import os import shutil from app_modules.presets import * from clc.langchain_application import LangChainApplication os.environ["CUDA_VISIBLE_DEVICES"] = '0' # 修改成自己的配置!!! class LangChainCFG: llm_model_name = 'THUDM/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库 embedding_model_name = 'GanymedeNil/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库 vector_store_path = './cache' docs_path = './docs' kg_vector_stores = { '中文维基百科': './cache/zh_wikipedia', '大规模金融研报知识图谱': '.cache/financial_research_reports', '初始化知识库': '.cache', } # 可以替换成自己的知识库,如果没有需要设置为None # kg_vector_stores=None config = LangChainCFG() application = LangChainApplication(config) def get_file_list(): if not os.path.exists("docs"): return [] return [f for f in os.listdir("docs")] file_list = get_file_list() def upload_file(file): if not os.path.exists("docs"): os.mkdir("docs") filename = os.path.basename(file.name) shutil.move(file.name, "docs/" + filename) # file_list首位插入新上传的文件 file_list.insert(0, filename) application.source_service.add_document("docs/" + filename) return gr.Dropdown.update(choices=file_list, value=filename) def set_knowledge(kg_name, history): try: application.source_service.load_vector_store(config.kg_vector_stores[kg_name]) msg_status = f'{kg_name}知识库已成功加载' except Exception as e: msg_status = f'{kg_name}知识库未成功加载' return history + [[None, msg_status]] def clear_session(): return '', None def predict(input, large_language_model, embedding_model, top_k, use_web, history=None): # print(large_language_model, embedding_model) print(input) if history == None: history = [] if use_web == '使用': web_content = application.source_service.search_web(query=input) else: web_content = '' resp = application.get_knowledge_based_answer( query=input, history_len=1, temperature=0.1, top_p=0.9, top_k=top_k, web_content=web_content, chat_history=history ) history.append((input, resp['result'])) search_text = '' for idx, source in enumerate(resp['source_documents'][:4]): sep = f'----------【搜索结果{idx + 1}:】---------------\n' search_text += f'{sep}\n{source.page_content}\n\n' print(search_text) search_text += "----------【网络检索内容】-----------\n" search_text += web_content return '', history, history, search_text with open("assets/custom.css", "r", encoding="utf-8") as f: customCSS = f.read() with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo: gr.Markdown("""

Chinese-LangChain

""") state = gr.State() with gr.Row(): with gr.Column(scale=1): embedding_model = gr.Dropdown([ "text2vec-base" ], label="Embedding model", value="text2vec-base") large_language_model = gr.Dropdown( [ "ChatGLM-6B-int4", ], label="large language model", value="ChatGLM-6B-int4") top_k = gr.Slider(1, 20, value=4, step=1, label="检索top-k文档", interactive=True) kg_name = gr.Radio(['中文维基百科', '大规模金融研报知识图谱', '初始化知识库' ], label="知识库", value='初始化知识库', interactive=True) set_kg_btn = gr.Button("重新加载知识库") use_web = gr.Radio(["使用", "不使用"], label="web search", info="是否使用网络搜索,使用时确保网络通常", value="不使用" ) file = gr.File(label="将文件上传到知识库库,内容要尽量匹配", visible=True, file_types=['.txt', '.md', '.docx', '.pdf'] ) file.upload(upload_file, inputs=file, outputs=None) with gr.Column(scale=4): with gr.Row(): chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400) with gr.Row(): message = gr.Textbox(label='请输入问题') with gr.Row(): clear_history = gr.Button("🧹 清除历史对话") send = gr.Button("🚀 发送") with gr.Row(): gr.Markdown("""提醒:
[Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain)
有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈.
""") with gr.Column(scale=2): search = gr.Textbox(label='搜索结果') set_kg_btn.click( set_knowledge, show_progress=True, inputs=[kg_name, chatbot], outputs=chatbot ) # 发送按钮 提交 send.click(predict, inputs=[ message, large_language_model, embedding_model, top_k, use_web, state ], outputs=[message, chatbot, state, search]) # 清空历史对话按钮 提交 clear_history.click(fn=clear_session, inputs=[], outputs=[chatbot, state], queue=False) # 输入框 回车 message.submit(predict, inputs=[ message, large_language_model, embedding_model, top_k, use_web, state ], outputs=[message, chatbot, state, search]) demo.queue(concurrency_count=2).launch( server_name='0.0.0.0', server_port=8888, share=False, show_error=True, debug=True, enable_queue=True )