import gradio as gr import os import cv2 from PIL import Image import numpy as np from matplotlib import pyplot as plt import random from keras.utils import get_custom_objects import os os.environ['SM_FRAMEWORK'] = 'tf.keras' import segmentation_models as sm from keras import backend as K from keras.models import load_model class_building = '#3C1098' class_building = class_building.lstrip('#') class_building = np.array(tuple(int(class_building[i:i+2], 16) for i in (0,2,4))) class_land = '#8429F6' class_land = class_land.lstrip('#') class_land = np.array(tuple(int(class_land[i:i+2], 16) for i in (0,2,4))) class_road = '#6EC1E4' class_road = class_road.lstrip('#') class_road = np.array(tuple(int(class_road[i:i+2], 16) for i in (0,2,4))) class_vegetation = '#FEDD3A' class_vegetation = class_vegetation.lstrip('#') class_vegetation = np.array(tuple(int(class_vegetation[i:i+2], 16) for i in (0,2,4))) class_water = '#E2A929' class_water = class_water.lstrip('#') class_water = np.array(tuple(int(class_water[i:i+2], 16) for i in (0,2,4))) class_unlabeled = '#9B9B9B' class_unlabeled = class_unlabeled.lstrip('#') class_unlabeled = np.array(tuple(int(class_unlabeled[i:i+2], 16) for i in (0,2,4))) def jaccard_coef(y_true, y_pred): y_true_flatten = K.flatten(y_true) y_pred_flatten = K.flatten(y_pred) intersection = K.sum(y_true_flatten * y_pred_flatten) final_coef_value = (intersection + 1.0) / ( K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0) return final_coef_value # six class for six weights weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666] dice_loss = sm.losses.DiceLoss(class_weights=weights) focal_loss = sm.losses.CategoricalFocalLoss() total_loss = dice_loss + (1 * focal_loss) satellite_model = load_model('satellite_segmentation_full_v2.h5', custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 'jaccard_coef': jaccard_coef})) def label_to_rgb(label_segment): rgb_image = np.zeros((label_segment.shape[0], label_segment.shape[1], 3), dtype=np.uint8) rgb_image[label_segment == 0] = class_water rgb_image[label_segment == 1] = class_land rgb_image[label_segment == 2] = class_road rgb_image[label_segment == 3] = class_building rgb_image[label_segment == 4] = class_vegetation rgb_image[label_segment == 5] = class_unlabeled return rgb_image def process_input_image(image_source): image = np.expand_dims(image_source, 0) prediction = satellite_model.predict(image) predicted_image = np.argmax(prediction, axis=3) predicted_image = predicted_image[0, :, :] # Convert the predicted image labels to RGB colored_predicted_image = label_to_rgb(predicted_image) return "Predicted Masked Image", colored_predicted_image my_app = gr.Blocks() with my_app: gr.Markdown("Image Processing Application UI with Gradio") with gr.Tabs(): with gr.TabItem("Select your image"): with gr.Row(): with gr.Column(): img_source = gr.Image(label="Please select source Image", shape=(256, 256)) source_image_loader = gr.Button("Load above Image") with gr.Column(): output_label = gr.Label(label="Image Info") img_output = gr.Image(label="Image Output") source_image_loader.click( process_input_image, [ img_source ], [ output_label, img_output ] ) my_app.launch(debug=True)