |
+
f.write(yolo_annotations_str)
|
100 |
+
|
101 |
+
return temp_file_path
|
102 |
+
|
103 |
+
# 创建Gradio界面
|
104 |
+
with gr.Blocks(title="YOLOv8目标检测可视化") as demo:
|
105 |
+
gr.Markdown("# YOLOv8目标检测可视化")
|
106 |
+
gr.Markdown("上传图像,使用YOLOv8模型进行目标检测,并下载YOLO格式的标注。")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
input_image = gr.Image(label="上传图像", type="numpy")
|
111 |
+
detect_btn = gr.Button("开始检测")
|
112 |
+
|
113 |
+
with gr.Column():
|
114 |
+
output_image = gr.Image(label="检测结果")
|
115 |
+
yolo_annotations = gr.Textbox(label="YOLO标注", lines=10)
|
116 |
+
download_btn = gr.Button("下载YOLO标注")
|
117 |
+
download_file = gr.File(label="下载文件")
|
118 |
+
|
119 |
+
# 设置点击事件
|
120 |
+
detect_btn.click(
|
121 |
+
fn=detect_and_visualize,
|
122 |
+
inputs=[input_image],
|
123 |
+
outputs=[output_image, yolo_annotations]
|
124 |
+
)
|
125 |
+
|
126 |
+
download_btn.click(
|
127 |
+
fn=save_yolo_annotations,
|
128 |
+
inputs=[yolo_annotations],
|
129 |
+
outputs=[download_file]
|
130 |
+
)
|
131 |
+
|
132 |
+
# 启动应用
|
133 |
+
if __name__ == "__main__":
|
134 |
+
demo.launch()
|
latex2layout_object_detection_yolov8.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94d75fc3df499e59b03857a7c2e6c22c88498cc83892c1a2674965160c976fa8
|
3 |
+
size 273162929
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics>=8.0.0
|
2 |
+
opencv-python>=4.5.0
|
3 |
+
numpy>=1.20.0
|
4 |
+
gradio>=3.0.0
|
test_yolo.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def detect_and_visualize(image_path, model_path):
|
6 |
+
# 加载YOLOv8模型
|
7 |
+
model = YOLO(model_path) # 例如 'yolov8n.pt', 'yolov8s.pt' 等
|
8 |
+
|
9 |
+
# 读取图片
|
10 |
+
image = cv2.imread(image_path)
|
11 |
+
|
12 |
+
# 运行检测
|
13 |
+
results = model(image)
|
14 |
+
|
15 |
+
# 获取第一帧的结果
|
16 |
+
result = results[0]
|
17 |
+
|
18 |
+
# 在原图上绘制检测结果
|
19 |
+
for box in result.boxes:
|
20 |
+
# 获取边界框坐标
|
21 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
22 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
23 |
+
|
24 |
+
# 获取置信度
|
25 |
+
conf = float(box.conf[0])
|
26 |
+
|
27 |
+
# 获取类别ID和名称
|
28 |
+
cls_id = int(box.cls[0])
|
29 |
+
cls_name = result.names[cls_id]
|
30 |
+
|
31 |
+
# 为每个类别生成不同的颜色
|
32 |
+
color = tuple(np.random.randint(0, 255, 3).tolist())
|
33 |
+
|
34 |
+
# 绘制边界框
|
35 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
36 |
+
|
37 |
+
# 准备标签文本
|
38 |
+
label = f'{cls_name} {conf:.2f}'
|
39 |
+
|
40 |
+
# 计算标签大小
|
41 |
+
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
42 |
+
|
43 |
+
# 绘制标签背景
|
44 |
+
cv2.rectangle(image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
45 |
+
|
46 |
+
# 绘制标签文本
|
47 |
+
cv2.putText(image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
48 |
+
|
49 |
+
# 保存结果图片
|
50 |
+
output_path = 'output_detected.jpg'
|
51 |
+
cv2.imwrite(output_path, image)
|
52 |
+
print(f"检测结果已保存至: {output_path}")
|
53 |
+
|
54 |
+
# 使用示例
|
55 |
+
if __name__ == "__main__":
|
56 |
+
image_path = "./test_math.png" # 替换为你的图片路径
|
57 |
+
model_path = "docgenome_object_detection_yolov8.pt" # 替换为你的模型权重路径
|
58 |
+
detect_and_visualize(image_path, model_path)
|