import copy import glob import json import os import gradio as gr import pandas as pd from huggingface_hub import HfApi, snapshot_download from compare_significance import check_significance, SUPPORTED_METRICS VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"] api = HfApi() ORG = "xdolez52" REPO = f"{ORG}/LLM_benchmark_data" HF_TOKEN = os.environ.get("HF_TOKEN") TASKS_METADATA_PATH = "./tasks_metadata.json" class LeaderboardServer: def __init__(self): self.server_address = REPO self.repo_type = "dataset" self.local_leaderboard = snapshot_download(self.server_address, repo_type=self.repo_type, token=HF_TOKEN, local_dir="./") self.submisssion_id_to_file = {} # Map submission ids to file paths self.tasks_metadata = json.load(open(TASKS_METADATA_PATH)) self.tasks_categories = {self.tasks_metadata[task]["category"] for task in self.tasks_metadata} self.submission_ids = set() self.fetch_existing_models() self.tournament_results = self.load_tournament_results() self.pre_submit = None def update_leaderboard(self): self.local_leaderboard = snapshot_download(self.server_address, repo_type=self.repo_type, token=HF_TOKEN, local_dir="./") self.fetch_existing_models() self.tournament_results = self.load_tournament_results() def load_tournament_results(self): metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json") if not os.path.exists(metadata_rank_paths): return {} with open(metadata_rank_paths) as ranks_file: results = json.load(ranks_file) return results def fetch_existing_models(self): # Models data for submission in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"): data = json.load(open(submission)) metadata = data.get('metadata') if metadata is None: continue submission_id = metadata["team_name"] + "_" + metadata["submission_id"] self.submission_ids.add(submission_id) self.submisssion_id_to_file[submission_id] = submission def get_leaderboard(self, tournament_results=None): results = tournament_results if tournament_results else self.tournament_results if len(results) == 0: return pd.DataFrame(columns=['No submissions yet']) else: processed_results = [] for submission in results.keys(): path = self.submisssion_id_to_file.get(submission) if path is None: if self.pre_submit and submission == self.pre_submit[1]: data = json.load(open(self.pre_submit[2])) else: raise gr.Error(f"Internal error: Submission [{submission}] not found") elif path: data = json.load(open(path)) else: raise gr.Error(f"Submission [{submission}] not found") submission_id = data["metadata"]["team_name"] + "_" + data["metadata"]["submission_id"] local_results = {} for task in self.tasks_metadata.keys(): local_results[task] = 0 for model in results[submission].keys(): if results[submission][model][task]: local_results[task] += 1 for metric in VISIBLE_METRICS: metric_value = data['results'][task].get(metric) if metric_value is not None: local_results[task + "_" + metric] = metric_value local_results["submission_id"] = submission_id if self.pre_submit and submission == self.pre_submit[1]: processed_results.insert(0, local_results) else: processed_results.append(local_results) dataframe = pd.DataFrame.from_records(processed_results) df_order = (["submission_id"] + list(self.tasks_metadata.keys()) + [col for col in dataframe.columns if col != "submission_id" and col not in self.tasks_metadata.keys()]) dataframe = dataframe[df_order] dataframe = dataframe.rename(columns={key: value["name"] for key, value in self.tasks_metadata.items()}) return dataframe def start_tournament(self, new_model_id, new_model_file): new_tournament = copy.deepcopy(self.tournament_results) new_tournament[new_model_id] = {} new_tournament[new_model_id][new_model_id] = {task: False for task in self.tasks_metadata.keys()} for model in self.submission_ids: res = check_significance(new_model_file, self.submisssion_id_to_file[model]) res_inverse = check_significance(self.submisssion_id_to_file[model], new_model_file) new_tournament[new_model_id][model] = { task: data["significant"] for task, data in res.items() } new_tournament[model][new_model_id] = { task: data["significant"] for task, data in res_inverse.items() } return new_tournament def prepare_model_for_submission(self, file, metadata) -> None: with open(file, "r") as f: data = json.load(f) data["metadata"] = metadata with open(file, "w") as f: json.dump(data, f, separators=(',', ':')) # compact JSON model_id = metadata["team_name"] + "_" + metadata["submission_id"] tournament_results = self.start_tournament(model_id, file) self.pre_submit = tournament_results, model_id, file def save_pre_submit(self): if self.pre_submit: tournament_results, model_id, file = self.pre_submit filename = os.path.basename(file) api.upload_file( path_or_fileobj=file, path_in_repo=f"data/{model_id}_{filename}", repo_id=self.server_address, repo_type=self.repo_type, token=HF_TOKEN, ) # Temporary save tournament results tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json") with open(tournament_results_path, "w") as f: json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON api.upload_file( path_or_fileobj=tournament_results_path, path_in_repo="tournament.json", repo_id=self.server_address, repo_type=self.repo_type, token=HF_TOKEN, ) def get_model_detail(self, submission_id): path = self.submisssion_id_to_file.get(submission_id) if path is None: raise gr.Error(f"Submission [{submission_id}] not found") data = json.load(open(path)) return data["metadata"]