import os, io from paddleocr import PaddleOCR, draw_ocr,PPStructure from ppocr.utils.visual import draw_ser_results from PIL import Image import gradio as gr def inference__ppocr(img_path): ocr = PaddleOCR( rec_char_dict_path='zhtw_common_dict.txt', use_gpu=False, rec_image_shape="3, 48, 320" ) result = ocr.ocr(img_path) for idx in range(len(result)): res = result[idx] for line in res: print(line) result = result[0] image = Image.open(img_path).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] if line[1] else '' for line in result] # 確保在無文字時 txts 還是個空字串 scores = [line[1][1] for line in result] im_show_pil = draw_ocr(image, boxes, txts, scores, font_path="./simfang.ttf") return im_show_pil, "\n".join(txts) def inference__ppstructure(img_path): ppsutructure = PPStructure( rec_char_dict_path='zhtw_common_dict.txt', use_gpu=False, rec_image_shape="3, 48, 320", ser_dict_path='ppocr/utils/dict/kie/clinical_class_list.txt' ) samples = ['病歷','身份','姓名',' Medical','No.','Name','性別','中華民國','002480','身分','Attending','M.D','ID','Medical','by','續上頁診斷書內容','出生地','列印時間','以上','年齡','特予'] result,_ = ppsutructure.__call__(img_path) for element in result: for sample in samples: if sample in element['transcription']: element['pred_id'] = 0 element['pred'] ='O' image = draw_ser_results(img_path,result,font_path='./simfang.ttf') result = [''.join(f"{element['pred']}:{element['transcription']}") for element in result if element['pred']!='O'] return image, "\n".join(result) with gr.Blocks() as demo: gr.Markdown("