Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,11 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import lib.read_pdf
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
# Initialize spaCy model
|
8 |
nlp = spacy.load('en_core_web_sm')
|
9 |
nlp.add_pipe('sentencizer')
|
@@ -70,134 +74,171 @@ def get_pdf_files(folder):
|
|
70 |
|
71 |
def show(name):
|
72 |
return f"{name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
stored_paragraphs_1 = []
|
75 |
stored_paragraphs_2 = []
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
-
gr.
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
gr.
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
summary = summarize_text(selected_paragraph)
|
160 |
-
return summary
|
161 |
-
except (IndexError, ValueError):
|
162 |
-
return "Error"
|
163 |
-
def process_paragraph_2_sent(paragraph):
|
164 |
-
try:
|
165 |
-
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
166 |
-
selected_paragraph = stored_paragraphs_2[paragraph_index]
|
167 |
-
sentiment = text_to_sentiment(selected_paragraph)
|
168 |
-
|
169 |
-
return sentiment
|
170 |
-
except (IndexError, ValueError):
|
171 |
-
return "Error"
|
172 |
-
def process_paragraph_2_sent_tone(paragraph):
|
173 |
-
try:
|
174 |
-
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
175 |
-
selected_paragraph = stored_paragraphs_2[paragraph_index]
|
176 |
-
fin_spans = fin_ext(selected_paragraph)
|
177 |
-
return fin_spans
|
178 |
-
except (IndexError, ValueError):
|
179 |
-
return []
|
180 |
-
def process_paragraph_2_sent_tone_bis(paragraph):
|
181 |
-
try:
|
182 |
-
paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
|
183 |
-
selected_paragraph = stored_paragraphs_2[paragraph_index]
|
184 |
-
fin_spans = fin_ext_bis(selected_paragraph)
|
185 |
-
return fin_spans
|
186 |
-
except (IndexError, ValueError):
|
187 |
-
return []
|
188 |
-
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
|
189 |
-
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
|
190 |
-
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
|
191 |
-
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
|
192 |
-
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
|
193 |
-
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
|
194 |
-
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
|
195 |
-
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
|
196 |
-
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
|
197 |
-
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
|
198 |
-
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
|
199 |
-
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
|
200 |
-
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
|
201 |
-
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
|
202 |
|
203 |
demo.launch()
|
|
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import lib.read_pdf
|
6 |
+
import pandas as pd
|
7 |
+
import re
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import matplotlib.patches as patches
|
10 |
+
import io
|
11 |
# Initialize spaCy model
|
12 |
nlp = spacy.load('en_core_web_sm')
|
13 |
nlp.add_pipe('sentencizer')
|
|
|
74 |
|
75 |
def show(name):
|
76 |
return f"{name}"
|
77 |
+
|
78 |
+
def get_excel_files(folder):
|
79 |
+
return [f for f in os.listdir(folder) if f.endswith('.xlsx')]
|
80 |
+
|
81 |
+
def get_sheet_names(file):
|
82 |
+
xls = pd.ExcelFile(os.path.join(DATA_FOLDER, file))
|
83 |
+
return xls.sheet_names
|
84 |
+
|
85 |
+
def process_and_compare(file1, sheet1, file2, sheet2):
|
86 |
+
def process_file(file_path, sheet_name):
|
87 |
+
# Extract year from file name
|
88 |
+
year = int(re.search(r'(\d{4})', file_path).group(1))
|
89 |
+
|
90 |
+
# Load the Excel file
|
91 |
+
df = pd.read_excel(os.path.join("data", file_path), sheet_name=sheet_name, index_col=0)
|
92 |
+
|
93 |
+
# Define expected columns based on extracted year
|
94 |
+
historical_col = f'Historical {year - 1}'
|
95 |
+
baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
|
96 |
+
adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
|
97 |
+
level_deviation_col = f'Level Deviation {year + 2}'
|
98 |
+
|
99 |
+
# Drop rows and reset index
|
100 |
+
df = df.iloc[4:].reset_index(drop=True)
|
101 |
+
|
102 |
+
# Define the new column names
|
103 |
+
new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
|
104 |
+
|
105 |
+
# Ensure the number of columns matches
|
106 |
+
if len(df.columns) == len(new_columns):
|
107 |
+
df.columns = new_columns
|
108 |
+
else:
|
109 |
+
raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
|
110 |
+
|
111 |
+
return df
|
112 |
+
|
113 |
+
# Process both files
|
114 |
+
df1 = process_file(file1, sheet1)
|
115 |
+
df2 = process_file(file2, sheet2)
|
116 |
+
year1 = int(re.search(r'(\d{4})', file1).group(1))
|
117 |
+
year2 = int(re.search(r'(\d{4})', file2).group(1))
|
118 |
+
# Calculate the differences
|
119 |
+
# historical_col1 = f'Historical {int(year1) - 1}'
|
120 |
+
# historical_col2 = f'Historical {int(year2) - 1}'
|
121 |
+
|
122 |
+
# df1['Historical vs Adverse'] = df1[historical_col1] - df1['Adverse Cumulative']
|
123 |
+
# df2['Historical vs Adverse'] = df2[historical_col2] - df2['Adverse Cumulative']
|
124 |
+
|
125 |
+
# Merge dataframes on 'Country'
|
126 |
+
merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
|
127 |
+
merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
|
128 |
+
# Ensure data types are correct
|
129 |
+
merged_df['Country'] = merged_df['Country'].astype(str)
|
130 |
+
merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')
|
131 |
+
|
132 |
+
# Create histogram plot with color coding
|
133 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
134 |
+
colors = plt.get_cmap('tab20').colors # Use a colormap with multiple colors
|
135 |
+
num_countries = len(merged_df['Country'])
|
136 |
+
|
137 |
+
bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
|
138 |
+
|
139 |
+
# Add a legend
|
140 |
+
handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
|
141 |
+
ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
|
142 |
|
143 |
+
ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
|
144 |
+
ax.set_xlabel('Country')
|
145 |
+
ax.set_ylabel('Difference')
|
146 |
+
plt.xticks(rotation=90)
|
147 |
+
|
148 |
+
# Save plot to BytesIO object
|
149 |
+
buf = io.BytesIO()
|
150 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
151 |
+
buf.seek(0)
|
152 |
+
img = buf.getvalue()
|
153 |
+
buf.close()
|
154 |
+
|
155 |
+
return img
|
156 |
+
|
157 |
+
|
158 |
stored_paragraphs_1 = []
|
159 |
stored_paragraphs_2 = []
|
160 |
|
161 |
with gr.Blocks() as demo:
|
162 |
+
with gr.Tab("Financial Report Text Analysis"):
|
163 |
+
gr.Markdown("## Financial Report Paragraph Selection and Analysis on adverse macro-economy scenario")
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
# Upload PDFs
|
167 |
+
with gr.Column():
|
168 |
+
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
|
169 |
+
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
|
170 |
+
|
171 |
+
with gr.Column():
|
172 |
+
b1 = gr.Button("Extract and Display Paragraphs")
|
173 |
+
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
|
174 |
+
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
|
175 |
+
|
176 |
+
def update_paragraphs(pdf1, pdf2):
|
177 |
+
global stored_paragraphs_1, stored_paragraphs_2
|
178 |
+
stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
|
179 |
+
updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
|
180 |
+
updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
|
181 |
+
return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
|
182 |
+
|
183 |
+
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
# Process the selected paragraph from PDF 1
|
187 |
+
with gr.Column():
|
188 |
+
gr.Markdown("### PDF 1 Analysis")
|
189 |
+
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
|
190 |
+
selected_paragraph_1.change(show, paragraph_1_dropdown, selected_paragraph_1)
|
191 |
+
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
|
192 |
+
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
|
193 |
+
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
|
194 |
+
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
|
195 |
+
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
|
196 |
+
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
|
197 |
+
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
|
198 |
+
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
|
199 |
+
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
|
200 |
+
analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
|
201 |
+
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
|
202 |
+
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
|
203 |
+
|
204 |
+
# Process the selected paragraph from PDF 2
|
205 |
+
with gr.Column():
|
206 |
+
gr.Markdown("### PDF 2 Analysis")
|
207 |
+
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
|
208 |
+
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
|
209 |
+
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
|
210 |
+
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
|
211 |
+
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
|
212 |
+
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
|
213 |
+
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
|
214 |
+
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
|
215 |
+
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
|
216 |
+
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
|
217 |
+
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
|
218 |
+
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
|
219 |
+
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
|
220 |
+
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
|
221 |
+
|
222 |
+
with gr.Tab("Financial Report Table Analysis"):
|
223 |
+
# New tab content goes here
|
224 |
+
gr.Markdown("## Excel Data Comparison")
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
file1 = gr.Dropdown(choices=get_excel_files(DATA_FOLDER), label="Select Excel File 1")
|
229 |
+
file2 = gr.Dropdown(choices=get_excel_files(DATA_FOLDER), label="Select Excel File 2")
|
230 |
+
sheet = gr.Dropdown(choices=[], label="Select Sheet for File 1 and 2")
|
231 |
+
|
232 |
+
with gr.Column():
|
233 |
+
result = gr.Image(label="Comparison pLot")
|
234 |
+
|
235 |
+
def update_sheets(file):
|
236 |
+
return get_sheet_names(file)
|
237 |
+
|
238 |
+
file1.change(fn=update_sheets, inputs=file1, outputs=sheet)
|
239 |
+
file2.change(fn=update_sheets, inputs=file2, outputs=sheet)
|
240 |
+
|
241 |
+
b1 = gr.Button("Compare Data")
|
242 |
+
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
demo.launch()
|