gpu_id=0 # Note: Since we have utilized half-precision (FP16) for training, the training process can occasionally be unstable. # It is recommended to run the training process multiple times and choose the best model based on performance # on the validation set as the final model. # pre-trained on MVtec and colondb CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True --training_data mvtec colondb --testing_data visa # pre-trained on Visa and Clinicdb CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True --training_data visa clinicdb --testing_data mvtec # This model is pre-trained on all available data to create a powerful Zero-Shot Anomaly Detection (ZSAD) model for demonstration purposes. CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True \ --training_data \ br35h brain_mri btad clinicdb colondb \ dagm dtd headct isic mpdd mvtec sdd tn3k visa \ --testing_data mvtec