import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from math import exp class FocalLoss(nn.Module): """ copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param smooth: (float,double) smooth value when cross entropy :param balance_index: (int) balance class index, should be specific when alpha is float :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. """ def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True): super(FocalLoss, self).__init__() self.apply_nonlin = apply_nonlin self.alpha = alpha self.gamma = gamma self.balance_index = balance_index self.smooth = smooth self.size_average = size_average if self.smooth is not None: if self.smooth < 0 or self.smooth > 1.0: raise ValueError('smooth value should be in [0,1]') def forward(self, logit, target): if self.apply_nonlin is not None: logit = self.apply_nonlin(logit) num_class = logit.shape[1] if logit.dim() > 2: # N,C,d1,d2 -> N,C,m (m=d1*d2*...) logit = logit.view(logit.size(0), logit.size(1), -1) logit = logit.permute(0, 2, 1).contiguous() logit = logit.view(-1, logit.size(-1)) target = torch.squeeze(target, 1) target = target.view(-1, 1) alpha = self.alpha if alpha is None: alpha = torch.ones(num_class, 1) elif isinstance(alpha, (list, np.ndarray)): assert len(alpha) == num_class alpha = torch.FloatTensor(alpha).view(num_class, 1) alpha = alpha / alpha.sum() elif isinstance(alpha, float): alpha = torch.ones(num_class, 1) alpha = alpha * (1 - self.alpha) alpha[self.balance_index] = self.alpha else: raise TypeError('Not support alpha type') if alpha.device != logit.device: alpha = alpha.to(logit.device) idx = target.cpu().long() one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() one_hot_key = one_hot_key.scatter_(1, idx, 1) if one_hot_key.device != logit.device: one_hot_key = one_hot_key.to(logit.device) if self.smooth: one_hot_key = torch.clamp( one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth) pt = (one_hot_key * logit).sum(1) + self.smooth logpt = pt.log() gamma = self.gamma alpha = alpha[idx] alpha = torch.squeeze(alpha) loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt if self.size_average: loss = loss.mean() return loss class BinaryDiceLoss(nn.Module): def __init__(self): super(BinaryDiceLoss, self).__init__() def forward(self, input, targets): # 获取每个批次的大小 N N = targets.size()[0] # 平滑变量 smooth = 1 # 将宽高 reshape 到同一纬度 input_flat = input.view(N, -1) targets_flat = targets.view(N, -1) # 计算交集 intersection = input_flat * targets_flat N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth) # 计算一个批次中平均每张图的损失 loss = 1 - N_dice_eff.sum() / N return loss class ConADLoss(nn.Module): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, contrast_mode='all',random_anchors=10): super(ConADLoss, self).__init__() assert contrast_mode in ['all', 'mean', 'random'] self.contrast_mode = contrast_mode self.random_anchors = random_anchors def forward(self, features, labels): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, C, ...]. labels: ground truth of shape [bsz, 1, ...]., where 1 denotes to abnormal, and 0 denotes to normal Returns: A loss scalar. """ device = (torch.device('cuda') if features.is_cuda else torch.device('cpu')) if len(features.shape) != len(labels.shape): raise ValueError('`features` needs to have the same dimensions with labels') if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, C, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) labels = labels.view(labels.shape[0], labels.shape[1], -1) labels = labels.squeeze() batch_size = features.shape[0] C = features.shape[1] normal_feats = features[:, :, labels == 0] abnormal_feats = features[:, :, labels == 1] normal_feats = normal_feats.permute((1, 0, 2)).contiguous().view(C, -1) abnormal_feats = abnormal_feats.permute((1, 0, 2)).contiguous().view(C, -1) contrast_count = normal_feats.shape[1] contrast_feature = normal_feats if self.contrast_mode == 'mean': anchor_feature = torch.mean(normal_feats, dim=1) anchor_feature = F.normalize(anchor_feature, dim=0, p=2) anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count elif self.contrast_mode == 'random': dim_to_sample = 1 num_samples = min(self.random_anchors, contrast_count) permuted_indices = torch.randperm(normal_feats.size(dim_to_sample)).to(normal_feats.device) selected_indices = permuted_indices[:num_samples] anchor_feature = normal_feats.index_select(dim_to_sample, selected_indices) else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits # maximize similarity anchor_dot_normal = torch.matmul(anchor_feature.T, normal_feats).mean() # minimize similarity anchor_dot_abnormal = torch.matmul(anchor_feature.T, abnormal_feats).mean() loss = 0 if normal_feats.shape[1] > 0: loss -= anchor_dot_normal if abnormal_feats.shape[1] > 0: loss += anchor_dot_abnormal loss = torch.exp(loss) return loss