import streamlit as st from graphviz import Digraph st.markdown(""" Prompt: Create an interactive streamlit graph builder using the graphviz diagram model language and the streamlit feature: st.graphviz_chart(figure_or_dot, use_container_width=False) to show an azure cloud architecture model including the top ten architecture components for python full stack development for web, api, ml, models, datasets torch, transformers, streamlit, azure docker and kubernetes pods for scaling """) # Dot demo: import streamlit as st # Define the default graphviz DOT string default_dot = """ digraph G { rankdir=LR node [shape=box] WebApp -> API API -> Models API -> Datasets Models -> Torch Models -> Transformers WebApp -> Streamlit Streamlit -> Azure Azure -> Docker Azure -> Kubernetes } """ # Define the list of top 10 components components = [ "WebApp", "API", "Models", "Datasets", "Torch", "Transformers", "Streamlit", "Azure", "Docker", "Kubernetes", ] # Define a dictionary to map component names to DOT node IDs node_ids = { component: component.lower() for component in components } def build_dot_string(selected_components): """Builds a DOT string representing the selected components""" selected_nodes = [node_ids[component] for component in selected_components] dot = """ digraph G { rankdir=LR node [shape=box] """ for node in selected_nodes: dot += f"{node} [color=blue]\n" for i in range(len(selected_nodes)): for j in range(i+1, len(selected_nodes)): dot += f"{selected_nodes[i]} -> {selected_nodes[j]}\n" dot += "}" return dot def main(): st.title("Azure Cloud Architecture Builder") # Select the components st.sidebar.title("Select components") selected_components = st.sidebar.multiselect( "Select the top 10 components", components, default=components[:3] ) # Build the DOT string dot = build_dot_string(selected_components) # Render the graphviz chart st.graphviz_chart(dot, use_container_width=True) if __name__ == "__main__": main() # Initialize the graph graph = Digraph(comment='Architectural Model') # Add nodes to the graph graph.node('data_layer', 'Data Layer') graph.node('acr', 'Azure Container Registry') graph.node('aks', 'Azure Kubernetes\n& Docker Container Pod\nwith Scalability') graph.node('snowflake', 'Snowflake Instance') graph.node('cosmos', 'Azure Cosmos\nDatabase') graph.node('api', 'API Standard\n(using Uvicorn)') graph.node('soar', 'SOAR Component\n(on Linux Python\nSlimbuster Docker)') # Add edges to the graph graph.edge('data_layer', 'acr') graph.edge('acr', 'aks') graph.edge('aks', 'snowflake') graph.edge('aks', 'cosmos') graph.edge('aks', 'api') graph.edge('aks', 'soar') # Define the Streamlit app def app(): st.title('Architectural Model') # Draw the graph st.graphviz_chart(graph.source) # Add buttons to customize the graph if st.button('Hide Data Layer'): graph.node('data_layer', style='invisible') if st.button('Hide Snowflake Instance'): graph.node('snowflake', style='invisible') if st.button('Hide SOAR Component'): graph.node('soar', style='invisible') st.markdown(""" # QA Model Spaces: QA use cases include QA, Semantic Document and FAQ Search. 1. Streamlit Question Answering w Hugging Face: https://huggingface.co/spaces/awacke1/Question-answering 2. Seq2Seq: - https://huggingface.co/spaces/awacke1/4-Seq2SeqQAT5 - https://huggingface.co/spaces/awacke1/AW-04-GR-Seq-2-Seq-QA-Auto-Gen 3. BioGPT: https://huggingface.co/spaces/awacke1/microsoft-BioGPT-Large-PubMedQA 4. NLP QA Context: https://huggingface.co/spaces/awacke1/NLPContextQATransformersRobertaBaseSquad2 - https://huggingface.co/spaces/awacke1/SOTA-Plan 5. https://huggingface.co/spaces/awacke1/Question-answering 6. QA MLM: https://huggingface.co/spaces/awacke1/SOTA-MedEntity """) # Run the Streamlit app if __name__ == '__main__': app()