import copy import glob import json import os import hashlib import time from collections import namedtuple from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr import gradio as gr import pandas as pd from huggingface_hub import HfApi, snapshot_download from compare_significance import check_significance, SUPPORTED_METRICS VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"] api = HfApi() ORG = "xdolez52" REPO = f"{ORG}/LLM_benchmark_data" HF_TOKEN = os.environ.get("HF_TOKEN") TASKS_METADATA_PATH = "./tasks_metadata.json" MARKDOWN_SPECIAL_CHARACTERS = { "#": "#", # for usage in xml.sax.saxutils.escape as entities must be first "\\": "\", "`": "`", "*": "*", "_": "_", "{": "{", "}": "}", "[": "[", "]": "]", "(": "(", ")": ")", "+": "+", "-": "-", ".": ".", "!": "!", "=": "=", "|": "|" } class LeaderboardServer: def __init__(self): self.server_address = REPO self.repo_type = "dataset" self.local_leaderboard = snapshot_download( self.server_address, repo_type=self.repo_type, token=HF_TOKEN, local_dir="./", ) self.submission_id_to_file = {} # Map submission ids to file paths self.tasks_metadata = json.load(open(TASKS_METADATA_PATH)) self.tasks_categories = {self.tasks_metadata[task]["category"] for task in self.tasks_metadata} self.tasks_category_overall = "overall" self.submission_ids = set() self.fetch_existing_models() self.tournament_results = self.load_tournament_results() self.pre_submit = None def update_leaderboard(self): self.local_leaderboard = snapshot_download( self.server_address, repo_type=self.repo_type, token=HF_TOKEN, local_dir="./", ) self.fetch_existing_models() self.tournament_results = self.load_tournament_results() def load_tournament_results(self): metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json") if not os.path.exists(metadata_rank_paths): return {} with open(metadata_rank_paths) as ranks_file: results = json.load(ranks_file) return results def fetch_existing_models(self): # Models data for submission_file in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"): data = json.load(open(submission_file)) metadata = data.get('metadata') if metadata is None: continue submission_id = metadata["submission_id"] self.submission_ids.add(submission_id) self.submission_id_to_file[submission_id] = submission_file def get_leaderboard(self, tournament_results=None, category=None): tournament_results = tournament_results if tournament_results else self.tournament_results category = category if category else self.tasks_category_overall if len(tournament_results) == 0: return pd.DataFrame(columns=['No submissions yet']) else: processed_results = [] for submission_id in tournament_results.keys(): path = self.submission_id_to_file.get(submission_id) if path is None: if self.pre_submit and submission_id == self.pre_submit.submission_id: data = json.load(open(self.pre_submit.file)) else: raise gr.Error(f"Internal error: Submission [{submission_id}] not found") elif path: data = json.load(open(path)) else: raise gr.Error(f"Submission [{submission_id}] not found") if submission_id != data["metadata"]["submission_id"]: raise gr.Error(f"Proper submission [{submission_id}] not found") local_results = {} win_score = {} visible_metrics_map_word_to_header = {} for task in self.tasks_metadata.keys(): task_category = self.tasks_metadata[task]["category"] if category not in (self.tasks_category_overall, task_category): continue else: # tournament_results num_of_competitors = 0 num_of_wins = 0 for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self num_of_competitors += 1 if tournament_results[submission_id][competitor_id][task]: num_of_wins += 1 task_score = num_of_wins / num_of_competitors * 100 # TODO: if num_of_competitors > 0 else ??? win_score.setdefault(task_category, []).append(task_score) if category == task_category: local_results[task] = task_score for metric in VISIBLE_METRICS: visible_metrics_map_word_to_header[task + "_" + metric] = self.tasks_metadata[task]["abbreviation"] + " " + metric metric_value = data['results'][task].get(metric) if metric_value is not None: local_results[task + "_" + metric] = metric_value break # Only the first metric of every task for c in win_score: win_score[c] = sum(win_score[c]) / len(win_score[c]) if category == self.tasks_category_overall: for c in win_score: local_results[c] = win_score[c] local_results["average_score"] = sum(win_score.values()) / len(win_score) else: local_results["average_score"] = win_score[category] model_link = data["metadata"]["link_to_model"] model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"] model_title_abbr = self.abbreviate(data["metadata"]["team_name"], 14) + "/" + self.abbreviate(data["metadata"]["model_name"], 14) local_results["model"] = f'{xmlEscape(model_title_abbr, MARKDOWN_SPECIAL_CHARACTERS)}' release = data["metadata"].get("submission_timestamp") release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A" local_results["release"] = release local_results["model_type"] = data["metadata"]["model_type"] local_results["parameters"] = data["metadata"]["parameters"] if self.pre_submit and submission_id == self.pre_submit.submission_id: processed_results.insert(0, local_results) else: processed_results.append(local_results) dataframe = pd.DataFrame.from_records(processed_results) extra_attributes_map_word_to_header = { "model": "Model", "release": "Release", "average_score": "Average ⬆️", "team_name": "Team name", "model_name": "Model name", "model_type": "Type", "parameters": "Parameters", "precision": "Precision", "description": "Description", "link_to_model": "Link to model" } first_attributes = [ "model", "release", "model_type", "parameters", "average_score", ] df_order = [ key for key in dict.fromkeys( first_attributes + list(self.tasks_metadata.keys()) + list(dataframe.columns) ).keys() if key in dataframe.columns ] dataframe = dataframe[df_order] attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.tasks_metadata.items()} attributes_map_word_to_header.update(extra_attributes_map_word_to_header) attributes_map_word_to_header.update(visible_metrics_map_word_to_header) dataframe = dataframe.rename( columns=attributes_map_word_to_header ) return dataframe def start_tournament(self, new_submission_id, new_model_file): new_tournament = copy.deepcopy(self.tournament_results) new_tournament[new_submission_id] = {} new_tournament[new_submission_id][new_submission_id] = { task: False for task in self.tasks_metadata.keys() } for competitor_id in self.submission_ids: res = check_significance(new_model_file, self.submission_id_to_file[competitor_id]) res_inverse = check_significance(self.submission_id_to_file[competitor_id], new_model_file) new_tournament[new_submission_id][competitor_id] = { task: data["significant"] for task, data in res.items() } new_tournament[competitor_id][new_submission_id] = { task: data["significant"] for task, data in res_inverse.items() } return new_tournament @staticmethod def abbreviate(s, max_length, dots_place="center"): if len(s) <= max_length: return s else: if max_length <= 1: return "…" elif dots_place == "begin": return "…" + s[-max_length + 1:].lstrip() elif dots_place == "center" and max_length >= 3: max_length_begin = max_length // 2 max_length_end = max_length - max_length_begin - 1 return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip() else: # dots_place == "end" return s[:max_length - 1].rstrip() + "…" @staticmethod def create_submission_id(metadata): # Délka ID musí být omezena, protože se používá v názvu souboru submission_id = "_".join([metadata[key][:7] for key in ( "team_name", "model_name", "model_predictions_sha256", "model_results_sha256", )]) submission_id = submission_id.replace("/", "_").replace("\n", "_").strip() return submission_id @staticmethod def get_sha256_hexdigest(obj): data = json.dumps( obj, separators=(',', ':'), sort_keys=True, ensure_ascii=True, ).encode() result = hashlib.sha256(data).hexdigest() return result PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file') def prepare_model_for_submission(self, file, metadata) -> None: with open(file, "r") as f: data = json.load(f) data["metadata"] = metadata metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"]) metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"]) submission_id = self.create_submission_id(metadata) metadata["submission_id"] = submission_id metadata["submission_timestamp"] = time.time() # timestamp with open(file, "w") as f: json.dump(data, f, separators=(',', ':')) # compact JSON tournament_results = self.start_tournament(submission_id, file) self.pre_submit = self.PreSubmit(tournament_results, submission_id, file) def save_pre_submit(self): if self.pre_submit: tournament_results, submission_id, file = self.pre_submit api.upload_file( path_or_fileobj=file, path_in_repo=f"data/{submission_id}.json", repo_id=self.server_address, repo_type=self.repo_type, token=HF_TOKEN, ) # Temporary save tournament results tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json") with open(tournament_results_path, "w") as f: json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON api.upload_file( path_or_fileobj=tournament_results_path, path_in_repo="tournament.json", repo_id=self.server_address, repo_type=self.repo_type, token=HF_TOKEN, ) def get_model_detail(self, submission_id): path = self.submission_id_to_file.get(submission_id) if path is None: raise gr.Error(f"Submission [{submission_id}] not found") data = json.load(open(path)) return data["metadata"]