File size: 10,827 Bytes
85eaaaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# import random
# import sqlite3
# import time
# from googleapiclient.discovery import build
# from google.oauth2 import service_account
# from googleapiclient.errors import HttpError
# import pandas as pd
# import requests
# from bs4 import BeautifulSoup
# import pickle
# import tldextract
import os
from dotenv import load_dotenv
# from langchain.schema import Document
# from langchain.vectorstores.utils import DistanceStrategy
# from torch import cuda, bfloat16
# import torch
# import transformers
# from transformers import AutoTokenizer
# from langchain.document_loaders import TextLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import LlamaCpp
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA # RetrievalQAWithSourcesChain
# from config import IFCN_LIST_URL
IFCN_FILENAME = os.path.join(os.path.dirname(os.path.dirname(__file__)),
'ifcn_df.csv')
load_dotenv()
DB_PATH = os.getenv('DB_PATH')
FAISS_DB_PATH = os.getenv('FAISS_DB_PATH')
MODEL_PATH = os.getenv('MODEL_PATH')
# def get_claims(claims_serv, query_str, lang_code):
# """Queries the Google Fact Check API using the search string and returns the results
# Args:
# claims_serv (build().claims() object): build() creates a service object \
# for the factchecktools API; claims() creates a 'claims' object which \
# can be used to query with the search string
# query_str (str): the query string
# lang_code (str): BCP-47 language code, used to restrict search results by language
# Returns:
# list: the list of all search results returned by the API
# """
# claims = []
# req = claims_serv.search(query=query_str, languageCode=lang_code)
# try:
# res = req.execute()
# claims = res['claims'] # FIXME: is returning KeyError, perhaps when Google API is unresponsive
# except HttpError as e:
# print('Error response status code : {0}, reason : {1}'.format(e.status_code, e.error_details))
# # Aggregate all the results pages into one object
# while 'nextPageToken' in res.keys():
# req = claims_serv.search_next(req, res)
# res = req.execute()
# claims.extend(res['claims'])
# # TODO: Also return any basic useful metrics based on the results
# return claims
# def reformat_claims(claims):
# """Reformats the list of nested claims / search results into a DataFrame
# Args:
# claims (list): list of nested claims / search results
# Returns:
# pd.DataFrame: DataFrame containing search results, one per each row
# """
# # Format the results object into a format that is convenient to use
# df = pd.DataFrame(claims)
# df = df.explode('claimReview').reset_index(drop=True)
# claim_review_df = pd.json_normalize(df['claimReview'])
# return pd.concat([df.drop('claimReview', axis=1), claim_review_df], axis=1)
# def certify_claims(claims_df):
# """Certifies all the search results from the API against a list of verified IFCN signatories
# Args:
# claims_df (pd.DataFrame): DataFrame object containing all search results from the API
# Returns:
# pd.DataFrame: claims dataframe filtered to include only IFCN-certified claims
# """
# ifcn_to_use = get_ifcn_to_use()
# claims_df['ifcn_check'] = claims_df['publisher.site'].apply(remove_subdomain).isin(ifcn_to_use)
# return claims_df[claims_df['ifcn_check']].drop('ifcn_check', axis=1)
# def get_ifcn_data():
# """Standalone function to update the IFCN signatories CSV file that is stored locally"""
# r = requests.get(IFCN_LIST_URL)
# soup = BeautifulSoup(r.content, 'html.parser')
# cats_list = soup.find_all('div', class_='row mb-5')
# active = cats_list[0].find_all('div', class_='media')
# active = extract_ifcn_df(active, 'active')
# under_review = cats_list[1].find_all('div', class_='media')
# under_review = extract_ifcn_df(under_review, 'under_review')
# expired = cats_list[2].find_all('div', class_='media')
# expired = extract_ifcn_df(expired, 'expired')
# ifcn_df = pd.concat([active, under_review, expired], axis=0, ignore_index=True)
# ifcn_df['country'] = ifcn_df['country'].str.strip('from ')
# ifcn_df['verified_date'] = ifcn_df['verified_date'].str.strip('Verified on ')
# ifcn_df.to_csv(IFCN_FILENAME, index=False)
# def extract_ifcn_df(ifcn_list, status):
# """Returns useful info from a list of IFCN signatories
# Args:
# ifcn_list (list): list of IFCN signatories
# status (str): status code to be used for all signatories in this list
# Returns:
# pd.DataFrame: a dataframe of IFCN signatories' data
# """
# ifcn_data = [{
# 'url': x.a['href'],
# 'name': x.h5.text,
# 'country': x.h6.text,
# 'verified_date': x.find_all('span', class_='small')[1].text,
# 'ifcn_profile_url':
# x.find('a', class_='btn btn-sm btn-outline btn-link mb-0')['href'],
# 'status': status
# } for x in ifcn_list]
# return pd.DataFrame(ifcn_data)
# def remove_subdomain(url):
# """Removes the subdomain from a URL hostname - useful when comparing two URLs
# Args:
# url (str): URL hostname
# Returns:
# str: URL with subdomain removed
# """
# extract = tldextract.extract(url)
# return extract.domain + '.' + extract.suffix
# def get_ifcn_to_use():
# """Returns the IFCN data for non-expired signatories
# Returns:
# pd.Series: URls of non-expired IFCN signatories
# """
# ifcn_df = pd.read_csv(IFCN_FILENAME)
# ifcn_url = ifcn_df.loc[ifcn_df.status.isin(['active', 'under_review']), 'url']
# return [remove_subdomain(x) for x in ifcn_url]
# def get_gapi_service():
# """Returns a Google Fact-Check API-specific service object used to query the API
# Returns:
# googleapiclient.discovery.Resource: API-specific service object
# """
# load_dotenv()
# environment = os.getenv('ENVIRONMENT')
# if environment == 'DEVELOPMENT':
# api_key = os.getenv('API_KEY')
# service = build('factchecktools', 'v1alpha1', developerKey=api_key)
# elif environment == 'PRODUCTION':
# google_application_credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
# # FIXME: The below credentials not working, the HTTP request throws HTTPError 400
# # credentials = service_account.Credentials.from_service_account_file(
# # GOOGLE_APPLICATION_CREDENTIALS)
# credentials = service_account.Credentials.from_service_account_file(
# google_application_credentials,
# scopes=['https://www.googleapis.com/auth/userinfo.email',
# 'https://www.googleapis.com/auth/cloud-platform'])
# service = build('factchecktools', 'v1alpha1', credentials=credentials)
# return service
# # USED IN update_database.py ----
# def get_claims_by_site(claims_serv, publisher_site, lang_code):
# # TODO: Any HTTP or other errors in this function need to be handled better
# req = claims_serv.search(reviewPublisherSiteFilter=publisher_site,
# languageCode=lang_code)
# while True:
# try:
# res = req.execute()
# break
# except HttpError as e:
# print('Error response status code : {0}, reason : {1}'.
# format(e.status_code, e.error_details))
# time.sleep(random.randint(50, 60))
# if 'claims' in res:
# claims = res['claims'] # FIXME: is returning KeyError when Google API is unresponsive?
# print('first 10')
# req_prev, req = req, None
# res_prev, res = res, None
# else:
# print('No data')
# return []
# # Aggregate all the results pages into one object
# while 'nextPageToken' in res_prev.keys():
# req = claims_serv.search_next(req_prev, res_prev)
# try:
# res = req.execute()
# claims.extend(res['claims'])
# req_prev, req = req, None
# res_prev, res = res, None
# print('another 10')
# except HttpError as e:
# print('Error in while loop : {0}, \
# reason : {1}'.format(e.status_code, e.error_details))
# time.sleep(random.randint(50, 60))
# return claims
# def rename_claim_attrs(df):
# return df.rename(
# columns={'claimDate': 'claim_date',
# 'reviewDate': 'review_date',
# 'textualRating': 'textual_rating',
# 'languageCode': 'language_code',
# 'publisher.name': 'publisher_name',
# 'publisher.site': 'publisher_site'}
# )
# def clean_claims(df):
# pass
# def write_claims_to_db(df):
# with sqlite3.connect(DB_PATH) as db_con:
# df.to_sql('claims', db_con, if_exists='append', index=False)
# # FIXME: The id variable is not getting auto-incremented
# def generate_and_store_embeddings(df, embed_model, overwrite):
# # TODO: Combine "text" & "textual_rating" to generate useful statements
# df['fact_check'] = 'The fact-check result for the claim "' + df['text'] \
# + '" is "' + df['textual_rating'] + '"'
# # TODO: Are ids required?
# df.rename(columns={'text': 'claim'}, inplace=True)
# docs = \
# [Document(page_content=row['fact_check'],
# metadata=row.drop('fact_check').to_dict())
# for idx, row in df.iterrows()]
# if overwrite == True:
# db = FAISS.from_documents(docs, embed_model, distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT)
# # FIXME: MAX_INNER_PRODUCT is not being used currently, only EUCLIDEAN_DISTANCE
# db.save_local(FAISS_DB_PATH)
# elif overwrite == False:
# db = FAISS.load_local(FAISS_DB_PATH, embed_model, distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT)
# db.add_documents(docs)
# db.save_local(FAISS_DB_PATH)
def get_rag_chain():
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {"device": "cpu"}
embed_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
llm = LlamaCpp(model_path=MODEL_PATH)
db_vector = FAISS.load_local(FAISS_DB_PATH, embed_model)
retriever = db_vector.as_retriever()
return RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True
)
|