Spaces:
Running
Running
File size: 8,443 Bytes
b66f230 b35e51f b66f230 23931c3 b66f230 83bc9f9 b66f230 219886f b35e51f c93b288 b66f230 219886f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 23931c3 b66f230 23931c3 b66f230 23931c3 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 23931c3 b35e51f 23931c3 b66f230 23931c3 b35e51f 23931c3 b66f230 23931c3 219886f b66f230 219886f b66f230 b35e51f b66f230 b35e51f 219886f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 219886f b35e51f b66f230 b35e51f b66f230 b35e51f b66f230 219886f b66f230 23931c3 b35e51f 23931c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import copy
import glob
import json
import os
import hashlib
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from compare_significance import check_significance, SUPPORTED_METRICS
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
api = HfApi()
ORG = "xdolez52"
REPO = f"{ORG}/LLM_benchmark_data"
HF_TOKEN = os.environ.get("HF_TOKEN")
TASKS_METADATA_PATH = "./tasks_metadata.json"
class LeaderboardServer:
def __init__(self):
self.server_address = REPO
self.repo_type = "dataset"
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.submission_id_to_file = {} # Map submission ids to file paths
self.tasks_metadata = json.load(open(TASKS_METADATA_PATH))
self.tasks_categories = {self.tasks_metadata[task]["category"] for task in self.tasks_metadata}
self.submission_ids = set()
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
self.pre_submit = None
def update_leaderboard(self):
self.local_leaderboard = snapshot_download(
self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
local_dir="./",
)
self.fetch_existing_models()
self.tournament_results = self.load_tournament_results()
def load_tournament_results(self):
metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json")
if not os.path.exists(metadata_rank_paths):
return {}
with open(metadata_rank_paths) as ranks_file:
results = json.load(ranks_file)
return results
def fetch_existing_models(self):
# Models data
for submission_file in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
data = json.load(open(submission_file))
metadata = data.get('metadata')
if metadata is None:
continue
submission_id = metadata["submission_id"]
self.submission_ids.add(submission_id)
self.submission_id_to_file[submission_id] = submission_file
def get_leaderboard(self, tournament_results=None):
results = tournament_results if tournament_results else self.tournament_results
if len(results) == 0:
return pd.DataFrame(columns=['No submissions yet'])
else:
processed_results = []
for submission_id in results.keys():
path = self.submission_id_to_file.get(submission_id)
if path is None:
if self.pre_submit and submission_id == self.pre_submit[1]:
data = json.load(open(self.pre_submit[2]))
else:
raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
elif path:
data = json.load(open(path))
else:
raise gr.Error(f"Submission [{submission_id}] not found")
if submission_id != data["metadata"]["submission_id"]:
raise gr.Error(f"Proper submission [{submission_id}] not found")
local_results = {}
for task in self.tasks_metadata.keys():
local_results[task] = 0
for model in results[submission_id].keys():
if results[submission_id][model][task]:
local_results[task] += 1
for metric in VISIBLE_METRICS:
metric_value = data['results'][task].get(metric)
if metric_value is not None:
local_results[task + "_" + metric] = metric_value
local_results["submission_id"] = submission_id
if self.pre_submit and submission_id == self.pre_submit[1]:
processed_results.insert(0, local_results)
else:
processed_results.append(local_results)
dataframe = pd.DataFrame.from_records(processed_results)
df_order = (
["submission_id"]
+ list(self.tasks_metadata.keys())
+ [
col
for col in dataframe.columns
if col != "submission_id" and col not in self.tasks_metadata.keys()
]
)
dataframe = dataframe[df_order]
dataframe = dataframe.rename(
columns={key: value["name"] for key, value in self.tasks_metadata.items()}
)
return dataframe
def start_tournament(self, new_submission_id, new_model_file):
new_tournament = copy.deepcopy(self.tournament_results)
new_tournament[new_submission_id] = {}
new_tournament[new_submission_id][new_submission_id] = {
task: False for task in self.tasks_metadata.keys()
}
for submission_id in self.submission_ids:
res = check_significance(new_model_file, self.submission_id_to_file[submission_id])
res_inverse = check_significance(self.submission_id_to_file[submission_id], new_model_file)
new_tournament[new_submission_id][submission_id] = {
task: data["significant"] for task, data in res.items()
}
new_tournament[submission_id][new_submission_id] = {
task: data["significant"] for task, data in res_inverse.items()
}
return new_tournament
@staticmethod
def create_submission_id(metadata):
# Délka ID můsí být omezena, protože se používá v názvu souboru
submission_id = "_".join([metadata[key][:7] for key in (
"team_name",
"model_name",
"model_predictions_sha256",
"model_results_sha256",
)])
return submission_id
@staticmethod
def get_sha256_hexdigest(obj):
data = json.dumps(
obj,
separators=(',', ':'),
sort_keys=True,
ensure_ascii=True,
).encode()
result = hashlib.sha256(data).hexdigest()
return result
def prepare_model_for_submission(self, file, metadata) -> None:
with open(file, "r") as f:
data = json.load(f)
data["metadata"] = metadata
metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
# Délka ID můsí být omezena, protože se používá v názvu souboru
submission_id = self.create_submission_id(metadata)
metadata["submission_id"] = submission_id
with open(file, "w") as f:
json.dump(data, f, separators=(',', ':')) # compact JSON
tournament_results = self.start_tournament(submission_id, file)
self.pre_submit = tournament_results, submission_id, file
def save_pre_submit(self):
if self.pre_submit:
tournament_results, submission_id, file = self.pre_submit
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{submission_id}.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
# Temporary save tournament results
tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json")
with open(tournament_results_path, "w") as f:
json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON
api.upload_file(
path_or_fileobj=tournament_results_path,
path_in_repo="tournament.json",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
def get_model_detail(self, submission_id):
path = self.submission_id_to_file.get(submission_id)
if path is None:
raise gr.Error(f"Submission [{submission_id}] not found")
data = json.load(open(path))
return data["metadata"]
|