import gradio as gr import openai import os current_dir = os.path.dirname(os.path.abspath(__file__)) css_file = os.path.join(current_dir, "style.css") initial_prompt = "Ești un asistent util." def parse_text(text): lines = text.split("\n") for i,line in enumerate(lines): if "```" in line: items = line.split('`') if items[-1]: lines[i] = f'
'
            else:
                lines[i] = f'
' else: if i>0: line = line.replace("<", "<") line = line.replace(">", ">") lines[i] = '
'+line.replace(" ", " ") return "".join(lines) def get_response(system, context, raw = False): openai.api_key = "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" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[system, *context], ) if raw: return response else: statistics = f'This conversation Tokens usage【{response["usage"]["total_tokens"]} / 4096】 ( Question + above {response["usage"]["prompt_tokens"]},Answer {response["usage"]["completion_tokens"]} )' message = response["choices"][0]["message"]["content"] message_with_stats = f'{message}' # message_with_stats = markdown.markdown(message_with_stats) return message, parse_text(message_with_stats) #return message def predict(chatbot, input_sentence, system, context): if len(input_sentence) == 0: return [] context.append({"role": "user", "content": f"{input_sentence}"}) message, message_with_stats = get_response(system, context) context.append({"role": "assistant", "content": message}) chatbot.append((input_sentence, message_with_stats)) return chatbot, context def retry(chatbot, system, context): if len(context) == 0: return [], [] message, message_with_stats = get_response(system, context[:-1]) context[-1] = {"role": "assistant", "content": message} chatbot[-1] = (context[-2]["content"], message_with_stats) return chatbot, context def delete_last_conversation(chatbot, context): if len(context) == 0: return [], [] chatbot = chatbot[:-1] context = context[:-2] return chatbot, context def reduce_token(chatbot, system, context): context.append({"role": "user", "content": "请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。在总结中不要加入这一句话。"}) response = get_response(system, context, raw=True) statistics = f'本次对话Tokens用量【{response["usage"]["completion_tokens"]+12+12+8} / 4096】' optmz_str = markdown.markdown( f'好的,我们之前聊了:{response["choices"][0]["message"]["content"]}\n\n================\n\n{statistics}' ) chatbot.append(("请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。", optmz_str)) context = [] context.append({"role": "user", "content": "我们之前聊了什么?"}) context.append({"role": "assistant", "content": f'我们之前聊了:{response["choices"][0]["message"]["content"]}'}) return chatbot, context def reset_state(): return [], [] def update_system(new_system_prompt): return {"role": "system", "content": new_system_prompt} title = """

Tu întrebi și eu răspund.

""" description = """
Will not describe your needs to ChatGPT?You Use [ChatGPT Shortcut](https://newzone.top/chatgpt/)
""" block = gr.Blocks(css=".gradio-container {background-color: #A238FF}") with block as demo: gr.HTML(title) chatbot = gr.Chatbot().style(color_map=("#A238FF", "#A238FF")) context = gr.State([]) systemPrompt = gr.State(update_system(initial_prompt)) with gr.Row(): with gr.Column(scale=12): txt = gr.Textbox(show_label=False, placeholder="Vă rugăm să introduceți oricare dintre întrebările dvs. aici.").style(container=False) with gr.Column(min_width=50, scale=1): submitBtn = gr.Button("🚀 Trimite", style={"bgcolor": "#FF0000"}) with gr.Row(): emptyBtn = gr.Button("🧹 Conversație nouă").style( css={ "background-color": "#E0E0E0", "border-radius": "8px", "padding": "8px", "color": "black", "font-weight": "bold", "font-size": "1em", "cursor": "pointer", } ) retryBtn = gr.Button("🔄 Retrimiteți").style( css={ "background-color": "#E0E0E0", "border-radius": "8px", "padding": "8px", "color": "black", "font-weight": "bold", "font-size": "1em", "cursor": "pointer", } ) delLastBtn = gr.Button("🗑️ Sterge conversația").style( css={ "background-color": "#E0E0E0", "border-radius": "8px", "padding": "8px", "color": "black", "font-weight": "bold", "font-size": "1em", "cursor": "pointer", } ) txt.submit(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True) txt.submit(lambda :"", None, txt) submitBtn.click(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True) submitBtn.click(lambda :"", None, txt) emptyBtn.click(reset_state, outputs=[chatbot, context]) retryBtn.click(retry, [chatbot, systemPrompt, context], [chatbot, context], show_progress=True) delLastBtn.click(delete_last_conversation, [chatbot, context], [chatbot, context], show_progress=True) #demo.style( # css={ # "background-color": "#F5F5F5", # "font-family": "sans-serif", # "padding": "20px", # "border-radius": "8px", # "box-shadow": "0px 2px 6px rgba(0,0,0,0.3)", # } #) #demo.children[0].style( # css={ # "text-align": "center", # "font-size": "1.5em", # "margin-bottom": "20px", # } #) #gr.set_gradio_chart_theme(theme="light") demo.launch()