|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import numpy as np |
|
import time |
|
import sys |
|
|
|
import tools.infer.utility as utility |
|
from ppocr.utils.logging import get_logger |
|
from ppocr.utils.utility import get_image_file_list, check_and_read |
|
from ppocr.data import create_operators, transform |
|
from ppocr.postprocess import build_post_process |
|
import json |
|
logger = get_logger() |
|
|
|
|
|
class TextDetector(object): |
|
def __init__(self, args): |
|
self.args = args |
|
self.det_algorithm = args.det_algorithm |
|
self.use_onnx = args.use_onnx |
|
pre_process_list = [{ |
|
'DetResizeForTest': { |
|
'limit_side_len': args.det_limit_side_len, |
|
'limit_type': args.det_limit_type, |
|
} |
|
}, { |
|
'NormalizeImage': { |
|
'std': [0.229, 0.224, 0.225], |
|
'mean': [0.485, 0.456, 0.406], |
|
'scale': '1./255.', |
|
'order': 'hwc' |
|
} |
|
}, { |
|
'ToCHWImage': None |
|
}, { |
|
'KeepKeys': { |
|
'keep_keys': ['image', 'shape'] |
|
} |
|
}] |
|
postprocess_params = {} |
|
if self.det_algorithm == "DB": |
|
postprocess_params['name'] = 'DBPostProcess' |
|
postprocess_params["thresh"] = args.det_db_thresh |
|
postprocess_params["box_thresh"] = args.det_db_box_thresh |
|
postprocess_params["max_candidates"] = 1000 |
|
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio |
|
postprocess_params["use_dilation"] = args.use_dilation |
|
postprocess_params["score_mode"] = args.det_db_score_mode |
|
postprocess_params["box_type"] = args.det_box_type |
|
elif self.det_algorithm == "DB++": |
|
postprocess_params['name'] = 'DBPostProcess' |
|
postprocess_params["thresh"] = args.det_db_thresh |
|
postprocess_params["box_thresh"] = args.det_db_box_thresh |
|
postprocess_params["max_candidates"] = 1000 |
|
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio |
|
postprocess_params["use_dilation"] = args.use_dilation |
|
postprocess_params["score_mode"] = args.det_db_score_mode |
|
postprocess_params["box_type"] = args.det_box_type |
|
pre_process_list[1] = { |
|
'NormalizeImage': { |
|
'std': [1.0, 1.0, 1.0], |
|
'mean': |
|
[0.48109378172549, 0.45752457890196, 0.40787054090196], |
|
'scale': '1./255.', |
|
'order': 'hwc' |
|
} |
|
} |
|
elif self.det_algorithm == "EAST": |
|
postprocess_params['name'] = 'EASTPostProcess' |
|
postprocess_params["score_thresh"] = args.det_east_score_thresh |
|
postprocess_params["cover_thresh"] = args.det_east_cover_thresh |
|
postprocess_params["nms_thresh"] = args.det_east_nms_thresh |
|
elif self.det_algorithm == "SAST": |
|
pre_process_list[0] = { |
|
'DetResizeForTest': { |
|
'resize_long': args.det_limit_side_len |
|
} |
|
} |
|
postprocess_params['name'] = 'SASTPostProcess' |
|
postprocess_params["score_thresh"] = args.det_sast_score_thresh |
|
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh |
|
|
|
if args.det_box_type == 'poly': |
|
postprocess_params["sample_pts_num"] = 6 |
|
postprocess_params["expand_scale"] = 1.2 |
|
postprocess_params["shrink_ratio_of_width"] = 0.2 |
|
else: |
|
postprocess_params["sample_pts_num"] = 2 |
|
postprocess_params["expand_scale"] = 1.0 |
|
postprocess_params["shrink_ratio_of_width"] = 0.3 |
|
|
|
elif self.det_algorithm == "PSE": |
|
postprocess_params['name'] = 'PSEPostProcess' |
|
postprocess_params["thresh"] = args.det_pse_thresh |
|
postprocess_params["box_thresh"] = args.det_pse_box_thresh |
|
postprocess_params["min_area"] = args.det_pse_min_area |
|
postprocess_params["box_type"] = args.det_box_type |
|
postprocess_params["scale"] = args.det_pse_scale |
|
elif self.det_algorithm == "FCE": |
|
pre_process_list[0] = { |
|
'DetResizeForTest': { |
|
'rescale_img': [1080, 736] |
|
} |
|
} |
|
postprocess_params['name'] = 'FCEPostProcess' |
|
postprocess_params["scales"] = args.scales |
|
postprocess_params["alpha"] = args.alpha |
|
postprocess_params["beta"] = args.beta |
|
postprocess_params["fourier_degree"] = args.fourier_degree |
|
postprocess_params["box_type"] = args.det_box_type |
|
elif self.det_algorithm == "CT": |
|
pre_process_list[0] = {'ScaleAlignedShort': {'short_size': 640}} |
|
postprocess_params['name'] = 'CTPostProcess' |
|
else: |
|
logger.info("unknown det_algorithm:{}".format(self.det_algorithm)) |
|
sys.exit(0) |
|
|
|
self.preprocess_op = create_operators(pre_process_list) |
|
self.postprocess_op = build_post_process(postprocess_params) |
|
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( |
|
args, 'det', logger) |
|
|
|
if self.use_onnx: |
|
img_h, img_w = self.input_tensor.shape[2:] |
|
if img_h is not None and img_w is not None and img_h > 0 and img_w > 0: |
|
pre_process_list[0] = { |
|
'DetResizeForTest': { |
|
'image_shape': [img_h, img_w] |
|
} |
|
} |
|
self.preprocess_op = create_operators(pre_process_list) |
|
|
|
if args.benchmark: |
|
import auto_log |
|
pid = os.getpid() |
|
gpu_id = utility.get_infer_gpuid() |
|
self.autolog = auto_log.AutoLogger( |
|
model_name="det", |
|
model_precision=args.precision, |
|
batch_size=1, |
|
data_shape="dynamic", |
|
save_path=None, |
|
inference_config=self.config, |
|
pids=pid, |
|
process_name=None, |
|
gpu_ids=gpu_id if args.use_gpu else None, |
|
time_keys=[ |
|
'preprocess_time', 'inference_time', 'postprocess_time' |
|
], |
|
warmup=2, |
|
logger=logger) |
|
|
|
def order_points_clockwise(self, pts): |
|
rect = np.zeros((4, 2), dtype="float32") |
|
s = pts.sum(axis=1) |
|
rect[0] = pts[np.argmin(s)] |
|
rect[2] = pts[np.argmax(s)] |
|
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) |
|
diff = np.diff(np.array(tmp), axis=1) |
|
rect[1] = tmp[np.argmin(diff)] |
|
rect[3] = tmp[np.argmax(diff)] |
|
return rect |
|
|
|
def clip_det_res(self, points, img_height, img_width): |
|
for pno in range(points.shape[0]): |
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) |
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) |
|
return points |
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape): |
|
img_height, img_width = image_shape[0:2] |
|
dt_boxes_new = [] |
|
for box in dt_boxes: |
|
if type(box) is list: |
|
box = np.array(box) |
|
box = self.order_points_clockwise(box) |
|
box = self.clip_det_res(box, img_height, img_width) |
|
rect_width = int(np.linalg.norm(box[0] - box[1])) |
|
rect_height = int(np.linalg.norm(box[0] - box[3])) |
|
if rect_width <= 3 or rect_height <= 3: |
|
continue |
|
dt_boxes_new.append(box) |
|
dt_boxes = np.array(dt_boxes_new) |
|
return dt_boxes |
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): |
|
img_height, img_width = image_shape[0:2] |
|
dt_boxes_new = [] |
|
for box in dt_boxes: |
|
if type(box) is list: |
|
box = np.array(box) |
|
box = self.clip_det_res(box, img_height, img_width) |
|
dt_boxes_new.append(box) |
|
dt_boxes = np.array(dt_boxes_new) |
|
return dt_boxes |
|
|
|
def __call__(self, img): |
|
ori_im = img.copy() |
|
data = {'image': img} |
|
|
|
st = time.time() |
|
|
|
if self.args.benchmark: |
|
self.autolog.times.start() |
|
|
|
data = transform(data, self.preprocess_op) |
|
img, shape_list = data |
|
if img is None: |
|
return None, 0 |
|
img = np.expand_dims(img, axis=0) |
|
shape_list = np.expand_dims(shape_list, axis=0) |
|
img = img.copy() |
|
|
|
if self.args.benchmark: |
|
self.autolog.times.stamp() |
|
if self.use_onnx: |
|
input_dict = {} |
|
input_dict[self.input_tensor.name] = img |
|
outputs = self.predictor.run(self.output_tensors, input_dict) |
|
else: |
|
self.input_tensor.copy_from_cpu(img) |
|
self.predictor.run() |
|
outputs = [] |
|
for output_tensor in self.output_tensors: |
|
output = output_tensor.copy_to_cpu() |
|
outputs.append(output) |
|
if self.args.benchmark: |
|
self.autolog.times.stamp() |
|
|
|
preds = {} |
|
if self.det_algorithm == "EAST": |
|
preds['f_geo'] = outputs[0] |
|
preds['f_score'] = outputs[1] |
|
elif self.det_algorithm == 'SAST': |
|
preds['f_border'] = outputs[0] |
|
preds['f_score'] = outputs[1] |
|
preds['f_tco'] = outputs[2] |
|
preds['f_tvo'] = outputs[3] |
|
elif self.det_algorithm in ['DB', 'PSE', 'DB++']: |
|
preds['maps'] = outputs[0] |
|
elif self.det_algorithm == 'FCE': |
|
for i, output in enumerate(outputs): |
|
preds['level_{}'.format(i)] = output |
|
elif self.det_algorithm == "CT": |
|
preds['maps'] = outputs[0] |
|
preds['score'] = outputs[1] |
|
else: |
|
raise NotImplementedError |
|
|
|
post_result = self.postprocess_op(preds, shape_list) |
|
dt_boxes = post_result[0]['points'] |
|
|
|
if self.args.det_box_type == 'poly': |
|
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape) |
|
else: |
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) |
|
|
|
if self.args.benchmark: |
|
self.autolog.times.end(stamp=True) |
|
et = time.time() |
|
return dt_boxes, et - st |
|
|
|
|
|
if __name__ == "__main__": |
|
args = utility.parse_args() |
|
image_file_list = get_image_file_list(args.image_dir) |
|
text_detector = TextDetector(args) |
|
total_time = 0 |
|
draw_img_save_dir = args.draw_img_save_dir |
|
os.makedirs(draw_img_save_dir, exist_ok=True) |
|
|
|
if args.warmup: |
|
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) |
|
for i in range(2): |
|
res = text_detector(img) |
|
|
|
save_results = [] |
|
for idx, image_file in enumerate(image_file_list): |
|
img, flag_gif, flag_pdf = check_and_read(image_file) |
|
if not flag_gif and not flag_pdf: |
|
img = cv2.imread(image_file) |
|
if not flag_pdf: |
|
if img is None: |
|
logger.debug("error in loading image:{}".format(image_file)) |
|
continue |
|
imgs = [img] |
|
else: |
|
page_num = args.page_num |
|
if page_num > len(img) or page_num == 0: |
|
page_num = len(img) |
|
imgs = img[:page_num] |
|
for index, img in enumerate(imgs): |
|
st = time.time() |
|
dt_boxes, _ = text_detector(img) |
|
elapse = time.time() - st |
|
total_time += elapse |
|
if len(imgs) > 1: |
|
save_pred = os.path.basename(image_file) + '_' + str( |
|
index) + "\t" + str( |
|
json.dumps([x.tolist() for x in dt_boxes])) + "\n" |
|
else: |
|
save_pred = os.path.basename(image_file) + "\t" + str( |
|
json.dumps([x.tolist() for x in dt_boxes])) + "\n" |
|
save_results.append(save_pred) |
|
logger.info(save_pred) |
|
if len(imgs) > 1: |
|
logger.info("{}_{} The predict time of {}: {}".format( |
|
idx, index, image_file, elapse)) |
|
else: |
|
logger.info("{} The predict time of {}: {}".format( |
|
idx, image_file, elapse)) |
|
|
|
src_im = utility.draw_text_det_res(dt_boxes, img) |
|
|
|
if flag_gif: |
|
save_file = image_file[:-3] + "png" |
|
elif flag_pdf: |
|
save_file = image_file.replace('.pdf', |
|
'_' + str(index) + '.png') |
|
else: |
|
save_file = image_file |
|
img_path = os.path.join( |
|
draw_img_save_dir, |
|
"det_res_{}".format(os.path.basename(save_file))) |
|
cv2.imwrite(img_path, src_im) |
|
logger.info("The visualized image saved in {}".format(img_path)) |
|
|
|
with open(os.path.join(draw_img_save_dir, "det_results.txt"), 'w') as f: |
|
f.writelines(save_results) |
|
f.close() |
|
if args.benchmark: |
|
text_detector.autolog.report() |
|
|