Calmlo commited on
Commit
ed8e0ee
·
verified ·
1 Parent(s): dfda0eb

Upload 5 files

Browse files
Files changed (5) hide show
  1. Dockerfile +24 -0
  2. README.md +16 -10
  3. docker-compose.yml +15 -0
  4. package.json +17 -0
  5. server.js +347 -0
Dockerfile ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 使用官方 Node.js 18 LTS 镜像作为基础
2
+ FROM node:18-alpine
3
+
4
+ # 设置工作目录
5
+ WORKDIR /usr/src/app
6
+
7
+ # 复制 package.json 和 package-lock.json (如果存在)
8
+ COPY package*.json ./
9
+
10
+ # 安装项目依赖
11
+ RUN npm install
12
+
13
+ # 复制应用源代码
14
+ COPY . .
15
+
16
+ # 暴露应用程序使用的端口
17
+ EXPOSE 3000
18
+
19
+ # 定义环境变量 (可以在 docker-compose 中覆盖)
20
+ ENV PORT=3000
21
+ # FAL_KEY 应该在运行时通过 docker-compose 传入,而不是硬编码在这里
22
+
23
+ # 运行应用程序的命令
24
+ CMD [ "npm", "start" ]
README.md CHANGED
@@ -1,10 +1,16 @@
1
- ---
2
- title: Fal Openai Proxy
3
- emoji: 🏃
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
1
+ ## openai请求格式转fal
2
+ 输入限制: System prompt 和 prompt 分别最长为 5000 字符(不是 token)。
3
+
4
+ 输出长度: 测试了下输出长篇小说,出了 5W 多 token。
5
+
6
+ 上下文: 不支持。
7
+
8
+ 于是用 gemini 糊了个 openaiToFal 的服务,模拟上下文以 5000 字符为分界线,分别塞到 System prompt 和 prompt,这样可以把输入扩展到 1W 字符,太早的聊天记录会被顶掉。github 地址是一个 docker compose 包,把你的 key 填入 docker-compose.yml,一键启动 docker compose up -d 即可。默认端口 13000。
9
+
10
+ ## 部署步骤
11
+ 1、修改docker-compose.yml填入fal的api key
12
+
13
+ 2、`docker compose up -d`启动
14
+
15
+ ## 重要
16
+ 我是搭配newapi管理使用,所以**没有鉴权**,有需要自己加。
docker-compose.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ services:
2
+ fal-openai-proxy:
3
+ build: . # 构建当前目录下的 Dockerfile
4
+ container_name: fal_openai_proxy
5
+ ports:
6
+ - "13000:3000" # 将主机的 3000 端口映射到容器的 3000 端口
7
+ environment:
8
+ # 在这里设置你的 Fal AI API Key
9
+ # 或者,为了安全起见,你可以创建一个 .env 文件,并在其中定义 FAL_KEY
10
+ # 然后取消下面行的注释:
11
+ # env_file:
12
+ # - .env
13
+ FAL_KEY: "" # !! 重要:替换为你的真实 Fal AI Key !!
14
+ PORT: 3000 # 确保容器内的端口与 Dockerfile 和 server.js 中一致
15
+ restart: unless-stopped # 服务失败时自动重启,除非手动停止
package.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "fal-openai-proxy",
3
+ "version": "1.0.0",
4
+ "description": "Proxy server to convert OpenAI requests to fal-ai format",
5
+ "main": "server.js",
6
+ "type": "module",
7
+ "scripts": {
8
+ "start": "node server.js"
9
+ },
10
+ "dependencies": {
11
+ "@fal-ai/client": "latest",
12
+ "express": "^4.19.2"
13
+ },
14
+ "engines": {
15
+ "node": ">=18.0.0"
16
+ }
17
+ }
server.js ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import express from 'express';
2
+ import { fal } from '@fal-ai/client';
3
+
4
+ // 从环境变量读取 Fal AI API Key
5
+ const FAL_KEY = process.env.FAL_KEY;
6
+ if (!FAL_KEY) {
7
+ console.error("Error: FAL_KEY environment variable is not set.");
8
+ process.exit(1);
9
+ }
10
+
11
+ // 配置 fal 客户端
12
+ fal.config({
13
+ credentials: FAL_KEY,
14
+ });
15
+
16
+ const app = express();
17
+ app.use(express.json({ limit: '50mb' }));
18
+ app.use(express.urlencoded({ extended: true, limit: '50mb' }));
19
+
20
+ const PORT = process.env.PORT || 3000;
21
+
22
+ // === 全局定义限制 ===
23
+ const PROMPT_LIMIT = 4800;
24
+ const SYSTEM_PROMPT_LIMIT = 4800;
25
+ // === 限制定义结束 ===
26
+
27
+ // 定义 fal-ai/any-llm 支持的模型列表
28
+ const FAL_SUPPORTED_MODELS = [
29
+ "anthropic/claude-3.7-sonnet",
30
+ "anthropic/claude-3.5-sonnet",
31
+ "anthropic/claude-3-5-haiku",
32
+ "anthropic/claude-3-haiku",
33
+ "google/gemini-pro-1.5",
34
+ "google/gemini-flash-1.5",
35
+ "google/gemini-flash-1.5-8b",
36
+ "google/gemini-2.0-flash-001",
37
+ "meta-llama/llama-3.2-1b-instruct",
38
+ "meta-llama/llama-3.2-3b-instruct",
39
+ "meta-llama/llama-3.1-8b-instruct",
40
+ "meta-llama/llama-3.1-70b-instruct",
41
+ "openai/gpt-4o-mini",
42
+ "openai/gpt-4o",
43
+ "deepseek/deepseek-r1",
44
+ "meta-llama/llama-4-maverick",
45
+ "meta-llama/llama-4-scout"
46
+ ];
47
+
48
+ // Helper function to get owner from model ID
49
+ const getOwner = (modelId) => {
50
+ if (modelId && modelId.includes('/')) {
51
+ return modelId.split('/')[0];
52
+ }
53
+ return 'fal-ai';
54
+ }
55
+
56
+ // GET /v1/models endpoint
57
+ app.get('/v1/models', (req, res) => {
58
+ console.log("Received request for GET /v1/models");
59
+ try {
60
+ const modelsData = FAL_SUPPORTED_MODELS.map(modelId => ({
61
+ id: modelId, object: "model", created: 1700000000, owned_by: getOwner(modelId)
62
+ }));
63
+ res.json({ object: "list", data: modelsData });
64
+ console.log("Successfully returned model list.");
65
+ } catch (error) {
66
+ console.error("Error processing GET /v1/models:", error);
67
+ res.status(500).json({ error: "Failed to retrieve model list." });
68
+ }
69
+ });
70
+
71
+
72
+ // === 修改后的 convertMessagesToFalPrompt 函数 (System置顶 + 分隔符 + 对话历史Recency) ===
73
+ function convertMessagesToFalPrompt(messages) {
74
+ let fixed_system_prompt_content = "";
75
+ const conversation_message_blocks = [];
76
+ console.log(`Original messages count: ${messages.length}`);
77
+
78
+ // 1. 分离 System 消息,格式化 User/Assistant 消息
79
+ for (const message of messages) {
80
+ let content = (message.content === null || message.content === undefined) ? "" : String(message.content);
81
+ switch (message.role) {
82
+ case 'system':
83
+ fixed_system_prompt_content += `System: ${content}\n\n`;
84
+ break;
85
+ case 'user':
86
+ conversation_message_blocks.push(`Human: ${content}\n\n`);
87
+ break;
88
+ case 'assistant':
89
+ conversation_message_blocks.push(`Assistant: ${content}\n\n`);
90
+ break;
91
+ default:
92
+ console.warn(`Unsupported role: ${message.role}`);
93
+ continue;
94
+ }
95
+ }
96
+
97
+ // 2. 截断合并后的 system 消息(如果超长)
98
+ if (fixed_system_prompt_content.length > SYSTEM_PROMPT_LIMIT) {
99
+ const originalLength = fixed_system_prompt_content.length;
100
+ fixed_system_prompt_content = fixed_system_prompt_content.substring(0, SYSTEM_PROMPT_LIMIT);
101
+ console.warn(`Combined system messages truncated from ${originalLength} to ${SYSTEM_PROMPT_LIMIT}`);
102
+ }
103
+ // 清理末尾可能多余的空白,以便后续判断和拼接
104
+ fixed_system_prompt_content = fixed_system_prompt_content.trim();
105
+
106
+
107
+ // 3. 计算 system_prompt 中留给对话历史的剩余空间
108
+ // 注意:这里计算时要考虑分隔符可能占用的长度,但分隔符只在需要时添加
109
+ // 因此先计算不含分隔符的剩余空间
110
+ let space_occupied_by_fixed_system = 0;
111
+ if (fixed_system_prompt_content.length > 0) {
112
+ // 如果固定内容不为空,计算其长度 + 后面可能的分隔符的长度(如果需要)
113
+ // 暂时只计算内容长度,分隔符在组合时再考虑
114
+ space_occupied_by_fixed_system = fixed_system_prompt_content.length + 4; // 预留 \n\n...\n\n 的长度
115
+ }
116
+ const remaining_system_limit = Math.max(0, SYSTEM_PROMPT_LIMIT - space_occupied_by_fixed_system);
117
+ console.log(`Trimmed fixed system prompt length: ${fixed_system_prompt_content.length}. Approx remaining system history limit: ${remaining_system_limit}`);
118
+
119
+
120
+ // 4. 反向填充 User/Assistant 对话历史
121
+ const prompt_history_blocks = [];
122
+ const system_prompt_history_blocks = [];
123
+ let current_prompt_length = 0;
124
+ let current_system_history_length = 0;
125
+ let promptFull = false;
126
+ let systemHistoryFull = (remaining_system_limit <= 0);
127
+
128
+ console.log(`Processing ${conversation_message_blocks.length} user/assistant messages for recency filling.`);
129
+ for (let i = conversation_message_blocks.length - 1; i >= 0; i--) {
130
+ const message_block = conversation_message_blocks[i];
131
+ const block_length = message_block.length;
132
+
133
+ if (promptFull && systemHistoryFull) {
134
+ console.log(`Both prompt and system history slots full. Omitting older messages from index ${i}.`);
135
+ break;
136
+ }
137
+
138
+ // 优先尝试放入 prompt
139
+ if (!promptFull) {
140
+ if (current_prompt_length + block_length <= PROMPT_LIMIT) {
141
+ prompt_history_blocks.unshift(message_block);
142
+ current_prompt_length += block_length;
143
+ continue;
144
+ } else {
145
+ promptFull = true;
146
+ console.log(`Prompt limit (${PROMPT_LIMIT}) reached. Trying system history slot.`);
147
+ }
148
+ }
149
+
150
+ // 如果 prompt 满了,尝试放入 system_prompt 的剩余空间
151
+ if (!systemHistoryFull) {
152
+ if (current_system_history_length + block_length <= remaining_system_limit) {
153
+ system_prompt_history_blocks.unshift(message_block);
154
+ current_system_history_length += block_length;
155
+ continue;
156
+ } else {
157
+ systemHistoryFull = true;
158
+ console.log(`System history limit (${remaining_system_limit}) reached.`);
159
+ }
160
+ }
161
+ }
162
+
163
+ // 5. *** 组合最终的 prompt 和 system_prompt (包含分隔符逻辑) ***
164
+ const system_prompt_history_content = system_prompt_history_blocks.join('').trim();
165
+ const final_prompt = prompt_history_blocks.join('').trim();
166
+
167
+ // 定义分隔符
168
+ const SEPARATOR = "\n\n-------下面是比较早之前的对话内容-----\n\n";
169
+
170
+ let final_system_prompt = "";
171
+
172
+ // 检查各部分是否有内容 (使用 trim 后的固定部分)
173
+ const hasFixedSystem = fixed_system_prompt_content.length > 0;
174
+ const hasSystemHistory = system_prompt_history_content.length > 0;
175
+
176
+ if (hasFixedSystem && hasSystemHistory) {
177
+ // 两部分都有,用分隔符连接
178
+ final_system_prompt = fixed_system_prompt_content + SEPARATOR + system_prompt_history_content;
179
+ console.log("Combining fixed system prompt and history with separator.");
180
+ } else if (hasFixedSystem) {
181
+ // 只有固定部分
182
+ final_system_prompt = fixed_system_prompt_content;
183
+ console.log("Using only fixed system prompt.");
184
+ } else if (hasSystemHistory) {
185
+ // 只有历史部分 (固定部分为空)
186
+ final_system_prompt = system_prompt_history_content;
187
+ console.log("Using only history in system prompt slot.");
188
+ }
189
+ // 如果两部分都为空,final_system_prompt 保持空字符串 ""
190
+
191
+ // 6. 返回结果
192
+ const result = {
193
+ system_prompt: final_system_prompt, // 最终结果不需要再 trim
194
+ prompt: final_prompt // final_prompt 在组合前已 trim
195
+ };
196
+
197
+ console.log(`Final system_prompt length (Sys+Separator+Hist): ${result.system_prompt.length}`);
198
+ console.log(`Final prompt length (Hist): ${result.prompt.length}`);
199
+
200
+ return result;
201
+ }
202
+ // === convertMessagesToFalPrompt 函数结束 ===
203
+
204
+
205
+ // POST /v1/chat/completions endpoint (保持不变)
206
+ app.post('/v1/chat/completions', async (req, res) => {
207
+ const { model, messages, stream = false, reasoning = false, ...restOpenAIParams } = req.body;
208
+
209
+ console.log(`Received chat completion request for model: ${model}, stream: ${stream}`);
210
+
211
+ if (!FAL_SUPPORTED_MODELS.includes(model)) {
212
+ console.warn(`Warning: Requested model '${model}' is not in the explicitly supported list.`);
213
+ }
214
+ if (!model || !messages || !Array.isArray(messages) || messages.length === 0) {
215
+ console.error("Invalid request parameters:", { model, messages: Array.isArray(messages) ? messages.length : typeof messages });
216
+ return res.status(400).json({ error: 'Missing or invalid parameters: model and messages array are required.' });
217
+ }
218
+
219
+ try {
220
+ // *** 使用更新后的转换函数 ***
221
+ const { prompt, system_prompt } = convertMessagesToFalPrompt(messages);
222
+
223
+ const falInput = {
224
+ model: model,
225
+ prompt: prompt,
226
+ ...(system_prompt && { system_prompt: system_prompt }),
227
+ reasoning: !!reasoning,
228
+ };
229
+ console.log("Fal Input:", JSON.stringify(falInput, null, 2));
230
+ console.log("Forwarding request to fal-ai with system-priority + separator + recency input:");
231
+ console.log("System Prompt Length:", system_prompt?.length || 0);
232
+ console.log("Prompt Length:", prompt?.length || 0);
233
+ // 调试时取消注释可以查看具体内容
234
+ console.log("--- System Prompt Start ---");
235
+ console.log(system_prompt);
236
+ console.log("--- System Prompt End ---");
237
+ console.log("--- Prompt Start ---");
238
+ console.log(prompt);
239
+ console.log("--- Prompt End ---");
240
+
241
+
242
+ // --- 流式/非流式处理逻辑 (保持不变) ---
243
+ if (stream) {
244
+ // ... 流式代码 ...
245
+ res.setHeader('Content-Type', 'text/event-stream; charset=utf-8');
246
+ res.setHeader('Cache-Control', 'no-cache');
247
+ res.setHeader('Connection', 'keep-alive');
248
+ res.setHeader('Access-Control-Allow-Origin', '*');
249
+ res.flushHeaders();
250
+
251
+ let previousOutput = '';
252
+
253
+ const falStream = await fal.stream("fal-ai/any-llm", { input: falInput });
254
+
255
+ try {
256
+ for await (const event of falStream) {
257
+ const currentOutput = (event && typeof event.output === 'string') ? event.output : '';
258
+ const isPartial = (event && typeof event.partial === 'boolean') ? event.partial : true;
259
+ const errorInfo = (event && event.error) ? event.error : null;
260
+
261
+ if (errorInfo) {
262
+ console.error("Error received in fal stream event:", errorInfo);
263
+ const errorChunk = { id: `chatcmpl-${Date.now()}-error`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: {}, finish_reason: "error", message: { role: 'assistant', content: `Fal Stream Error: ${JSON.stringify(errorInfo)}` } }] };
264
+ res.write(`data: ${JSON.stringify(errorChunk)}\n\n`);
265
+ break;
266
+ }
267
+
268
+ let deltaContent = '';
269
+ if (currentOutput.startsWith(previousOutput)) {
270
+ deltaContent = currentOutput.substring(previousOutput.length);
271
+ } else if (currentOutput.length > 0) {
272
+ console.warn("Fal stream output mismatch detected. Sending full current output as delta.", { previousLength: previousOutput.length, currentLength: currentOutput.length });
273
+ deltaContent = currentOutput;
274
+ previousOutput = '';
275
+ }
276
+ previousOutput = currentOutput;
277
+
278
+ if (deltaContent || !isPartial) {
279
+ const openAIChunk = { id: `chatcmpl-${Date.now()}`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: { content: deltaContent }, finish_reason: isPartial === false ? "stop" : null }] };
280
+ res.write(`data: ${JSON.stringify(openAIChunk)}\n\n`);
281
+ }
282
+ }
283
+ res.write(`data: [DONE]\n\n`);
284
+ res.end();
285
+ console.log("Stream finished.");
286
+
287
+ } catch (streamError) {
288
+ console.error('Error during fal stream processing loop:', streamError);
289
+ try {
290
+ const errorDetails = (streamError instanceof Error) ? streamError.message : JSON.stringify(streamError);
291
+ res.write(`data: ${JSON.stringify({ error: { message: "Stream processing error", type: "proxy_error", details: errorDetails } })}\n\n`);
292
+ res.write(`data: [DONE]\n\n`);
293
+ res.end();
294
+ } catch (finalError) {
295
+ console.error('Error sending stream error message to client:', finalError);
296
+ if (!res.writableEnded) { res.end(); }
297
+ }
298
+ }
299
+ } else {
300
+ // --- 非流式处理 (保持不变) ---
301
+ console.log("Executing non-stream request...");
302
+ const result = await fal.subscribe("fal-ai/any-llm", { input: falInput, logs: true });
303
+ console.log("Received non-stream result from fal-ai:", JSON.stringify(result, null, 2));
304
+
305
+ if (result && result.error) {
306
+ console.error("Fal-ai returned an error in non-stream mode:", result.error);
307
+ return res.status(500).json({ object: "error", message: `Fal-ai error: ${JSON.stringify(result.error)}`, type: "fal_ai_error", param: null, code: null });
308
+ }
309
+
310
+ const openAIResponse = {
311
+ id: `chatcmpl-${result.requestId || Date.now()}`, object: "chat.completion", created: Math.floor(Date.now() / 1000), model: model,
312
+ choices: [{ index: 0, message: { role: "assistant", content: result.output || "" }, finish_reason: "stop" }],
313
+ usage: { prompt_tokens: null, completion_tokens: null, total_tokens: null }, system_fingerprint: null,
314
+ ...(result.reasoning && { fal_reasoning: result.reasoning }),
315
+ };
316
+ res.json(openAIResponse);
317
+ console.log("Returned non-stream response.");
318
+ }
319
+
320
+ } catch (error) {
321
+ console.error('Unhandled error in /v1/chat/completions:', error);
322
+ if (!res.headersSent) {
323
+ const errorMessage = (error instanceof Error) ? error.message : JSON.stringify(error);
324
+ res.status(500).json({ error: 'Internal Server Error in Proxy', details: errorMessage });
325
+ } else if (!res.writableEnded) {
326
+ console.error("Headers already sent, ending response.");
327
+ res.end();
328
+ }
329
+ }
330
+ });
331
+
332
+ // 启动服务器 (更新启动信息)
333
+ app.listen(PORT, () => {
334
+ console.log(`===================================================`);
335
+ console.log(` Fal OpenAI Proxy Server (System Top + Separator + Recency)`); // 更新策略名称
336
+ console.log(` Listening on port: ${PORT}`);
337
+ console.log(` Using Limits: System Prompt=${SYSTEM_PROMPT_LIMIT}, Prompt=${PROMPT_LIMIT}`);
338
+ console.log(` Fal AI Key Loaded: ${FAL_KEY ? 'Yes' : 'No'}`);
339
+ console.log(` Chat Completions Endpoint: POST http://localhost:${PORT}/v1/chat/completions`);
340
+ console.log(` Models Endpoint: GET http://localhost:${PORT}/v1/models`);
341
+ console.log(`===================================================`);
342
+ });
343
+
344
+ // 根路径响应 (更新信息)
345
+ app.get('/', (req, res) => {
346
+ res.send('Fal OpenAI Proxy (System Top + Separator + Recency Strategy) is running.');
347
+ });