Spaces:
Sleeping
Sleeping
# Import required libraries | |
from fastapi import FastAPI, HTTPException, Form, Depends | |
from pydantic import BaseModel | |
import uvicorn | |
import joblib | |
import pandas as pd | |
# Load the pre-trained pipeline | |
model = joblib.load('pipelin.pkl') | |
# Create a FASTAPI app | |
app = FastAPI( | |
title="Sepsis Prediction API" | |
) | |
async def root(): | |
return { | |
"info": "Welcome to the Sepsis Prediction API! This API predicts the probability of a patient having sepsis based on their vitals." | |
} | |
# Define a Pydantic model for input data | |
class Sepsis(BaseModel): | |
plasma_glucose: float | |
blood_work_result_1: float | |
blood_pressure: float | |
blood_work_result_2: float | |
blood_work_result_3: float | |
body_mass_index: float | |
blood_work_result_4: float | |
Age: int | |
Insurance: int | |
def as_form( | |
cls, | |
plasma_glucose: float = Form(...), | |
blood_work_result_1: float = Form(...), | |
blood_pressure: float = Form(...), | |
blood_work_result_2: float = Form(...), | |
blood_work_result_3: float = Form(...), | |
body_mass_index: float = Form(...), | |
blood_work_result_4: float = Form(...), | |
Age: int = Form(...), | |
Insurance: int = Form(...) | |
): | |
return cls( | |
plasma_glucose=plasma_glucose, | |
blood_work_result_1=blood_work_result_1, | |
blood_pressure=blood_pressure, | |
blood_work_result_2=blood_work_result_2, | |
blood_work_result_3=blood_work_result_3, | |
body_mass_index=body_mass_index, | |
blood_work_result_4=blood_work_result_4, | |
Age=Age, | |
Insurance=Insurance | |
) | |
# Define a route for prediction | |
async def create_dataframe(form_data: Sepsis = Depends(Sepsis.as_form)): | |
try: | |
# Convert the form data to a data frame | |
df = pd.DataFrame(form_data.dict(), index=[0]) | |
# Predicting | |
output = model.predict_proba(df) | |
df["predicted_label"] = output.argmax(axis=-1) | |
mapping = {0: "Sepsis Negative", 1: "Sepsis Positive"} | |
df["predicted_label"] = [mapping[x] for x in df["predicted_label"]] | |
# Calculating confidence score | |
confidence_score = output.max(axis=-1) | |
df["confidence_score"] = f"{round((confidence_score[0] * 100), 2)}%" | |
# Creating a display output | |
msg = "Execution Successful!" | |
code = 1 | |
pred = df.to_dict("records") | |
result = {"Execution Message": msg, "Execution Code": code, "Prediction": pred} | |
except Exception as e: | |
# If there is an error... | |
msg = "Execution failed!" | |
code = 0 | |
pred = None | |
result = {"Error": str(e), "Execution Message": msg, "Execution Code": code, "Prediction": pred } | |
return result | |
# Run the FASTAPI application | |
if __name__ == "__main": | |
uvicorn.run(app, host="127.0.0.1", port=8000, reload=True) | |