import gradio as gr from langchain.prompts import PromptTemplate from langchain_huggingface import HuggingFaceEndpoint from langchain_core.output_parsers import JsonOutputParser from langdetect import detect import time import torch from transformers import pipeline import re from whisperplus import download_youtube_to_mp3 # Initialize the LLM and other components llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.3", task="text-generation", max_new_tokens=128, temperature=0.7, do_sample=False, ) template_classify = ''' You are a topic detector bot. Your task is to determine the main topic of given text phrase. Answer general main topic not specific words. Your answer does not contain specific information from given text. Answer just one general main topic. Do not answer two or more topic. Answer shortly with two or three word phrase. Do not answer with long sentence. Answer topic with context. Example, if it says "My delivery is late", its topic is late delivery. If you do not know the topic just answer as General. What is the main topic of given text?: {TEXT} convert it to json format using 'Answer' as key and return it. Your final response MUST contain only the response, no other text. Example: {{"Answer":["General"]}} ''' json_output_parser = JsonOutputParser() # Define the classify_text function def classify_text(text): global llm start = time.time() try: lang = detect(text) except: lang = "en" prompt_classify = PromptTemplate( template=template_classify, input_variables=["LANG", "TEXT"] ) formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang) classify = llm.invoke(formatted_prompt) parsed_output = json_output_parser.parse(classify) end = time.time() duration = end - start return lang, parsed_output["Answer"][0], duration # Initialize the speech recognition pipeline torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 device = "cuda:0" if torch.cuda.is_available() else "cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-base", # You may want to specify your desired model here torch_dtype=torch_dtype, device=device, ) def process_audio(audio_path): result = pipe(audio_path) text = result["text"] sentences = re.split(r'[.!?]', text) sentences = [sentence.strip() for sentence in sentences if sentence.strip()] classifications = [] for sentence in sentences: lang, classification, duration = classify_text(sentence) classifications.append(f"Sentence: {sentence}\nTopic: {classification}\nLanguage: {lang}\nTime: {duration:.2f}s") return "\n\n".join(classifications) def handle_audio_input(audio_path=None, youtube_url=None): if youtube_url: audio_path = download_youtube_to_mp3(youtube_url, output_dir="downloads", filename="youtube_audio") return process_audio(audio_path) if audio_path: return process_audio(audio_path) else: return "No audio input provided." # Create the Gradio interface def create_gradio_interface(): with gr.Blocks() as iface: with gr.Tab("Text Input"): text_input = gr.Textbox(label="Text") lang_output = gr.Textbox(label="Detected Language") output_text = gr.Textbox(label="Detected Topics") time_taken = gr.Textbox(label="Time Taken (seconds)") submit_btn = gr.Button("Detect topic") def on_text_submit(text): lang, classification, duration = classify_text(text) return lang, classification, f"Time taken: {duration:.2f} seconds" submit_btn.click(fn=on_text_submit, inputs=text_input, outputs=[lang_output, output_text, time_taken]) with gr.Tab("Audio Input"): audio_input = gr.Audio(label="Upload Audio", type="filepath") youtube_input = gr.Textbox(label="YouTube URL") audio_output = gr.Textbox(label="Detected Topics from Audio") audio_submit_btn = gr.Button("Process Audio") def on_audio_submit(audio, youtube_url): if youtube_url: return handle_audio_input(youtube_url=youtube_url) elif audio: return handle_audio_input(audio_path=audio) else: return "Please provide either an audio file or a YouTube URL." audio_submit_btn.click(fn=on_audio_submit, inputs=[audio_input, youtube_input], outputs=audio_output) iface.launch() if __name__ == "__main__": create_gradio_interface()