Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
|
2 |
-
import streamlit as st
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
-
|
7 |
-
# Load the model and tokenizer from Hugging Face
|
8 |
-
model = AutoModelForSequenceClassification.from_pretrained("Caseyishere/StoryCraft", num_labels=5)
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("Caseyishere/StoryCraft")
|
10 |
-
|
11 |
-
# Streamlit app interface
|
12 |
-
st.set_page_config(page_title="Story Craft", page_icon="🍽️", layout="centered")
|
13 |
-
|
14 |
-
# Set page title and styles
|
15 |
-
st.title("🍽️ Welcome to Story Craft 🍽️")
|
16 |
-
st.markdown("""
|
17 |
-
<style>
|
18 |
-
.big-font {
|
19 |
-
font-size:24px !important;
|
20 |
-
font-weight:bold;
|
21 |
-
}
|
22 |
-
.highlight {
|
23 |
-
color: #FF4B4B;
|
24 |
-
}
|
25 |
-
.divider {
|
26 |
-
border-top: 2px solid #bbb;
|
27 |
-
margin: 20px 0;
|
28 |
-
}
|
29 |
-
</style>
|
30 |
-
""", unsafe_allow_html=True)
|
31 |
-
|
32 |
-
# Get user input
|
33 |
-
user_input = st.text_input("Please tell us what you like today:")
|
34 |
-
|
35 |
-
if user_input:
|
36 |
-
# Preprocess the input using the tokenizer
|
37 |
-
inputs = tokenizer(user_input, padding=True, truncation=True, return_tensors='pt')
|
38 |
-
|
39 |
-
# Get predictions from the model
|
40 |
-
outputs = model(**inputs)
|
41 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
42 |
-
predictions = predictions.cpu().detach().numpy()
|
43 |
-
|
44 |
-
# Get the predicted label
|
45 |
-
predicted_label = np.argmax(predictions)
|
46 |
-
|
47 |
-
# Generate response based on predicted label
|
48 |
-
responses = {
|
49 |
-
0: '''Appetizer: Escargots: Snails cooked in garlic butter with herbs
|
50 |
-
Main Course: Coq au vin: Chicken braised in red wine with mushrooms and onions
|
51 |
-
Side Dish: Pommes frites: French fries
|
52 |
-
Dessert: Crème brûlée: Custard topped with caramelized sugar
|
53 |
-
Beverage: Bordeaux: A red wine from the Bordeaux region of France
|
54 |
-
Cheese Course: Fromage à raclette: Melted cheese served with bread, potatoes, and pickles''',
|
55 |
-
1: '''Appetizer: Spätzle: Swabian egg noodles with cheese
|
56 |
-
Main Course: Wiener schnitzel: Breaded veal cutlet
|
57 |
-
Side Dish: Sauerkraut: Fermented cabbage
|
58 |
-
Dessert: Schwarzwälder Kirschtorte: Black Forest cake
|
59 |
-
Beverage: Kölsch: A light, golden ale from Cologne
|
60 |
-
Cheese Course: Käsekuchen: German cheesecake''',
|
61 |
-
2: '''Appetizer: Creamy Spinach and Artichoke Dip with tortilla chips
|
62 |
-
Main Course: Ribeye Steak cooked to your desired temperature (medium-rare, medium, well-done)
|
63 |
-
Side Dish: Baked Potato topped with butter, sour cream, and bacon bits
|
64 |
-
Dessert: Chocolate Lava Cake with vanilla ice cream
|
65 |
-
Beverage: Red Wine (ask your server for a recommendation based on your preferences)
|
66 |
-
Salad: Caesar Salad with romaine lettuce, croutons, Parmesan cheese, and Caesar dressing
|
67 |
-
Soup: French Onion Soup with caramelized onions, Gruyère cheese, and croutons''',
|
68 |
-
3: "Oops! Something went wrong!"
|
69 |
-
}
|
70 |
-
|
71 |
-
# Display the response based on the predicted label
|
72 |
-
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|
73 |
-
st.markdown(f'<div class="big-font highlight">Here is your curated menu based on your input:</div>', unsafe_allow_html=True)
|
74 |
-
st.write(responses.get(predicted_label, "I'm not sure what you're asking for."))
|
75 |
-
|
76 |
-
# Display the predicted label for reference
|
77 |
-
st.write(f"Predicted label is {predicted_label}")
|
78 |
-
|
79 |
-
# Add a separator
|
80 |
-
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|