from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax import gradio as gr # Requirements model_path = f"Calistus/test_trainer" tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def sentiment_analysis(text): text = preprocess(text) # PyTorch-based models encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ['Negative', 'Neutral', 'Positive'] scores = {l:float(s) for (l,s) in zip(labels, scores_) } return scores app = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(placeholder="Write your tweet here..."), outputs="label", interpretation="default", examples=[["Please don't listen to anyone. Vaccinate your child"], ['My kid has a lump on his hand because of the vaccine'], ['my church does not allow any form of vaccination']], title= 'Sentiment Analysis App', description= 'This app is designed to help you gauge the emotions and opinions expressed in text, particularly focusing on discussions related to measles vaccination on X(formerly Twitter). Simply input a tweet or any text, and the app will swiftly categorize it into one of three categories: Negative, Neutral, or Positive sentiment. ') if __name__ == "__main__": app.launch()