import streamlit as st import os from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceHubEmbeddings from langchain.vectorstores import FAISS from langchain.llms import HuggingFaceHub from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate st.set_page_config(page_title='preguntaDOC') st.header("Pregunta a tu PDF") # Campo para el token de Hugging Face (ahora requerido para los embeddings) huggingface_api_token = st.text_input('Hugging Face API Token (requerido)', type='password') pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear) @st.cache_resource def create_embeddings(pdf, api_token): if not api_token: st.error("Se requiere un token de API de Hugging Face") return None os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter( chunk_size=800, chunk_overlap=100, length_function=len ) chunks = text_splitter.split_text(text) # Usar HuggingFaceHubEmbeddings en lugar de HuggingFaceEmbeddings # Este enfoque no requiere sentence-transformers instalado localmente embeddings = HuggingFaceHubEmbeddings( repo_id="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", huggingfacehub_api_token=api_token ) knowledge_base = FAISS.from_texts(chunks, embeddings) return knowledge_base if pdf_obj and huggingface_api_token: knowledge_base = create_embeddings(pdf_obj, huggingface_api_token) if knowledge_base: user_question = st.text_input("Haz una pregunta sobre tu PDF:") if user_question: docs = knowledge_base.similarity_search(user_question, 3) # Usar un modelo gratuito de Hugging Face llm = HuggingFaceHub( repo_id="google/flan-t5-large", huggingfacehub_api_token=huggingface_api_token, model_kwargs={"temperature": 0.5, "max_length": 512} ) prompt_template = """ Responde a la siguiente pregunta basándote únicamente en el contexto proporcionado. Contexto: {context} Pregunta: {question} Respuesta: """ PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain = load_qa_chain(llm, chain_type="stuff", prompt=PROMPT) with st.spinner("Procesando tu pregunta..."): try: respuesta = chain.run(input_documents=docs, question=user_question) st.write(respuesta) except Exception as e: st.error(f"Error al procesar tu pregunta: {str(e)}") elif not huggingface_api_token and pdf_obj: st.warning("Por favor, ingresa tu token de API de Hugging Face para continuar.")