{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "c6c2112d", "metadata": {}, "outputs": [], "source": [ "import cv2\n", "import os\n", "\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "677fd6f1", "metadata": {}, "outputs": [], "source": [ "labels=['Cancer', 'Non Cancer']\n", "img_path='Skin Data/'" ] }, { "cell_type": "code", "execution_count": 3, "id": "1ae9f20f", "metadata": {}, "outputs": [], "source": [ "img_list=[]\n", "label_list=[]\n", "\n", "for label in labels:\n", " for img_file in os.listdir(img_path+label):\n", " img_list.append(img_path+label+'/'+img_file)\n", " label_list.append(label)" ] }, { "cell_type": "code", "execution_count": 4, "id": "6736fc5f", "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame({'img': img_list, 'label': label_list})" ] }, { "cell_type": "code", "execution_count": 5, "id": "bb9a0009", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | img | \n", "label | \n", "
|---|---|---|
| 130 | \n", "Skin Data/Non Cancer/614.JPG | \n", "Non Cancer | \n", "
| 73 | \n", "Skin Data/Cancer/2301-1.JPG | \n", "Cancer | \n", "
| 202 | \n", "Skin Data/Non Cancer/1111.JPG | \n", "Non Cancer | \n", "
| 211 | \n", "Skin Data/Non Cancer/1248-1.JPG | \n", "Non Cancer | \n", "
| 199 | \n", "Skin Data/Non Cancer/1065.jpg | \n", "Non Cancer | \n", "
Model: \"sequential_5\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential_5\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ vgg16 (Functional) │ (None, 7, 7, 512) │ 14,714,688 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_5 (Flatten) │ (None, 25088) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_10 (Dense) │ (None, 1024) │ 25,691,136 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_11 (Dense) │ (None, 1) │ 1,025 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ vgg16 (\u001b[38;5;33mFunctional\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m14,714,688\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_5 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25088\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ \u001b[38;5;34m25,691,136\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m1,025\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 91,791,173 (350.16 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m91,791,173\u001b[0m (350.16 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 25,692,161 (98.01 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m25,692,161\u001b[0m (98.01 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 14,714,688 (56.13 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m14,714,688\u001b[0m (56.13 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Optimizer params: 51,384,324 (196.02 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m51,384,324\u001b[0m (196.02 MB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": null, "id": "4b483c57", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "eee6be78", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 5 }