Spaces:
Build error
Build error
jwyang
commited on
Commit
•
2fafc55
1
Parent(s):
d51616b
push unicl demo
Browse files- README.md +1 -1
- app.py +143 -0
- apple_with_ipod.jpg +0 -0
- config.py +245 -0
- configs/unicl_focalnet_giant.yaml +16 -0
- configs/unicl_swin_base.yaml +16 -0
- configs/unicl_swin_tiny.yaml +16 -0
- crowd2.jpg +0 -0
- elephants.png +0 -0
- model/__init__.py +1 -0
- model/__pycache__/__init__.cpython-39.pyc +0 -0
- model/__pycache__/model.cpython-39.pyc +0 -0
- model/__pycache__/templates.cpython-39.pyc +0 -0
- model/image_encoder/__init__.py +1 -0
- model/image_encoder/__pycache__/__init__.cpython-38.pyc +0 -0
- model/image_encoder/__pycache__/__init__.cpython-39.pyc +0 -0
- model/image_encoder/__pycache__/build.cpython-38.pyc +0 -0
- model/image_encoder/__pycache__/build.cpython-39.pyc +0 -0
- model/image_encoder/__pycache__/focalnet.cpython-38.pyc +0 -0
- model/image_encoder/__pycache__/focalnet.cpython-39.pyc +0 -0
- model/image_encoder/__pycache__/swin_transformer.cpython-38.pyc +0 -0
- model/image_encoder/__pycache__/swin_transformer.cpython-39.pyc +0 -0
- model/image_encoder/build.py +59 -0
- model/image_encoder/focalnet.py +649 -0
- model/image_encoder/swin_transformer.py +586 -0
- model/model.py +204 -0
- model/templates.py +83 -0
- model/text_encoder/__init__.py +9 -0
- model/text_encoder/__pycache__/__init__.cpython-38.pyc +0 -0
- model/text_encoder/__pycache__/__init__.cpython-39.pyc +0 -0
- model/text_encoder/__pycache__/build.cpython-38.pyc +0 -0
- model/text_encoder/__pycache__/build.cpython-39.pyc +0 -0
- model/text_encoder/__pycache__/hf_model.cpython-38.pyc +0 -0
- model/text_encoder/__pycache__/hf_model.cpython-39.pyc +0 -0
- model/text_encoder/__pycache__/registry.cpython-38.pyc +0 -0
- model/text_encoder/__pycache__/registry.cpython-39.pyc +0 -0
- model/text_encoder/__pycache__/transformer.cpython-38.pyc +0 -0
- model/text_encoder/__pycache__/transformer.cpython-39.pyc +0 -0
- model/text_encoder/build.py +31 -0
- model/text_encoder/hf_model.py +27 -0
- model/text_encoder/registry.py +18 -0
- model/text_encoder/transformer.py +194 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Unicl
|
3 |
emoji: 🏢
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
|
|
1 |
---
|
2 |
+
title: Unicl Image Recognition Demo
|
3 |
emoji: 🏢
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
11 |
+
from timm.data import create_transform
|
12 |
+
from config import get_config
|
13 |
+
from model import build_model
|
14 |
+
|
15 |
+
# Download human-readable labels for ImageNet.
|
16 |
+
response = requests.get("https://git.io/JJkYN")
|
17 |
+
labels = response.text.split("\n")
|
18 |
+
|
19 |
+
def parse_option():
|
20 |
+
parser = argparse.ArgumentParser('UniCL demo script', add_help=False)
|
21 |
+
parser.add_argument('--cfg', type=str, default="configs/unicl_swin_base.yaml", metavar="FILE", help='path to config file', )
|
22 |
+
args, unparsed = parser.parse_known_args()
|
23 |
+
|
24 |
+
config = get_config(args)
|
25 |
+
|
26 |
+
return args, config
|
27 |
+
|
28 |
+
def build_transforms(img_size, center_crop=True):
|
29 |
+
t = [transforms.ToPILImage()]
|
30 |
+
if center_crop:
|
31 |
+
size = int((256 / 224) * img_size)
|
32 |
+
t.append(
|
33 |
+
transforms.Resize(size)
|
34 |
+
)
|
35 |
+
t.append(
|
36 |
+
transforms.CenterCrop(img_size)
|
37 |
+
)
|
38 |
+
else:
|
39 |
+
t.append(
|
40 |
+
transforms.Resize(img_size)
|
41 |
+
)
|
42 |
+
t.append(transforms.ToTensor())
|
43 |
+
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
|
44 |
+
return transforms.Compose(t)
|
45 |
+
|
46 |
+
def build_transforms4display(img_size, center_crop=True):
|
47 |
+
t = [transforms.ToPILImage()]
|
48 |
+
if center_crop:
|
49 |
+
size = int((256 / 224) * img_size)
|
50 |
+
t.append(
|
51 |
+
transforms.Resize(size)
|
52 |
+
)
|
53 |
+
t.append(
|
54 |
+
transforms.CenterCrop(img_size)
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
t.append(
|
58 |
+
transforms.Resize(img_size)
|
59 |
+
)
|
60 |
+
t.append(transforms.ToTensor())
|
61 |
+
return transforms.Compose(t)
|
62 |
+
|
63 |
+
args, config = parse_option()
|
64 |
+
|
65 |
+
'''
|
66 |
+
build model
|
67 |
+
'''
|
68 |
+
model = build_model(config)
|
69 |
+
|
70 |
+
url = './in21k_yfcc14m_gcc15m_swin_base.pth'
|
71 |
+
checkpoint = torch.load(url, map_location="cpu")
|
72 |
+
model.load_state_dict(checkpoint["model"])
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
'''
|
76 |
+
build data transform
|
77 |
+
'''
|
78 |
+
eval_transforms = build_transforms(224, center_crop=True)
|
79 |
+
display_transforms = build_transforms4display(224, center_crop=True)
|
80 |
+
|
81 |
+
'''
|
82 |
+
build upsampler
|
83 |
+
'''
|
84 |
+
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')
|
85 |
+
|
86 |
+
'''
|
87 |
+
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
|
88 |
+
'''
|
89 |
+
def show_cam_on_image(img: np.ndarray,
|
90 |
+
mask: np.ndarray,
|
91 |
+
use_rgb: bool = False,
|
92 |
+
colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
|
93 |
+
""" This function overlays the cam mask on the image as an heatmap.
|
94 |
+
By default the heatmap is in BGR format.
|
95 |
+
:param img: The base image in RGB or BGR format.
|
96 |
+
:param mask: The cam mask.
|
97 |
+
:param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
|
98 |
+
:param colormap: The OpenCV colormap to be used.
|
99 |
+
:returns: The default image with the cam overlay.
|
100 |
+
"""
|
101 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
|
102 |
+
if use_rgb:
|
103 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
104 |
+
heatmap = np.float32(heatmap) / 255
|
105 |
+
|
106 |
+
if np.max(img) > 1:
|
107 |
+
raise Exception(
|
108 |
+
"The input image should np.float32 in the range [0, 1]")
|
109 |
+
|
110 |
+
cam = 0.7*heatmap + 0.3*img
|
111 |
+
# cam = cam / np.max(cam)
|
112 |
+
return np.uint8(255 * cam)
|
113 |
+
|
114 |
+
def recognize_image(image, texts):
|
115 |
+
img_t = eval_transforms(image)
|
116 |
+
img_d = display_transforms(image).permute(1, 2, 0).numpy()
|
117 |
+
|
118 |
+
text_embeddings = model.get_text_embeddings(texts.split(';'))
|
119 |
+
|
120 |
+
# compute output
|
121 |
+
feat_img = model.encode_image(img_t.unsqueeze(0))
|
122 |
+
output = model.logit_scale.exp() * feat_img @ text_embeddings.t()
|
123 |
+
prediction = output.softmax(-1).flatten()
|
124 |
+
|
125 |
+
return {texts.split(';')[i]: float(prediction[i]) for i in range(len(texts.split(';')))}
|
126 |
+
|
127 |
+
|
128 |
+
image = gr.inputs.Image()
|
129 |
+
label = gr.outputs.Label(num_top_classes=100)
|
130 |
+
|
131 |
+
gr.Interface(
|
132 |
+
description="UniCL for Zero-shot Image Recognition Demo (https://github.com/microsoft/unicl)",
|
133 |
+
fn=recognize_image,
|
134 |
+
inputs=["image", "text"],
|
135 |
+
outputs=[
|
136 |
+
label,
|
137 |
+
],
|
138 |
+
examples=[
|
139 |
+
["./elephants.png", "an elephant; an elephant walking in the river; four elephants walking in the river"],
|
140 |
+
["./apple_with_ipod.jpg", "an ipod; an apple with a write note 'ipod'; an apple"],
|
141 |
+
["./crowd2.jpg", "a street; a street with a woman walking in the middle; a street with a man walking in the middle"],
|
142 |
+
],
|
143 |
+
).launch()
|
apple_with_ipod.jpg
ADDED
config.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Unified Contrastive Learning (UniCL)
|
3 |
+
# Copyright (c) 2022 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Jianwei Yang ([email protected])
|
6 |
+
# Based on Swin Transformer written by Zhe Liu
|
7 |
+
# --------------------------------------------------------
|
8 |
+
|
9 |
+
import os
|
10 |
+
import yaml
|
11 |
+
from yacs.config import CfgNode as CN
|
12 |
+
|
13 |
+
_C = CN()
|
14 |
+
_C.VERBOSE = False
|
15 |
+
|
16 |
+
# Base config files
|
17 |
+
_C.BASE = ['']
|
18 |
+
|
19 |
+
# -----------------------------------------------------------------------------
|
20 |
+
# Data settings
|
21 |
+
# -----------------------------------------------------------------------------
|
22 |
+
_C.DATA = CN()
|
23 |
+
# Batch size for a single GPU, could be overwritten by command line argument
|
24 |
+
_C.DATA.BATCH_SIZE = 128
|
25 |
+
# Path to dataset, could be overwritten by command line argument
|
26 |
+
_C.DATA.DATA_PATH = ''
|
27 |
+
# Dataset name
|
28 |
+
_C.DATA.DATASET = 'imagenet'
|
29 |
+
# Input image size
|
30 |
+
_C.DATA.IMG_SIZE = 224
|
31 |
+
# Interpolation to resize image (random, bilinear, bicubic)
|
32 |
+
_C.DATA.INTERPOLATION = 'bicubic'
|
33 |
+
# Use zipped dataset instead of folder dataset
|
34 |
+
# could be overwritten by command line argument
|
35 |
+
_C.DATA.ZIP_MODE = False
|
36 |
+
# Cache Data in Memory, could be overwritten by command line argument
|
37 |
+
_C.DATA.CACHE_MODE = 'part'
|
38 |
+
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
|
39 |
+
_C.DATA.PIN_MEMORY = True
|
40 |
+
# Number of data loading threads
|
41 |
+
_C.DATA.NUM_WORKERS = 8
|
42 |
+
|
43 |
+
# -----------------------------------------------------------------------------
|
44 |
+
# Model settings
|
45 |
+
# -----------------------------------------------------------------------------
|
46 |
+
_C.MODEL = CN()
|
47 |
+
# Model name
|
48 |
+
_C.MODEL.NAME = ''
|
49 |
+
# Checkpoint to resume, could be overwritten by command line argument
|
50 |
+
_C.MODEL.RESUME = ''
|
51 |
+
# Number of classes, overwritten in data preparation
|
52 |
+
_C.MODEL.NUM_CLASSES = 0
|
53 |
+
# Label Smoothing
|
54 |
+
_C.MODEL.LABEL_SMOOTHING = 0.1
|
55 |
+
# Whether load pretrained model
|
56 |
+
_C.MODEL.PRETRAINED = ''
|
57 |
+
# Projection dimension
|
58 |
+
_C.MODEL.DIM_PROJECTION = 512
|
59 |
+
# Mode specific
|
60 |
+
_C.MODEL.SPEC = CN(new_allowed=True)
|
61 |
+
# -----------------------------------------------------------------------------
|
62 |
+
# Build Image Encoder
|
63 |
+
# -----------------------------------------------------------------------------
|
64 |
+
_C.MODEL.IMAGE_ENCODER = CN()
|
65 |
+
# Image encoder type
|
66 |
+
_C.MODEL.IMAGE_ENCODER.TYPE = 'swin'
|
67 |
+
# Input image size
|
68 |
+
_C.MODEL.IMAGE_ENCODER.IMG_SIZE = 224
|
69 |
+
# Dropout rate
|
70 |
+
_C.MODEL.IMAGE_ENCODER.DROP_RATE = 0.0
|
71 |
+
# Drop path rate
|
72 |
+
_C.MODEL.IMAGE_ENCODER.DROP_PATH_RATE = 0.1
|
73 |
+
|
74 |
+
# Swin Transformer parameters
|
75 |
+
_C.MODEL.IMAGE_ENCODER.SWIN = CN()
|
76 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.PATCH_SIZE = 4
|
77 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.IN_CHANS = 3
|
78 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.EMBED_DIM = 96
|
79 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.DEPTHS = [2, 2, 6, 2]
|
80 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.NUM_HEADS = [3, 6, 12, 24]
|
81 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.WINDOW_SIZE = 7
|
82 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.MLP_RATIO = 4.
|
83 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.QKV_BIAS = True
|
84 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.QK_SCALE = None
|
85 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.APE = False
|
86 |
+
_C.MODEL.IMAGE_ENCODER.SWIN.PATCH_NORM = True
|
87 |
+
|
88 |
+
# FocalNet parameters
|
89 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL = CN()
|
90 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.PATCH_SIZE = 4
|
91 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.IN_CHANS = 3
|
92 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.EMBED_DIM = 96
|
93 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.DEPTHS = [2, 2, 6, 2]
|
94 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.MLP_RATIO = 4.
|
95 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.PATCH_NORM = True
|
96 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_LEVELS = [2, 2, 2, 2]
|
97 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_WINDOWS = [3, 3, 3, 3]
|
98 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.FOCAL_FACTORS = [2, 2, 2, 2]
|
99 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.USE_CONV_EMBED = False
|
100 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.USE_LAYERSCALE = False
|
101 |
+
_C.MODEL.IMAGE_ENCODER.FOCAL.USE_POSTLN = False
|
102 |
+
|
103 |
+
# -----------------------------------------------------------------------------
|
104 |
+
# Build Text Encoder
|
105 |
+
# -----------------------------------------------------------------------------
|
106 |
+
_C.MODEL.TEXT_ENCODER = CN()
|
107 |
+
|
108 |
+
_C.MODEL.TEXT_ENCODER.NAME = 'transformer'
|
109 |
+
_C.MODEL.TEXT_ENCODER.LOAD_PRETRAINED = False
|
110 |
+
_C.MODEL.TEXT_ENCODER.PRETRAINED = ''
|
111 |
+
_C.MODEL.TEXT_ENCODER.TOKENIZER = 'clip'
|
112 |
+
_C.MODEL.TEXT_ENCODER.CONTEXT_LENGTH = 77
|
113 |
+
_C.MODEL.TEXT_ENCODER.WIDTH = 1024
|
114 |
+
_C.MODEL.TEXT_ENCODER.HEADS = 16
|
115 |
+
_C.MODEL.TEXT_ENCODER.LAYERS = 12
|
116 |
+
_C.MODEL.TEXT_ENCODER.AUTOGRESSIVE = True
|
117 |
+
|
118 |
+
# -----------------------------------------------------------------------------
|
119 |
+
# Training settings
|
120 |
+
# -----------------------------------------------------------------------------
|
121 |
+
_C.TRAIN = CN()
|
122 |
+
_C.TRAIN.START_EPOCH = 0
|
123 |
+
_C.TRAIN.EPOCHS = 32
|
124 |
+
_C.TRAIN.WARMUP_EPOCHS = 5
|
125 |
+
_C.TRAIN.WEIGHT_DECAY = 0.1
|
126 |
+
_C.TRAIN.BASE_LR = 5e-4
|
127 |
+
_C.TRAIN.WARMUP_LR = 5e-7
|
128 |
+
_C.TRAIN.MIN_LR = 5e-6
|
129 |
+
# Clip gradient norm
|
130 |
+
_C.TRAIN.CLIP_GRAD = 5.0
|
131 |
+
# Auto resume from latest checkpoint
|
132 |
+
_C.TRAIN.AUTO_RESUME = True
|
133 |
+
# Gradient accumulation steps
|
134 |
+
# could be overwritten by command line argument
|
135 |
+
_C.TRAIN.ACCUMULATION_STEPS = 0
|
136 |
+
# Whether to use gradient checkpointing to save memory
|
137 |
+
# could be overwritten by command line argument
|
138 |
+
_C.TRAIN.USE_CHECKPOINT = False
|
139 |
+
|
140 |
+
# LR scheduler
|
141 |
+
_C.TRAIN.LR_SCHEDULER = CN()
|
142 |
+
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
|
143 |
+
# Epoch interval to decay LR, used in StepLRScheduler
|
144 |
+
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
|
145 |
+
# LR decay rate, used in StepLRScheduler
|
146 |
+
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
|
147 |
+
|
148 |
+
# Optimizer
|
149 |
+
_C.TRAIN.OPTIMIZER = CN()
|
150 |
+
_C.TRAIN.OPTIMIZER.NAME = 'adamw'
|
151 |
+
# Optimizer Epsilon
|
152 |
+
_C.TRAIN.OPTIMIZER.EPS = 1e-8
|
153 |
+
# Optimizer Betas
|
154 |
+
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
|
155 |
+
# SGD momentum
|
156 |
+
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
|
157 |
+
|
158 |
+
# -----------------------------------------------------------------------------
|
159 |
+
# Augmentation settings
|
160 |
+
# -----------------------------------------------------------------------------
|
161 |
+
_C.AUG = CN()
|
162 |
+
# Color jitter factor
|
163 |
+
_C.AUG.COLOR_JITTER = 0.4
|
164 |
+
# Use AutoAugment policy. "v0" or "original"
|
165 |
+
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1'
|
166 |
+
# Random erase prob
|
167 |
+
_C.AUG.REPROB = 0.25
|
168 |
+
# Random erase mode
|
169 |
+
_C.AUG.REMODE = 'pixel'
|
170 |
+
# Random erase count
|
171 |
+
_C.AUG.RECOUNT = 1
|
172 |
+
# Mixup alpha, mixup enabled if > 0
|
173 |
+
_C.AUG.MIXUP = 0.8
|
174 |
+
# Cutmix alpha, cutmix enabled if > 0
|
175 |
+
_C.AUG.CUTMIX = 1.0
|
176 |
+
# Cutmix min/max ratio, overrides alpha and enables cutmix if set
|
177 |
+
_C.AUG.CUTMIX_MINMAX = None
|
178 |
+
# Probability of performing mixup or cutmix when either/both is enabled
|
179 |
+
_C.AUG.MIXUP_PROB = 1.0
|
180 |
+
# Probability of switching to cutmix when both mixup and cutmix enabled
|
181 |
+
_C.AUG.MIXUP_SWITCH_PROB = 0.5
|
182 |
+
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem"
|
183 |
+
_C.AUG.MIXUP_MODE = 'batch'
|
184 |
+
|
185 |
+
# -----------------------------------------------------------------------------
|
186 |
+
# Testing settings
|
187 |
+
# -----------------------------------------------------------------------------
|
188 |
+
_C.TEST = CN()
|
189 |
+
# Whether to use center crop when testing
|
190 |
+
_C.TEST.CROP = True
|
191 |
+
|
192 |
+
# -----------------------------------------------------------------------------
|
193 |
+
# Misc
|
194 |
+
# -----------------------------------------------------------------------------
|
195 |
+
# Mixed precision opt level, if O0, no amp is used ('O0', 'O1', 'O2')
|
196 |
+
# overwritten by command line argument
|
197 |
+
_C.AMP_OPT_LEVEL = ''
|
198 |
+
# Path to output folder, overwritten by command line argument
|
199 |
+
_C.OUTPUT = ''
|
200 |
+
# Tag of experiment, overwritten by command line argument
|
201 |
+
_C.TAG = 'default'
|
202 |
+
# Frequency to save checkpoint
|
203 |
+
_C.SAVE_FREQ = 1
|
204 |
+
# Frequency to logging info
|
205 |
+
_C.PRINT_FREQ = 100
|
206 |
+
# Fixed random seed
|
207 |
+
_C.SEED = 0
|
208 |
+
# Perform evaluation only, overwritten by command line argument
|
209 |
+
_C.EVAL_MODE = False
|
210 |
+
# Test throughput only, overwritten by command line argument
|
211 |
+
_C.THROUGHPUT_MODE = False
|
212 |
+
# Debug only so that skip dataloader initialization, overwritten by command line argument
|
213 |
+
_C.DEBUG_MODE = False
|
214 |
+
# local rank for DistributedDataParallel, given by command line argument
|
215 |
+
_C.LOCAL_RANK = 0
|
216 |
+
|
217 |
+
|
218 |
+
def _update_config_from_file(config, cfg_file):
|
219 |
+
config.defrost()
|
220 |
+
with open(cfg_file, 'r') as f:
|
221 |
+
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
|
222 |
+
|
223 |
+
for cfg in yaml_cfg.setdefault('BASE', ['']):
|
224 |
+
if cfg:
|
225 |
+
_update_config_from_file(
|
226 |
+
config, os.path.join(os.path.dirname(cfg_file), cfg)
|
227 |
+
)
|
228 |
+
print('=> merge config from {}'.format(cfg_file))
|
229 |
+
config.merge_from_file(cfg_file)
|
230 |
+
config.freeze()
|
231 |
+
|
232 |
+
|
233 |
+
def update_config(config, args):
|
234 |
+
_update_config_from_file(config, args.cfg)
|
235 |
+
config.freeze()
|
236 |
+
|
237 |
+
|
238 |
+
def get_config(args):
|
239 |
+
"""Get a yacs CfgNode object with default values."""
|
240 |
+
# Return a clone so that the defaults will not be altered
|
241 |
+
# This is for the "local variable" use pattern
|
242 |
+
config = _C.clone()
|
243 |
+
update_config(config, args)
|
244 |
+
|
245 |
+
return config
|
configs/unicl_focalnet_giant.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
NAME: unicl_focalnet_giant
|
3 |
+
DIM_PROJECTION: 1024
|
4 |
+
IMAGE_ENCODER:
|
5 |
+
TYPE: focalnet_giant_lrf
|
6 |
+
DROP_PATH_RATE: 0.5
|
7 |
+
FOCAL:
|
8 |
+
USE_POSTLN: False
|
9 |
+
USE_CONV_EMBED: False
|
10 |
+
EMBED_DIM: 512
|
11 |
+
USE_LAYERSCALE: True
|
12 |
+
TEXT_ENCODER:
|
13 |
+
NAME: 'transformer'
|
14 |
+
WIDTH: 1024
|
15 |
+
HEADS: 16
|
16 |
+
LAYERS: 16
|
configs/unicl_swin_base.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
NAME: unicl_swin_base
|
3 |
+
DIM_PROJECTION: 512
|
4 |
+
IMAGE_ENCODER:
|
5 |
+
TYPE: swin
|
6 |
+
DROP_PATH_RATE: 0.5
|
7 |
+
SWIN:
|
8 |
+
EMBED_DIM: 128
|
9 |
+
DEPTHS: [ 2, 2, 18, 2 ]
|
10 |
+
NUM_HEADS: [ 4, 8, 16, 32 ]
|
11 |
+
WINDOW_SIZE: 7
|
12 |
+
TEXT_ENCODER:
|
13 |
+
NAME: 'transformer'
|
14 |
+
WIDTH: 512
|
15 |
+
HEADS: 8
|
16 |
+
LAYERS: 12
|
configs/unicl_swin_tiny.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
NAME: unicl_swin_tiny
|
3 |
+
DIM_PROJECTION: 512
|
4 |
+
IMAGE_ENCODER:
|
5 |
+
TYPE: swin
|
6 |
+
DROP_PATH_RATE: 0.2
|
7 |
+
SWIN:
|
8 |
+
EMBED_DIM: 96
|
9 |
+
DEPTHS: [ 2, 2, 6, 2 ]
|
10 |
+
NUM_HEADS: [ 3, 6, 12, 24 ]
|
11 |
+
WINDOW_SIZE: 7
|
12 |
+
TEXT_ENCODER:
|
13 |
+
NAME: 'transformer'
|
14 |
+
WIDTH: 512
|
15 |
+
HEADS: 8
|
16 |
+
LAYERS: 12
|
crowd2.jpg
ADDED
elephants.png
ADDED
model/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import build_unicl_model as build_model
|
model/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (190 Bytes). View file
|
|
model/__pycache__/model.cpython-39.pyc
ADDED
Binary file (6.82 kB). View file
|
|
model/__pycache__/templates.cpython-39.pyc
ADDED
Binary file (1.99 kB). View file
|
|
model/image_encoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .build import build_model as build_image_encoder
|
model/image_encoder/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (201 Bytes). View file
|
|
model/image_encoder/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (206 Bytes). View file
|
|
model/image_encoder/__pycache__/build.cpython-38.pyc
ADDED
Binary file (1.13 kB). View file
|
|
model/image_encoder/__pycache__/build.cpython-39.pyc
ADDED
Binary file (1.36 kB). View file
|
|
model/image_encoder/__pycache__/focalnet.cpython-38.pyc
ADDED
Binary file (19.6 kB). View file
|
|
model/image_encoder/__pycache__/focalnet.cpython-39.pyc
ADDED
Binary file (19.8 kB). View file
|
|
model/image_encoder/__pycache__/swin_transformer.cpython-38.pyc
ADDED
Binary file (19.9 kB). View file
|
|
model/image_encoder/__pycache__/swin_transformer.cpython-39.pyc
ADDED
Binary file (19.8 kB). View file
|
|
model/image_encoder/build.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from timm.models import create_model
|
2 |
+
from .swin_transformer import SwinTransformer
|
3 |
+
from . import focalnet
|
4 |
+
|
5 |
+
def build_model(config):
|
6 |
+
model_type = config.TYPE
|
7 |
+
print(f"Creating model: {model_type}")
|
8 |
+
|
9 |
+
if "swin" in model_type:
|
10 |
+
model = SwinTransformer(
|
11 |
+
num_classes=0,
|
12 |
+
img_size=config.IMG_SIZE,
|
13 |
+
patch_size=config.SWIN.PATCH_SIZE,
|
14 |
+
in_chans=config.SWIN.IN_CHANS,
|
15 |
+
embed_dim=config.SWIN.EMBED_DIM,
|
16 |
+
depths=config.SWIN.DEPTHS,
|
17 |
+
num_heads=config.SWIN.NUM_HEADS,
|
18 |
+
window_size=config.SWIN.WINDOW_SIZE,
|
19 |
+
mlp_ratio=config.SWIN.MLP_RATIO,
|
20 |
+
qkv_bias=config.SWIN.QKV_BIAS,
|
21 |
+
qk_scale=config.SWIN.QK_SCALE,
|
22 |
+
drop_rate=config.DROP_RATE,
|
23 |
+
drop_path_rate=config.DROP_PATH_RATE,
|
24 |
+
ape=config.SWIN.APE,
|
25 |
+
patch_norm=config.SWIN.PATCH_NORM,
|
26 |
+
use_checkpoint=False
|
27 |
+
)
|
28 |
+
elif "focal" in model_type:
|
29 |
+
model = create_model(
|
30 |
+
model_type,
|
31 |
+
pretrained=False,
|
32 |
+
img_size=config.IMG_SIZE,
|
33 |
+
num_classes=0,
|
34 |
+
drop_path_rate=config.DROP_PATH_RATE,
|
35 |
+
use_conv_embed=config.FOCAL.USE_CONV_EMBED,
|
36 |
+
use_layerscale=config.FOCAL.USE_LAYERSCALE,
|
37 |
+
use_postln=config.FOCAL.USE_POSTLN
|
38 |
+
)
|
39 |
+
|
40 |
+
elif "vit" in model_type:
|
41 |
+
model = create_model(
|
42 |
+
model_type,
|
43 |
+
pretrained=is_pretrained,
|
44 |
+
img_size=config.DATA.IMG_SIZE,
|
45 |
+
num_classes=config.MODEL.NUM_CLASSES,
|
46 |
+
)
|
47 |
+
elif "resnet" in model_type:
|
48 |
+
model = create_model(
|
49 |
+
model_type,
|
50 |
+
pretrained=is_pretrained,
|
51 |
+
num_classes=config.MODEL.NUM_CLASSES
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
model = create_model(
|
55 |
+
model_type,
|
56 |
+
pretrained=is_pretrained,
|
57 |
+
num_classes=config.MODEL.NUM_CLASSES
|
58 |
+
)
|
59 |
+
return model
|
model/image_encoder/focalnet.py
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# FocalNets -- Focal Modulation Networks
|
3 |
+
# Copyright (c) 2022 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Jianwei Yang ([email protected])
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
|
15 |
+
from torchvision import transforms
|
16 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
17 |
+
from timm.data import create_transform
|
18 |
+
from timm.data.transforms import _pil_interp
|
19 |
+
|
20 |
+
class Mlp(nn.Module):
|
21 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
22 |
+
super().__init__()
|
23 |
+
out_features = out_features or in_features
|
24 |
+
hidden_features = hidden_features or in_features
|
25 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
26 |
+
self.act = act_layer()
|
27 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
28 |
+
self.drop = nn.Dropout(drop)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.fc1(x)
|
32 |
+
x = self.act(x)
|
33 |
+
x = self.drop(x)
|
34 |
+
x = self.fc2(x)
|
35 |
+
x = self.drop(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
class FocalModulation(nn.Module):
|
39 |
+
def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0.):
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.dim = dim
|
43 |
+
self.focal_window = focal_window
|
44 |
+
self.focal_level = focal_level
|
45 |
+
self.focal_factor = focal_factor
|
46 |
+
|
47 |
+
self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
|
48 |
+
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
|
49 |
+
|
50 |
+
self.act = nn.GELU()
|
51 |
+
self.proj = nn.Linear(dim, dim)
|
52 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
53 |
+
self.focal_layers = nn.ModuleList()
|
54 |
+
|
55 |
+
self.kernel_sizes = []
|
56 |
+
for k in range(self.focal_level):
|
57 |
+
kernel_size = self.focal_factor*k + self.focal_window
|
58 |
+
self.focal_layers.append(
|
59 |
+
nn.Sequential(
|
60 |
+
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1,
|
61 |
+
groups=dim, padding=kernel_size//2, bias=False),
|
62 |
+
nn.GELU(),
|
63 |
+
)
|
64 |
+
)
|
65 |
+
self.kernel_sizes.append(kernel_size)
|
66 |
+
def forward(self, x):
|
67 |
+
"""
|
68 |
+
Args:
|
69 |
+
x: input features with shape of (B, H, W, C)
|
70 |
+
"""
|
71 |
+
C = x.shape[-1]
|
72 |
+
|
73 |
+
# pre linear projection
|
74 |
+
x = self.f(x).permute(0, 3, 1, 2).contiguous()
|
75 |
+
q, ctx, self.gates = torch.split(x, (C, C, self.focal_level+1), 1)
|
76 |
+
|
77 |
+
# context aggreation
|
78 |
+
ctx_all = 0
|
79 |
+
for l in range(self.focal_level):
|
80 |
+
ctx = self.focal_layers[l](ctx)
|
81 |
+
ctx_all = ctx_all + ctx*self.gates[:, l:l+1]
|
82 |
+
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
|
83 |
+
ctx_all = ctx_all + ctx_global*self.gates[:,self.focal_level:]
|
84 |
+
|
85 |
+
# focal modulation
|
86 |
+
self.modulator = self.h(ctx_all)
|
87 |
+
x_out = q*self.modulator
|
88 |
+
x_out = x_out.permute(0, 2, 3, 1).contiguous()
|
89 |
+
|
90 |
+
# post linear porjection
|
91 |
+
x_out = self.proj(x_out)
|
92 |
+
x_out = self.proj_drop(x_out)
|
93 |
+
return x_out
|
94 |
+
|
95 |
+
def extra_repr(self) -> str:
|
96 |
+
return f'dim={self.dim}'
|
97 |
+
|
98 |
+
def flops(self, N):
|
99 |
+
# calculate flops for 1 window with token length of N
|
100 |
+
flops = 0
|
101 |
+
|
102 |
+
flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))
|
103 |
+
|
104 |
+
# focal convolution
|
105 |
+
for k in range(self.focal_level):
|
106 |
+
flops += N * (self.kernel_sizes[k]**2+1) * self.dim
|
107 |
+
|
108 |
+
# global gating
|
109 |
+
flops += N * 1 * self.dim
|
110 |
+
|
111 |
+
# self.linear
|
112 |
+
flops += N * self.dim * (self.dim + 1)
|
113 |
+
|
114 |
+
# x = self.proj(x)
|
115 |
+
flops += N * self.dim * self.dim
|
116 |
+
return flops
|
117 |
+
|
118 |
+
class FocalNetBlock(nn.Module):
|
119 |
+
r""" Focal Modulation Network Block.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
dim (int): Number of input channels.
|
123 |
+
input_resolution (tuple[int]): Input resulotion.
|
124 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
125 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
126 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
127 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
128 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
129 |
+
focal_level (int): Number of focal levels.
|
130 |
+
focal_window (int): Focal window size at first focal level
|
131 |
+
use_layerscale (bool): Whether use layerscale
|
132 |
+
layerscale_value (float): Initial layerscale value
|
133 |
+
use_postln (bool): Whether use layernorm after modulation
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0.,
|
137 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
138 |
+
focal_level=1, focal_window=3,
|
139 |
+
use_layerscale=False, layerscale_value=1e-4,
|
140 |
+
use_postln=False):
|
141 |
+
super().__init__()
|
142 |
+
self.dim = dim
|
143 |
+
self.input_resolution = input_resolution
|
144 |
+
self.mlp_ratio = mlp_ratio
|
145 |
+
|
146 |
+
self.focal_window = focal_window
|
147 |
+
self.focal_level = focal_level
|
148 |
+
self.use_postln = use_postln
|
149 |
+
|
150 |
+
self.norm1 = norm_layer(dim)
|
151 |
+
self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level)
|
152 |
+
|
153 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
154 |
+
self.norm2 = norm_layer(dim)
|
155 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
156 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
157 |
+
|
158 |
+
self.alpha = 3.0 if self.use_postln else 1.0
|
159 |
+
|
160 |
+
self.gamma_1 = 1.0
|
161 |
+
self.gamma_2 = 1.0
|
162 |
+
if use_layerscale:
|
163 |
+
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
|
164 |
+
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
|
165 |
+
|
166 |
+
self.H = None
|
167 |
+
self.W = None
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
H, W = self.H, self.W
|
171 |
+
B, L, C = x.shape
|
172 |
+
shortcut = x
|
173 |
+
|
174 |
+
# Focal Modulation
|
175 |
+
if not self.use_postln:
|
176 |
+
x = self.norm1(x)
|
177 |
+
x = x.view(B, H, W, C)
|
178 |
+
x = self.modulation(x).view(B, H * W, C)
|
179 |
+
|
180 |
+
# FFN
|
181 |
+
x = shortcut*self.alpha + self.drop_path(self.gamma_1 * x)
|
182 |
+
if self.use_postln:
|
183 |
+
x = self.norm1(x)
|
184 |
+
|
185 |
+
if not self.use_postln:
|
186 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
187 |
+
else:
|
188 |
+
x = x*self.alpha + self.drop_path(self.gamma_2 * self.mlp(x))
|
189 |
+
x = self.norm2(x)
|
190 |
+
|
191 |
+
return x
|
192 |
+
|
193 |
+
def extra_repr(self) -> str:
|
194 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
|
195 |
+
f"mlp_ratio={self.mlp_ratio}"
|
196 |
+
|
197 |
+
def flops(self):
|
198 |
+
flops = 0
|
199 |
+
H, W = self.input_resolution
|
200 |
+
# norm1
|
201 |
+
flops += self.dim * H * W
|
202 |
+
|
203 |
+
# W-MSA/SW-MSA
|
204 |
+
flops += self.modulation.flops(H*W)
|
205 |
+
|
206 |
+
# mlp
|
207 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
208 |
+
# norm2
|
209 |
+
flops += self.dim * H * W
|
210 |
+
return flops
|
211 |
+
|
212 |
+
class BasicLayer(nn.Module):
|
213 |
+
""" A basic Focal Transformer layer for one stage.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
dim (int): Number of input channels.
|
217 |
+
input_resolution (tuple[int]): Input resolution.
|
218 |
+
depth (int): Number of blocks.
|
219 |
+
window_size (int): Local window size.
|
220 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
221 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
222 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
223 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
224 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
225 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
226 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
227 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
228 |
+
focal_level (int): Number of focal levels
|
229 |
+
focal_window (int): Focal window size at first focal level
|
230 |
+
use_layerscale (bool): Whether use layerscale
|
231 |
+
layerscale_value (float): Initial layerscale value
|
232 |
+
use_postln (bool): Whether use layernorm after modulation
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, dim, out_dim, input_resolution, depth,
|
236 |
+
mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm,
|
237 |
+
downsample=None, use_checkpoint=False,
|
238 |
+
focal_level=1, focal_window=1,
|
239 |
+
use_conv_embed=False,
|
240 |
+
use_layerscale=False, layerscale_value=1e-4, use_postln=False):
|
241 |
+
|
242 |
+
super().__init__()
|
243 |
+
self.dim = dim
|
244 |
+
self.input_resolution = input_resolution
|
245 |
+
self.depth = depth
|
246 |
+
self.use_checkpoint = use_checkpoint
|
247 |
+
|
248 |
+
# build blocks
|
249 |
+
self.blocks = nn.ModuleList([
|
250 |
+
FocalNetBlock(
|
251 |
+
dim=dim,
|
252 |
+
input_resolution=input_resolution,
|
253 |
+
mlp_ratio=mlp_ratio,
|
254 |
+
drop=drop,
|
255 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
256 |
+
norm_layer=norm_layer,
|
257 |
+
focal_level=focal_level,
|
258 |
+
focal_window=focal_window,
|
259 |
+
use_layerscale=use_layerscale,
|
260 |
+
layerscale_value=layerscale_value,
|
261 |
+
use_postln=use_postln,
|
262 |
+
)
|
263 |
+
for i in range(depth)])
|
264 |
+
|
265 |
+
if downsample is not None:
|
266 |
+
self.downsample = downsample(
|
267 |
+
img_size=input_resolution,
|
268 |
+
patch_size=2,
|
269 |
+
in_chans=dim,
|
270 |
+
embed_dim=out_dim,
|
271 |
+
use_conv_embed=use_conv_embed,
|
272 |
+
norm_layer=norm_layer,
|
273 |
+
is_stem=False
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
self.downsample = None
|
277 |
+
|
278 |
+
def forward(self, x, H, W):
|
279 |
+
for blk in self.blocks:
|
280 |
+
blk.H, blk.W = H, W
|
281 |
+
if self.use_checkpoint:
|
282 |
+
x = checkpoint.checkpoint(blk, x)
|
283 |
+
else:
|
284 |
+
x = blk(x)
|
285 |
+
|
286 |
+
if self.downsample is not None:
|
287 |
+
x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
|
288 |
+
x, Ho, Wo = self.downsample(x)
|
289 |
+
else:
|
290 |
+
Ho, Wo = H, W
|
291 |
+
return x, Ho, Wo
|
292 |
+
|
293 |
+
def extra_repr(self) -> str:
|
294 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
295 |
+
|
296 |
+
def flops(self):
|
297 |
+
flops = 0
|
298 |
+
for blk in self.blocks:
|
299 |
+
flops += blk.flops()
|
300 |
+
if self.downsample is not None:
|
301 |
+
flops += self.downsample.flops()
|
302 |
+
return flops
|
303 |
+
|
304 |
+
class PatchEmbed(nn.Module):
|
305 |
+
r""" Image to Patch Embedding
|
306 |
+
|
307 |
+
Args:
|
308 |
+
img_size (int): Image size. Default: 224.
|
309 |
+
patch_size (int): Patch token size. Default: 4.
|
310 |
+
in_chans (int): Number of input image channels. Default: 3.
|
311 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
312 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
|
316 |
+
super().__init__()
|
317 |
+
patch_size = to_2tuple(patch_size)
|
318 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
319 |
+
self.img_size = img_size
|
320 |
+
self.patch_size = patch_size
|
321 |
+
self.patches_resolution = patches_resolution
|
322 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
323 |
+
|
324 |
+
self.in_chans = in_chans
|
325 |
+
self.embed_dim = embed_dim
|
326 |
+
|
327 |
+
if use_conv_embed:
|
328 |
+
# if we choose to use conv embedding, then we treat the stem and non-stem differently
|
329 |
+
if is_stem:
|
330 |
+
kernel_size = 7; padding = 2; stride = 4
|
331 |
+
else:
|
332 |
+
kernel_size = 3; padding = 1; stride = 2
|
333 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
334 |
+
else:
|
335 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
336 |
+
|
337 |
+
if norm_layer is not None:
|
338 |
+
self.norm = norm_layer(embed_dim)
|
339 |
+
else:
|
340 |
+
self.norm = None
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
B, C, H, W = x.shape
|
344 |
+
|
345 |
+
x = self.proj(x)
|
346 |
+
H, W = x.shape[2:]
|
347 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
348 |
+
if self.norm is not None:
|
349 |
+
x = self.norm(x)
|
350 |
+
return x, H, W
|
351 |
+
|
352 |
+
def flops(self):
|
353 |
+
Ho, Wo = self.patches_resolution
|
354 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
355 |
+
if self.norm is not None:
|
356 |
+
flops += Ho * Wo * self.embed_dim
|
357 |
+
return flops
|
358 |
+
|
359 |
+
class FocalNet(nn.Module):
|
360 |
+
r""" Focal Modulation Networks (FocalNets)
|
361 |
+
|
362 |
+
Args:
|
363 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
364 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
365 |
+
in_chans (int): Number of input image channels. Default: 3
|
366 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
367 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
368 |
+
depths (tuple(int)): Depth of each Focal Transformer layer.
|
369 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
370 |
+
drop_rate (float): Dropout rate. Default: 0
|
371 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
372 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
373 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
374 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
375 |
+
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
|
376 |
+
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
|
377 |
+
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False
|
378 |
+
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
|
379 |
+
layerscale_value (float): Value for layer scale. Default: 1e-4
|
380 |
+
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
|
381 |
+
"""
|
382 |
+
def __init__(self,
|
383 |
+
img_size=224,
|
384 |
+
patch_size=4,
|
385 |
+
in_chans=3,
|
386 |
+
num_classes=1000,
|
387 |
+
embed_dim=96,
|
388 |
+
depths=[2, 2, 6, 2],
|
389 |
+
mlp_ratio=4.,
|
390 |
+
drop_rate=0.,
|
391 |
+
drop_path_rate=0.1,
|
392 |
+
norm_layer=nn.LayerNorm,
|
393 |
+
patch_norm=True,
|
394 |
+
use_checkpoint=False,
|
395 |
+
focal_levels=[2, 2, 2, 2],
|
396 |
+
focal_windows=[3, 3, 3, 3],
|
397 |
+
use_conv_embed=False,
|
398 |
+
use_layerscale=False,
|
399 |
+
layerscale_value=1e-4,
|
400 |
+
use_postln=False,
|
401 |
+
**kwargs):
|
402 |
+
super().__init__()
|
403 |
+
|
404 |
+
self.num_layers = len(depths)
|
405 |
+
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
|
406 |
+
|
407 |
+
self.num_classes = num_classes
|
408 |
+
self.embed_dim = embed_dim
|
409 |
+
self.patch_norm = patch_norm
|
410 |
+
self.num_features = embed_dim[-1]
|
411 |
+
self.mlp_ratio = mlp_ratio
|
412 |
+
|
413 |
+
# split image into patches using either non-overlapped embedding or overlapped embedding
|
414 |
+
self.patch_embed = PatchEmbed(
|
415 |
+
img_size=to_2tuple(img_size),
|
416 |
+
patch_size=patch_size,
|
417 |
+
in_chans=in_chans,
|
418 |
+
embed_dim=embed_dim[0],
|
419 |
+
use_conv_embed=use_conv_embed,
|
420 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
421 |
+
is_stem=True)
|
422 |
+
|
423 |
+
num_patches = self.patch_embed.num_patches
|
424 |
+
patches_resolution = self.patch_embed.patches_resolution
|
425 |
+
self.patches_resolution = patches_resolution
|
426 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
427 |
+
|
428 |
+
# stochastic depth
|
429 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
430 |
+
|
431 |
+
# build layers
|
432 |
+
self.layers = nn.ModuleList()
|
433 |
+
for i_layer in range(self.num_layers):
|
434 |
+
layer = BasicLayer(dim=embed_dim[i_layer],
|
435 |
+
out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,
|
436 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
437 |
+
patches_resolution[1] // (2 ** i_layer)),
|
438 |
+
depth=depths[i_layer],
|
439 |
+
mlp_ratio=self.mlp_ratio,
|
440 |
+
drop=drop_rate,
|
441 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
442 |
+
norm_layer=norm_layer,
|
443 |
+
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
|
444 |
+
focal_level=focal_levels[i_layer],
|
445 |
+
focal_window=focal_windows[i_layer],
|
446 |
+
use_conv_embed=use_conv_embed,
|
447 |
+
use_checkpoint=use_checkpoint,
|
448 |
+
use_layerscale=use_layerscale,
|
449 |
+
layerscale_value=layerscale_value,
|
450 |
+
use_postln=use_postln,
|
451 |
+
)
|
452 |
+
self.layers.append(layer)
|
453 |
+
|
454 |
+
self.norm = norm_layer(self.num_features)
|
455 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
456 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
457 |
+
self.dim_out = self.num_features
|
458 |
+
|
459 |
+
self.apply(self._init_weights)
|
460 |
+
|
461 |
+
def _init_weights(self, m):
|
462 |
+
if isinstance(m, nn.Linear):
|
463 |
+
trunc_normal_(m.weight, std=.02)
|
464 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
465 |
+
nn.init.constant_(m.bias, 0)
|
466 |
+
elif isinstance(m, nn.LayerNorm):
|
467 |
+
nn.init.constant_(m.bias, 0)
|
468 |
+
nn.init.constant_(m.weight, 1.0)
|
469 |
+
|
470 |
+
@torch.jit.ignore
|
471 |
+
def no_weight_decay(self):
|
472 |
+
return {''}
|
473 |
+
|
474 |
+
@torch.jit.ignore
|
475 |
+
def no_weight_decay_keywords(self):
|
476 |
+
return {''}
|
477 |
+
|
478 |
+
def forward_features(self, x):
|
479 |
+
x, H, W = self.patch_embed(x)
|
480 |
+
x = self.pos_drop(x)
|
481 |
+
|
482 |
+
for layer in self.layers:
|
483 |
+
x, H, W = layer(x, H, W)
|
484 |
+
x = self.norm(x) # B L C
|
485 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
486 |
+
x = torch.flatten(x, 1)
|
487 |
+
return x
|
488 |
+
|
489 |
+
def forward(self, x):
|
490 |
+
x = self.forward_features(x)
|
491 |
+
x = self.head(x)
|
492 |
+
return x
|
493 |
+
|
494 |
+
def flops(self):
|
495 |
+
flops = 0
|
496 |
+
flops += self.patch_embed.flops()
|
497 |
+
for i, layer in enumerate(self.layers):
|
498 |
+
flops += layer.flops()
|
499 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
500 |
+
flops += self.num_features * self.num_classes
|
501 |
+
return flops
|
502 |
+
|
503 |
+
def build_transforms(img_size, center_crop=False):
|
504 |
+
t = []
|
505 |
+
if center_crop:
|
506 |
+
size = int((256 / 224) * img_size)
|
507 |
+
t.append(
|
508 |
+
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
|
509 |
+
)
|
510 |
+
t.append(
|
511 |
+
transforms.CenterCrop(img_size)
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
t.append(
|
515 |
+
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
|
516 |
+
)
|
517 |
+
t.append(transforms.ToTensor())
|
518 |
+
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
|
519 |
+
return transforms.Compose(t)
|
520 |
+
|
521 |
+
def build_transforms4display(img_size, center_crop=False):
|
522 |
+
t = []
|
523 |
+
if center_crop:
|
524 |
+
size = int((256 / 224) * img_size)
|
525 |
+
t.append(
|
526 |
+
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
|
527 |
+
)
|
528 |
+
t.append(
|
529 |
+
transforms.CenterCrop(img_size)
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
t.append(
|
533 |
+
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
|
534 |
+
)
|
535 |
+
t.append(transforms.ToTensor())
|
536 |
+
return transforms.Compose(t)
|
537 |
+
|
538 |
+
model_urls = {
|
539 |
+
"focalnet_tiny_srf": "",
|
540 |
+
"focalnet_small_srf": "",
|
541 |
+
"focalnet_base_srf": "",
|
542 |
+
"focalnet_tiny_lrf": "",
|
543 |
+
"focalnet_small_lrf": "",
|
544 |
+
"focalnet_base_lrf": "",
|
545 |
+
}
|
546 |
+
|
547 |
+
@register_model
|
548 |
+
def focalnet_tiny_srf(pretrained=False, **kwargs):
|
549 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
|
550 |
+
if pretrained:
|
551 |
+
url = model_urls['focalnet_tiny_srf']
|
552 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
553 |
+
model.load_state_dict(checkpoint["model"])
|
554 |
+
return model
|
555 |
+
|
556 |
+
@register_model
|
557 |
+
def focalnet_small_srf(pretrained=False, **kwargs):
|
558 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
|
559 |
+
if pretrained:
|
560 |
+
url = model_urls['focalnet_small_srf']
|
561 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
562 |
+
model.load_state_dict(checkpoint["model"])
|
563 |
+
return model
|
564 |
+
|
565 |
+
@register_model
|
566 |
+
def focalnet_base_srf(pretrained=False, **kwargs):
|
567 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
|
568 |
+
if pretrained:
|
569 |
+
url = model_urls['focalnet_base_srf']
|
570 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
571 |
+
model.load_state_dict(checkpoint["model"])
|
572 |
+
return model
|
573 |
+
|
574 |
+
@register_model
|
575 |
+
def focalnet_tiny_lrf(pretrained=False, **kwargs):
|
576 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
577 |
+
if pretrained:
|
578 |
+
url = model_urls['focalnet_tiny_lrf']
|
579 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
580 |
+
model.load_state_dict(checkpoint["model"])
|
581 |
+
return model
|
582 |
+
|
583 |
+
@register_model
|
584 |
+
def focalnet_small_lrf(pretrained=False, **kwargs):
|
585 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
|
586 |
+
if pretrained:
|
587 |
+
url = model_urls['focalnet_small_lrf']
|
588 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
589 |
+
model.load_state_dict(checkpoint["model"])
|
590 |
+
return model
|
591 |
+
|
592 |
+
@register_model
|
593 |
+
def focalnet_base_lrf(pretrained=False, **kwargs):
|
594 |
+
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
|
595 |
+
if pretrained:
|
596 |
+
url = model_urls['focalnet_base_lrf']
|
597 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
598 |
+
model.load_state_dict(checkpoint["model"])
|
599 |
+
return model
|
600 |
+
|
601 |
+
@register_model
|
602 |
+
def focalnet_giant_lrf(pretrained=False, **kwargs):
|
603 |
+
model = FocalNet(depths=[2, 2, 42, 2], embed_dim=512, focal_levels=[3, 3, 3, 3], **kwargs)
|
604 |
+
if pretrained:
|
605 |
+
url = model_urls['focalnet_giant_lrf']
|
606 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
607 |
+
model.load_state_dict(checkpoint["model"])
|
608 |
+
return model
|
609 |
+
|
610 |
+
@register_model
|
611 |
+
def focalnet_tiny_iso_16(pretrained=False, **kwargs):
|
612 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs)
|
613 |
+
if pretrained:
|
614 |
+
url = model_urls['focalnet_tiny_iso_16']
|
615 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
616 |
+
model.load_state_dict(checkpoint["model"])
|
617 |
+
return model
|
618 |
+
|
619 |
+
@register_model
|
620 |
+
def focalnet_small_iso_16(pretrained=False, **kwargs):
|
621 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs)
|
622 |
+
if pretrained:
|
623 |
+
url = model_urls['focalnet_small_iso_16']
|
624 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
625 |
+
model.load_state_dict(checkpoint["model"])
|
626 |
+
return model
|
627 |
+
|
628 |
+
@register_model
|
629 |
+
def focalnet_base_iso_16(pretrained=False, **kwargs):
|
630 |
+
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
|
631 |
+
if pretrained:
|
632 |
+
url = model_urls['focalnet_base_iso_16']
|
633 |
+
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
634 |
+
model.load_state_dict(checkpoint["model"])
|
635 |
+
return model
|
636 |
+
|
637 |
+
if __name__ == '__main__':
|
638 |
+
img_size = 224
|
639 |
+
x = torch.rand(16, 3, img_size, img_size).cuda()
|
640 |
+
# model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96)
|
641 |
+
# model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], focal_factors=[2])
|
642 |
+
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3]).cuda()
|
643 |
+
print(model); model(x)
|
644 |
+
|
645 |
+
flops = model.flops()
|
646 |
+
print(f"number of GFLOPs: {flops / 1e9}")
|
647 |
+
|
648 |
+
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
649 |
+
print(f"number of params: {n_parameters}")
|
model/image_encoder/swin_transformer.py
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.utils.checkpoint as checkpoint
|
11 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
12 |
+
|
13 |
+
|
14 |
+
class Mlp(nn.Module):
|
15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
+
super().__init__()
|
17 |
+
out_features = out_features or in_features
|
18 |
+
hidden_features = hidden_features or in_features
|
19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
+
self.act = act_layer()
|
21 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
22 |
+
self.drop = nn.Dropout(drop)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
x = self.fc1(x)
|
26 |
+
x = self.act(x)
|
27 |
+
x = self.drop(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
x = self.drop(x)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def window_partition(x, window_size):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
x: (B, H, W, C)
|
37 |
+
window_size (int): window size
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
x: (B, H, W, C)
|
58 |
+
"""
|
59 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
60 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
61 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class WindowAttention(nn.Module):
|
66 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
67 |
+
It supports both of shifted and non-shifted window.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
dim (int): Number of input channels.
|
71 |
+
window_size (tuple[int]): The height and width of the window.
|
72 |
+
num_heads (int): Number of attention heads.
|
73 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
74 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
75 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
76 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
80 |
+
|
81 |
+
super().__init__()
|
82 |
+
self.dim = dim
|
83 |
+
self.window_size = window_size # Wh, Ww
|
84 |
+
self.num_heads = num_heads
|
85 |
+
head_dim = dim // num_heads
|
86 |
+
self.scale = qk_scale or head_dim ** -0.5
|
87 |
+
|
88 |
+
# define a parameter table of relative position bias
|
89 |
+
self.relative_position_bias_table = nn.Parameter(
|
90 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
91 |
+
|
92 |
+
# get pair-wise relative position index for each token inside the window
|
93 |
+
coords_h = torch.arange(self.window_size[0])
|
94 |
+
coords_w = torch.arange(self.window_size[1])
|
95 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
96 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
97 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
98 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
99 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
100 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
101 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
102 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
103 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
104 |
+
|
105 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
106 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
107 |
+
self.proj = nn.Linear(dim, dim)
|
108 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
109 |
+
|
110 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
111 |
+
self.softmax = nn.Softmax(dim=-1)
|
112 |
+
|
113 |
+
def forward(self, x, mask=None):
|
114 |
+
"""
|
115 |
+
Args:
|
116 |
+
x: input features with shape of (num_windows*B, N, C)
|
117 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
118 |
+
"""
|
119 |
+
B_, N, C = x.shape
|
120 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
121 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
122 |
+
|
123 |
+
q = q * self.scale
|
124 |
+
attn = (q @ k.transpose(-2, -1))
|
125 |
+
|
126 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
127 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
128 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
129 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
130 |
+
|
131 |
+
if mask is not None:
|
132 |
+
nW = mask.shape[0]
|
133 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
134 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
135 |
+
attn = self.softmax(attn)
|
136 |
+
else:
|
137 |
+
attn = self.softmax(attn)
|
138 |
+
|
139 |
+
attn = self.attn_drop(attn)
|
140 |
+
|
141 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
142 |
+
x = self.proj(x)
|
143 |
+
x = self.proj_drop(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
def extra_repr(self) -> str:
|
147 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
148 |
+
|
149 |
+
def flops(self, N):
|
150 |
+
# calculate flops for 1 window with token length of N
|
151 |
+
flops = 0
|
152 |
+
# qkv = self.qkv(x)
|
153 |
+
flops += N * self.dim * 3 * self.dim
|
154 |
+
# attn = (q @ k.transpose(-2, -1))
|
155 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
156 |
+
# x = (attn @ v)
|
157 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
158 |
+
# x = self.proj(x)
|
159 |
+
flops += N * self.dim * self.dim
|
160 |
+
return flops
|
161 |
+
|
162 |
+
|
163 |
+
class SwinTransformerBlock(nn.Module):
|
164 |
+
r""" Swin Transformer Block.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
dim (int): Number of input channels.
|
168 |
+
input_resolution (tuple[int]): Input resulotion.
|
169 |
+
num_heads (int): Number of attention heads.
|
170 |
+
window_size (int): Window size.
|
171 |
+
shift_size (int): Shift size for SW-MSA.
|
172 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
173 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
174 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
175 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
176 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
177 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
178 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
179 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
183 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
184 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
185 |
+
super().__init__()
|
186 |
+
self.dim = dim
|
187 |
+
self.input_resolution = input_resolution
|
188 |
+
self.num_heads = num_heads
|
189 |
+
self.window_size = window_size
|
190 |
+
self.shift_size = shift_size
|
191 |
+
self.mlp_ratio = mlp_ratio
|
192 |
+
if min(self.input_resolution) <= self.window_size:
|
193 |
+
# if window size is larger than input resolution, we don't partition windows
|
194 |
+
self.shift_size = 0
|
195 |
+
self.window_size = min(self.input_resolution)
|
196 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
197 |
+
|
198 |
+
self.norm1 = norm_layer(dim)
|
199 |
+
self.attn = WindowAttention(
|
200 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
201 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
202 |
+
|
203 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
204 |
+
self.norm2 = norm_layer(dim)
|
205 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
206 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
207 |
+
|
208 |
+
if self.shift_size > 0:
|
209 |
+
# calculate attention mask for SW-MSA
|
210 |
+
H, W = self.input_resolution
|
211 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
212 |
+
h_slices = (slice(0, -self.window_size),
|
213 |
+
slice(-self.window_size, -self.shift_size),
|
214 |
+
slice(-self.shift_size, None))
|
215 |
+
w_slices = (slice(0, -self.window_size),
|
216 |
+
slice(-self.window_size, -self.shift_size),
|
217 |
+
slice(-self.shift_size, None))
|
218 |
+
cnt = 0
|
219 |
+
for h in h_slices:
|
220 |
+
for w in w_slices:
|
221 |
+
img_mask[:, h, w, :] = cnt
|
222 |
+
cnt += 1
|
223 |
+
|
224 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
225 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
226 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
227 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
228 |
+
else:
|
229 |
+
attn_mask = None
|
230 |
+
|
231 |
+
self.register_buffer("attn_mask", attn_mask)
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
H, W = self.input_resolution
|
235 |
+
B, L, C = x.shape
|
236 |
+
assert L == H * W, "input feature has wrong size"
|
237 |
+
|
238 |
+
shortcut = x
|
239 |
+
x = self.norm1(x)
|
240 |
+
x = x.view(B, H, W, C)
|
241 |
+
|
242 |
+
# cyclic shift
|
243 |
+
if self.shift_size > 0:
|
244 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
245 |
+
else:
|
246 |
+
shifted_x = x
|
247 |
+
|
248 |
+
# partition windows
|
249 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
250 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
251 |
+
|
252 |
+
# W-MSA/SW-MSA
|
253 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
254 |
+
|
255 |
+
# merge windows
|
256 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
257 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
258 |
+
|
259 |
+
# reverse cyclic shift
|
260 |
+
if self.shift_size > 0:
|
261 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
262 |
+
else:
|
263 |
+
x = shifted_x
|
264 |
+
x = x.view(B, H * W, C)
|
265 |
+
|
266 |
+
# FFN
|
267 |
+
x = shortcut + self.drop_path(x)
|
268 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
269 |
+
|
270 |
+
return x
|
271 |
+
|
272 |
+
def extra_repr(self) -> str:
|
273 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
274 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
275 |
+
|
276 |
+
def flops(self):
|
277 |
+
flops = 0
|
278 |
+
H, W = self.input_resolution
|
279 |
+
# norm1
|
280 |
+
flops += self.dim * H * W
|
281 |
+
# W-MSA/SW-MSA
|
282 |
+
nW = H * W / self.window_size / self.window_size
|
283 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
284 |
+
# mlp
|
285 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
286 |
+
# norm2
|
287 |
+
flops += self.dim * H * W
|
288 |
+
return flops
|
289 |
+
|
290 |
+
|
291 |
+
class PatchMerging(nn.Module):
|
292 |
+
r""" Patch Merging Layer.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
296 |
+
dim (int): Number of input channels.
|
297 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
298 |
+
"""
|
299 |
+
|
300 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
301 |
+
super().__init__()
|
302 |
+
self.input_resolution = input_resolution
|
303 |
+
self.dim = dim
|
304 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
305 |
+
self.norm = norm_layer(4 * dim)
|
306 |
+
|
307 |
+
def forward(self, x):
|
308 |
+
"""
|
309 |
+
x: B, H*W, C
|
310 |
+
"""
|
311 |
+
H, W = self.input_resolution
|
312 |
+
B, L, C = x.shape
|
313 |
+
assert L == H * W, "input feature has wrong size"
|
314 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
315 |
+
|
316 |
+
x = x.view(B, H, W, C)
|
317 |
+
|
318 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
319 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
320 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
321 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
322 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
323 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
324 |
+
|
325 |
+
x = self.norm(x)
|
326 |
+
x = self.reduction(x)
|
327 |
+
|
328 |
+
return x
|
329 |
+
|
330 |
+
def extra_repr(self) -> str:
|
331 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
332 |
+
|
333 |
+
def flops(self):
|
334 |
+
H, W = self.input_resolution
|
335 |
+
flops = H * W * self.dim
|
336 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
337 |
+
return flops
|
338 |
+
|
339 |
+
|
340 |
+
class BasicLayer(nn.Module):
|
341 |
+
""" A basic Swin Transformer layer for one stage.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
dim (int): Number of input channels.
|
345 |
+
input_resolution (tuple[int]): Input resolution.
|
346 |
+
depth (int): Number of blocks.
|
347 |
+
num_heads (int): Number of attention heads.
|
348 |
+
window_size (int): Local window size.
|
349 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
350 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
351 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
352 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
353 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
354 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
355 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
356 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
357 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
361 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
362 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
363 |
+
|
364 |
+
super().__init__()
|
365 |
+
self.dim = dim
|
366 |
+
self.input_resolution = input_resolution
|
367 |
+
self.depth = depth
|
368 |
+
self.use_checkpoint = use_checkpoint
|
369 |
+
|
370 |
+
# build blocks
|
371 |
+
self.blocks = nn.ModuleList([
|
372 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
373 |
+
num_heads=num_heads, window_size=window_size,
|
374 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
375 |
+
mlp_ratio=mlp_ratio,
|
376 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
377 |
+
drop=drop, attn_drop=attn_drop,
|
378 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
379 |
+
norm_layer=norm_layer)
|
380 |
+
for i in range(depth)])
|
381 |
+
|
382 |
+
# patch merging layer
|
383 |
+
if downsample is not None:
|
384 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
385 |
+
else:
|
386 |
+
self.downsample = None
|
387 |
+
|
388 |
+
def forward(self, x):
|
389 |
+
for blk in self.blocks:
|
390 |
+
if self.use_checkpoint:
|
391 |
+
x = checkpoint.checkpoint(blk, x)
|
392 |
+
else:
|
393 |
+
x = blk(x)
|
394 |
+
if self.downsample is not None:
|
395 |
+
x = self.downsample(x)
|
396 |
+
return x
|
397 |
+
|
398 |
+
def extra_repr(self) -> str:
|
399 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
400 |
+
|
401 |
+
def flops(self):
|
402 |
+
flops = 0
|
403 |
+
for blk in self.blocks:
|
404 |
+
flops += blk.flops()
|
405 |
+
if self.downsample is not None:
|
406 |
+
flops += self.downsample.flops()
|
407 |
+
return flops
|
408 |
+
|
409 |
+
|
410 |
+
class PatchEmbed(nn.Module):
|
411 |
+
r""" Image to Patch Embedding
|
412 |
+
|
413 |
+
Args:
|
414 |
+
img_size (int): Image size. Default: 224.
|
415 |
+
patch_size (int): Patch token size. Default: 4.
|
416 |
+
in_chans (int): Number of input image channels. Default: 3.
|
417 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
418 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
419 |
+
"""
|
420 |
+
|
421 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
422 |
+
super().__init__()
|
423 |
+
img_size = to_2tuple(img_size)
|
424 |
+
patch_size = to_2tuple(patch_size)
|
425 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
426 |
+
self.img_size = img_size
|
427 |
+
self.patch_size = patch_size
|
428 |
+
self.patches_resolution = patches_resolution
|
429 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
430 |
+
|
431 |
+
self.in_chans = in_chans
|
432 |
+
self.embed_dim = embed_dim
|
433 |
+
|
434 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
435 |
+
if norm_layer is not None:
|
436 |
+
self.norm = norm_layer(embed_dim)
|
437 |
+
else:
|
438 |
+
self.norm = None
|
439 |
+
|
440 |
+
def forward(self, x):
|
441 |
+
B, C, H, W = x.shape
|
442 |
+
# FIXME look at relaxing size constraints
|
443 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
444 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
445 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
446 |
+
if self.norm is not None:
|
447 |
+
x = self.norm(x)
|
448 |
+
return x
|
449 |
+
|
450 |
+
def flops(self):
|
451 |
+
Ho, Wo = self.patches_resolution
|
452 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
453 |
+
if self.norm is not None:
|
454 |
+
flops += Ho * Wo * self.embed_dim
|
455 |
+
return flops
|
456 |
+
|
457 |
+
|
458 |
+
class SwinTransformer(nn.Module):
|
459 |
+
r""" Swin Transformer
|
460 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
461 |
+
https://arxiv.org/pdf/2103.14030
|
462 |
+
|
463 |
+
Args:
|
464 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
465 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
466 |
+
in_chans (int): Number of input image channels. Default: 3
|
467 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
468 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
469 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
470 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
471 |
+
window_size (int): Window size. Default: 7
|
472 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
473 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
474 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
475 |
+
drop_rate (float): Dropout rate. Default: 0
|
476 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
477 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
478 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
479 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
480 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
481 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
482 |
+
"""
|
483 |
+
|
484 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
|
485 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
486 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
487 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
488 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
489 |
+
use_checkpoint=False, **kwargs):
|
490 |
+
super().__init__()
|
491 |
+
|
492 |
+
self.num_classes = num_classes
|
493 |
+
self.num_layers = len(depths)
|
494 |
+
self.embed_dim = embed_dim
|
495 |
+
self.ape = ape
|
496 |
+
self.patch_norm = patch_norm
|
497 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
498 |
+
self.mlp_ratio = mlp_ratio
|
499 |
+
|
500 |
+
# split image into non-overlapping patches
|
501 |
+
self.patch_embed = PatchEmbed(
|
502 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
503 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
504 |
+
num_patches = self.patch_embed.num_patches
|
505 |
+
patches_resolution = self.patch_embed.patches_resolution
|
506 |
+
self.patches_resolution = patches_resolution
|
507 |
+
|
508 |
+
# absolute position embedding
|
509 |
+
if self.ape:
|
510 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
511 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
512 |
+
|
513 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
514 |
+
|
515 |
+
# stochastic depth
|
516 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
517 |
+
|
518 |
+
# build layers
|
519 |
+
self.layers = nn.ModuleList()
|
520 |
+
for i_layer in range(self.num_layers):
|
521 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
522 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
523 |
+
patches_resolution[1] // (2 ** i_layer)),
|
524 |
+
depth=depths[i_layer],
|
525 |
+
num_heads=num_heads[i_layer],
|
526 |
+
window_size=window_size,
|
527 |
+
mlp_ratio=self.mlp_ratio,
|
528 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
529 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
530 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
531 |
+
norm_layer=norm_layer,
|
532 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
533 |
+
use_checkpoint=use_checkpoint)
|
534 |
+
self.layers.append(layer)
|
535 |
+
|
536 |
+
self.norm = norm_layer(self.num_features)
|
537 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
538 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
539 |
+
self.dim_out = self.num_features
|
540 |
+
|
541 |
+
self.apply(self._init_weights)
|
542 |
+
|
543 |
+
def _init_weights(self, m):
|
544 |
+
if isinstance(m, nn.Linear):
|
545 |
+
trunc_normal_(m.weight, std=.02)
|
546 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
547 |
+
nn.init.constant_(m.bias, 0)
|
548 |
+
elif isinstance(m, nn.LayerNorm):
|
549 |
+
nn.init.constant_(m.bias, 0)
|
550 |
+
nn.init.constant_(m.weight, 1.0)
|
551 |
+
|
552 |
+
@torch.jit.ignore
|
553 |
+
def no_weight_decay(self):
|
554 |
+
return {'absolute_pos_embed'}
|
555 |
+
|
556 |
+
@torch.jit.ignore
|
557 |
+
def no_weight_decay_keywords(self):
|
558 |
+
return {'relative_position_bias_table'}
|
559 |
+
|
560 |
+
def forward_features(self, x):
|
561 |
+
x = self.patch_embed(x)
|
562 |
+
if self.ape:
|
563 |
+
x = x + self.absolute_pos_embed
|
564 |
+
x = self.pos_drop(x)
|
565 |
+
|
566 |
+
for layer in self.layers:
|
567 |
+
x = layer(x)
|
568 |
+
|
569 |
+
x = self.norm(x) # B L C
|
570 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
571 |
+
x = torch.flatten(x, 1)
|
572 |
+
return x
|
573 |
+
|
574 |
+
def forward(self, x):
|
575 |
+
x = self.forward_features(x)
|
576 |
+
x = self.head(x)
|
577 |
+
return x
|
578 |
+
|
579 |
+
def flops(self):
|
580 |
+
flops = 0
|
581 |
+
flops += self.patch_embed.flops()
|
582 |
+
for i, layer in enumerate(self.layers):
|
583 |
+
flops += layer.flops()
|
584 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
585 |
+
flops += self.num_features * self.num_classes
|
586 |
+
return flops
|
model/model.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
import tempfile
|
3 |
+
from collections import OrderedDict
|
4 |
+
from typing import Tuple, Union
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from timm.models.layers import DropPath, trunc_normal_
|
14 |
+
|
15 |
+
from .image_encoder import build_image_encoder
|
16 |
+
from .text_encoder import build_text_encoder
|
17 |
+
from .text_encoder import build_tokenizer
|
18 |
+
from .templates import DEFAULT_TEMPLATES
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class UniCLModel(nn.Module):
|
24 |
+
def __init__(self, config: dict,):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.conf_lang_encoder = config['MODEL']['TEXT_ENCODER']
|
28 |
+
self.tokenizer = build_tokenizer(self.conf_lang_encoder)
|
29 |
+
|
30 |
+
self.text_encoder = build_text_encoder(self.conf_lang_encoder, self.tokenizer, config['VERBOSE'])
|
31 |
+
|
32 |
+
dim_projection = config['MODEL']['DIM_PROJECTION']
|
33 |
+
if hasattr(self.text_encoder, 'dim_out'):
|
34 |
+
dim_out = self.text_encoder.dim_out
|
35 |
+
else:
|
36 |
+
with torch.no_grad():
|
37 |
+
dim_out = self.text_encoder(
|
38 |
+
torch.zeros(1,1).type(torch.LongTensor)
|
39 |
+
)['last_hidden_state'].size(2)
|
40 |
+
|
41 |
+
self.text_projection = nn.Parameter(torch.empty(dim_out, dim_projection))
|
42 |
+
|
43 |
+
self.conf_image_encoder = config['MODEL']['IMAGE_ENCODER']
|
44 |
+
self.image_encoder = build_image_encoder(self.conf_image_encoder)
|
45 |
+
|
46 |
+
self.image_projection = nn.Parameter(
|
47 |
+
torch.empty(self.image_encoder.dim_out, dim_projection)
|
48 |
+
)
|
49 |
+
|
50 |
+
self.logit_scale = nn.Parameter(torch.ones([]))
|
51 |
+
|
52 |
+
trunc_normal_(self.text_projection, std=.02)
|
53 |
+
trunc_normal_(self.image_projection, std=.02)
|
54 |
+
|
55 |
+
def _convert_old_weights(self, model_dict):
|
56 |
+
model_dict_updated = {}
|
57 |
+
for k, v in model_dict.items():
|
58 |
+
if k.startswith('visual.'):
|
59 |
+
model_dict_updated['image_encoder.'+k[7:]] = v
|
60 |
+
elif k.startswith('text.'):
|
61 |
+
model_dict_updated['lang_encoder.'+k[5:]] = v
|
62 |
+
elif k == 'vision_projection':
|
63 |
+
model_dict_updated['image_projection'] = v
|
64 |
+
elif k == 'text_projection':
|
65 |
+
model_dict_updated['text_projection'] = v
|
66 |
+
else:
|
67 |
+
model_dict_updated[k] = v
|
68 |
+
|
69 |
+
return model_dict_updated
|
70 |
+
|
71 |
+
def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
|
72 |
+
if not os.path.isfile(pretrained):
|
73 |
+
logger.warning(f'=> Pretrained model ({pretrained}) is not a file, skip init weight')
|
74 |
+
return
|
75 |
+
|
76 |
+
pretrained_dict = torch.load(pretrained, map_location='cpu')
|
77 |
+
logger.info(f'=> Loading pretrained model {pretrained}')
|
78 |
+
pretrained_dict = self._convert_old_weights(pretrained_dict)
|
79 |
+
model_dict = self.state_dict()
|
80 |
+
pretrained_dict = {
|
81 |
+
k: v for k, v in pretrained_dict.items()
|
82 |
+
if k in model_dict.keys()
|
83 |
+
}
|
84 |
+
need_init_state_dict = {}
|
85 |
+
image_encoder_state_dict = {}
|
86 |
+
for k, v in pretrained_dict.items():
|
87 |
+
need_init = (
|
88 |
+
k.split('.')[0] in pretrained_layers
|
89 |
+
or pretrained_layers[0] == '*'
|
90 |
+
)
|
91 |
+
|
92 |
+
if need_init:
|
93 |
+
if k.startswith('image_encoder.'):
|
94 |
+
image_encoder_state_dict[k] = v
|
95 |
+
else:
|
96 |
+
if verbose:
|
97 |
+
logger.info(f'=> init {k} from {pretrained}')
|
98 |
+
|
99 |
+
need_init_state_dict[k] = v
|
100 |
+
self.image_encoder.from_state_dict(image_encoder_state_dict, ['*'], verbose)
|
101 |
+
self.load_state_dict(need_init_state_dict, strict=False)
|
102 |
+
|
103 |
+
@torch.jit.ignore
|
104 |
+
def no_weight_decay(self):
|
105 |
+
no_weight_decay = {'logit_scale'}
|
106 |
+
if hasattr(self.text_encoder, 'no_weight_decay'):
|
107 |
+
for k in self.text_encoder.no_weight_decay():
|
108 |
+
no_weight_decay.add('lang_encoder.'+k)
|
109 |
+
|
110 |
+
if hasattr(self.image_encoder, 'no_weight_decay'):
|
111 |
+
for k in self.image_encoder.no_weight_decay():
|
112 |
+
no_weight_decay.add('image_encoder.'+k)
|
113 |
+
|
114 |
+
return no_weight_decay
|
115 |
+
|
116 |
+
@property
|
117 |
+
def dtype(self):
|
118 |
+
return self.logit_scale.dtype
|
119 |
+
|
120 |
+
def get_imnet_embeddings(self):
|
121 |
+
templates = IMAGENET_DEFAULT_TEMPLATES[:1]
|
122 |
+
clss_embeddings = []
|
123 |
+
for clss in IMAGENET_CLASSES:
|
124 |
+
txts = [template.format(clss) for template in templates]
|
125 |
+
|
126 |
+
tokens = self.tokenizer(
|
127 |
+
txts, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
|
128 |
+
)
|
129 |
+
tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}
|
130 |
+
|
131 |
+
clss_embedding = self.encode_text(tokens)
|
132 |
+
clss_embedding = clss_embedding.mean(dim=0)
|
133 |
+
clss_embedding /= clss_embedding.norm()
|
134 |
+
clss_embeddings.append(clss_embedding)
|
135 |
+
imnet_text_embeddings = torch.stack(clss_embeddings, dim=0)
|
136 |
+
return imnet_text_embeddings
|
137 |
+
|
138 |
+
def get_text_embeddings(self, texts):
|
139 |
+
templates = DEFAULT_TEMPLATES[:1]
|
140 |
+
clss_embeddings = []
|
141 |
+
for clss in texts:
|
142 |
+
txts = [template.format(clss) for template in templates]
|
143 |
+
|
144 |
+
tokens = self.tokenizer(
|
145 |
+
txts, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
|
146 |
+
)
|
147 |
+
tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}
|
148 |
+
|
149 |
+
clss_embedding = self.encode_text(tokens)
|
150 |
+
clss_embedding = clss_embedding.mean(dim=0)
|
151 |
+
clss_embedding /= clss_embedding.norm()
|
152 |
+
clss_embeddings.append(clss_embedding)
|
153 |
+
imnet_text_embeddings = torch.stack(clss_embeddings, dim=0)
|
154 |
+
return imnet_text_embeddings
|
155 |
+
|
156 |
+
def encode_image(self, image, norm=True):
|
157 |
+
x = self.image_encoder.forward_features(image)
|
158 |
+
x = x @ self.image_projection
|
159 |
+
|
160 |
+
if norm:
|
161 |
+
x = x / x.norm(dim=-1, keepdim=True)
|
162 |
+
|
163 |
+
return x
|
164 |
+
|
165 |
+
def encode_text(self, text, norm=True):
|
166 |
+
x = self.text_encoder(**text)
|
167 |
+
x = x['last_hidden_state']
|
168 |
+
|
169 |
+
if self.conf_lang_encoder['TOKENIZER'] == 'clip':
|
170 |
+
x = x[torch.arange(x.size(0)), text['input_ids'].argmax(dim=-1)]
|
171 |
+
else:
|
172 |
+
x = x[:, 0]
|
173 |
+
|
174 |
+
x = x @ self.text_projection
|
175 |
+
|
176 |
+
if norm:
|
177 |
+
x = x / x.norm(dim=-1, keepdim=True)
|
178 |
+
|
179 |
+
return x
|
180 |
+
|
181 |
+
def forward(self, image, text):
|
182 |
+
features_image = self.encode_image(image)
|
183 |
+
features_text = self.encode_text(text)
|
184 |
+
|
185 |
+
# cosine similarity as logits
|
186 |
+
T = self.logit_scale.exp()
|
187 |
+
|
188 |
+
return features_image, features_text, T
|
189 |
+
|
190 |
+
|
191 |
+
def build_unicl_model(config, **kwargs):
|
192 |
+
model = UniCLModel(config)
|
193 |
+
if config['MODEL']['PRETRAINED'] != '':
|
194 |
+
pretrained_path = config['MODEL']['PRETRAINED']
|
195 |
+
from ..Utils.Utils import is_valid_url, download_file
|
196 |
+
if is_valid_url(pretrained_path):
|
197 |
+
with tempfile.TemporaryDirectory() as tmp_path:
|
198 |
+
file_local_path = pathlib.Path(tmp_path) / 'base_model.pt'
|
199 |
+
download_file(pretrained_path, file_local_path)
|
200 |
+
model.from_pretrained(str(file_local_path), config['MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])
|
201 |
+
else:
|
202 |
+
model.from_pretrained(pretrained_path, config['MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])
|
203 |
+
|
204 |
+
return model
|
model/templates.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEFAULT_TEMPLATES = [
|
2 |
+
'{}.',
|
3 |
+
'a bad photo of a {}.',
|
4 |
+
'a photo of many {}.',
|
5 |
+
'a sculpture of a {}.',
|
6 |
+
'a photo of the hard to see {}.',
|
7 |
+
'a low resolution photo of the {}.',
|
8 |
+
'a rendering of a {}.',
|
9 |
+
'graffiti of a {}.',
|
10 |
+
'a bad photo of the {}.',
|
11 |
+
'a cropped photo of the {}.',
|
12 |
+
'a tattoo of a {}.',
|
13 |
+
'the embroidered {}.',
|
14 |
+
'a photo of a hard to see {}.',
|
15 |
+
'a bright photo of a {}.',
|
16 |
+
'a photo of a clean {}.',
|
17 |
+
'a photo of a dirty {}.',
|
18 |
+
'a dark photo of the {}.',
|
19 |
+
'a drawing of a {}.',
|
20 |
+
'a photo of my {}.',
|
21 |
+
'the plastic {}.',
|
22 |
+
'a photo of the cool {}.',
|
23 |
+
'a close-up photo of a {}.',
|
24 |
+
'a black and white photo of the {}.',
|
25 |
+
'a painting of the {}.',
|
26 |
+
'a painting of a {}.',
|
27 |
+
'a pixelated photo of the {}.',
|
28 |
+
'a sculpture of the {}.',
|
29 |
+
'a bright photo of the {}.',
|
30 |
+
'a cropped photo of a {}.',
|
31 |
+
'a plastic {}.',
|
32 |
+
'a photo of the dirty {}.',
|
33 |
+
'a jpeg corrupted photo of a {}.',
|
34 |
+
'a blurry photo of the {}.',
|
35 |
+
'a photo of the {}.',
|
36 |
+
'a good photo of the {}.',
|
37 |
+
'a rendering of the {}.',
|
38 |
+
'a {} in a video game.',
|
39 |
+
'a photo of one {}.',
|
40 |
+
'a doodle of a {}.',
|
41 |
+
'a close-up photo of the {}.',
|
42 |
+
'a photo of a {}.',
|
43 |
+
'the origami {}.',
|
44 |
+
'the {} in a video game.',
|
45 |
+
'a sketch of a {}.',
|
46 |
+
'a doodle of the {}.',
|
47 |
+
'a origami {}.',
|
48 |
+
'a low resolution photo of a {}.',
|
49 |
+
'the toy {}.',
|
50 |
+
'a rendition of the {}.',
|
51 |
+
'a photo of the clean {}.',
|
52 |
+
'a photo of a large {}.',
|
53 |
+
'a rendition of a {}.',
|
54 |
+
'a photo of a nice {}.',
|
55 |
+
'a photo of a weird {}.',
|
56 |
+
'a blurry photo of a {}.',
|
57 |
+
'a cartoon {}.',
|
58 |
+
'art of a {}.',
|
59 |
+
'a sketch of the {}.',
|
60 |
+
'a embroidered {}.',
|
61 |
+
'a pixelated photo of a {}.',
|
62 |
+
'itap of the {}.',
|
63 |
+
'a jpeg corrupted photo of the {}.',
|
64 |
+
'a good photo of a {}.',
|
65 |
+
'a plushie {}.',
|
66 |
+
'a photo of the nice {}.',
|
67 |
+
'a photo of the small {}.',
|
68 |
+
'a photo of the weird {}.',
|
69 |
+
'the cartoon {}.',
|
70 |
+
'art of the {}.',
|
71 |
+
'a drawing of the {}.',
|
72 |
+
'a photo of the large {}.',
|
73 |
+
'a black and white photo of a {}.',
|
74 |
+
'the plushie {}.',
|
75 |
+
'a dark photo of a {}.',
|
76 |
+
'itap of a {}.',
|
77 |
+
'graffiti of the {}.',
|
78 |
+
'a toy {}.',
|
79 |
+
'itap of my {}.',
|
80 |
+
'a photo of a cool {}.',
|
81 |
+
'a photo of a small {}.',
|
82 |
+
'a tattoo of the {}.',
|
83 |
+
]
|
model/text_encoder/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
from __future__ import division
|
3 |
+
from __future__ import print_function
|
4 |
+
|
5 |
+
from .build import build_lang_encoder as build_text_encoder
|
6 |
+
from .build import build_tokenizer
|
7 |
+
|
8 |
+
from .transformer import *
|
9 |
+
from .hf_model import *
|
model/text_encoder/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (415 Bytes). View file
|
|
model/text_encoder/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (420 Bytes). View file
|
|
model/text_encoder/__pycache__/build.cpython-38.pyc
ADDED
Binary file (1.01 kB). View file
|
|
model/text_encoder/__pycache__/build.cpython-39.pyc
ADDED
Binary file (1.01 kB). View file
|
|
model/text_encoder/__pycache__/hf_model.cpython-38.pyc
ADDED
Binary file (786 Bytes). View file
|
|
model/text_encoder/__pycache__/hf_model.cpython-39.pyc
ADDED
Binary file (791 Bytes). View file
|
|
model/text_encoder/__pycache__/registry.cpython-38.pyc
ADDED
Binary file (598 Bytes). View file
|
|
model/text_encoder/__pycache__/registry.cpython-39.pyc
ADDED
Binary file (603 Bytes). View file
|
|
model/text_encoder/__pycache__/transformer.cpython-38.pyc
ADDED
Binary file (6.79 kB). View file
|
|
model/text_encoder/__pycache__/transformer.cpython-39.pyc
ADDED
Binary file (6.78 kB). View file
|
|
model/text_encoder/build.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from transformers import CLIPTokenizer
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
from .registry import lang_encoders
|
7 |
+
from .registry import is_lang_encoder
|
8 |
+
|
9 |
+
|
10 |
+
def build_lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
|
11 |
+
model_name = config_encoder['NAME']
|
12 |
+
|
13 |
+
if not is_lang_encoder(model_name):
|
14 |
+
raise ValueError(f'Unknown model: {model_name}')
|
15 |
+
|
16 |
+
return lang_encoders(model_name)(config_encoder, tokenizer, verbose, **kwargs)
|
17 |
+
|
18 |
+
|
19 |
+
def build_tokenizer(config_encoder):
|
20 |
+
tokenizer = None
|
21 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
22 |
+
if config_encoder['TOKENIZER'] == 'clip':
|
23 |
+
pretrained_tokenizer = config_encoder.get(
|
24 |
+
'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32'
|
25 |
+
)
|
26 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_tokenizer)
|
27 |
+
tokenizer.add_special_tokens({'cls_token': tokenizer.eos_token})
|
28 |
+
else:
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(config_encoder['TOKENIZER'])
|
30 |
+
|
31 |
+
return tokenizer
|
model/text_encoder/hf_model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from transformers import AutoConfig
|
4 |
+
from transformers import AutoModel
|
5 |
+
|
6 |
+
from .registry import register_lang_encoder
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
@register_lang_encoder
|
12 |
+
def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
|
13 |
+
|
14 |
+
hf_model = None
|
15 |
+
if config_encoder['LOAD_PRETRAINED']:
|
16 |
+
hf_model = AutoModel.from_pretrained(config_encoder['HF_MODEL'])
|
17 |
+
else:
|
18 |
+
hf_config = AutoConfig.from_pretrained(config_encoder['HF_MODEL'])
|
19 |
+
|
20 |
+
if 'CONFIG_OVERRIDE' in config_encoder:
|
21 |
+
logger.warning(f'Override config: {config_encoder["CONFIG_OVERRIDE"]}')
|
22 |
+
hf_config.update(config_encoder['CONFIG_OVERRIDE'])
|
23 |
+
|
24 |
+
logger.info(f'HF model config: {hf_config}')
|
25 |
+
hf_model = AutoModel.from_config(hf_config)
|
26 |
+
|
27 |
+
return hf_model
|
model/text_encoder/registry.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_lang_encoders = {}
|
2 |
+
|
3 |
+
|
4 |
+
def register_lang_encoder(fn):
|
5 |
+
module_name_split = fn.__module__.split('.')
|
6 |
+
model_name = module_name_split[-1]
|
7 |
+
|
8 |
+
_lang_encoders[model_name] = fn
|
9 |
+
|
10 |
+
return fn
|
11 |
+
|
12 |
+
|
13 |
+
def lang_encoders(model_name):
|
14 |
+
return _lang_encoders[model_name]
|
15 |
+
|
16 |
+
|
17 |
+
def is_lang_encoder(model_name):
|
18 |
+
return model_name in _lang_encoders
|
model/text_encoder/transformer.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from timm.models.layers import DropPath, trunc_normal_
|
12 |
+
|
13 |
+
from .registry import register_lang_encoder
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, hidden_size, eps=1e-12):
|
19 |
+
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
20 |
+
"""
|
21 |
+
super(LayerNorm, self).__init__()
|
22 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
23 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
24 |
+
self.variance_epsilon = eps
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
pdtype = x.dtype
|
28 |
+
x = x.float()
|
29 |
+
u = x.mean(-1, keepdim=True)
|
30 |
+
s = (x - u).pow(2).mean(-1, keepdim=True)
|
31 |
+
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
32 |
+
return self.weight * x.to(pdtype) + self.bias
|
33 |
+
|
34 |
+
|
35 |
+
class QuickGELU(nn.Module):
|
36 |
+
def forward(self, x: torch.Tensor):
|
37 |
+
return x * torch.sigmoid(1.702 * x)
|
38 |
+
|
39 |
+
|
40 |
+
class ResidualAttentionBlock(nn.Module):
|
41 |
+
def __init__(self,
|
42 |
+
d_model: int,
|
43 |
+
n_head: int,
|
44 |
+
attn_mask: torch.Tensor = None,
|
45 |
+
drop_path: float = 0.0):
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
49 |
+
self.ln_1 = LayerNorm(d_model)
|
50 |
+
self.mlp = nn.Sequential(OrderedDict([
|
51 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
52 |
+
("gelu", QuickGELU()),
|
53 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
54 |
+
]))
|
55 |
+
self.ln_2 = LayerNorm(d_model)
|
56 |
+
self.attn_mask = attn_mask
|
57 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
58 |
+
|
59 |
+
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
|
60 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
|
61 |
+
if self.attn_mask is not None else None
|
62 |
+
|
63 |
+
|
64 |
+
return self.attn(
|
65 |
+
x, x, x,
|
66 |
+
key_padding_mask=key_padding_mask,
|
67 |
+
need_weights=False,
|
68 |
+
attn_mask=self.attn_mask
|
69 |
+
)[0]
|
70 |
+
|
71 |
+
def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
|
72 |
+
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
|
73 |
+
x = x + self.drop_path(self.mlp(self.ln_2(x)))
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Transformer(nn.Module):
|
78 |
+
def __init__(self,
|
79 |
+
context_length: int,
|
80 |
+
vocab_size: int,
|
81 |
+
width: int,
|
82 |
+
layers: int,
|
83 |
+
heads: int,
|
84 |
+
drop_path: float = 0.0,
|
85 |
+
autogressive: bool =True):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
89 |
+
|
90 |
+
self.context_length = context_length
|
91 |
+
self.positional_embedding = nn.Parameter(
|
92 |
+
torch.empty(self.context_length, width)
|
93 |
+
)
|
94 |
+
|
95 |
+
self.width = width
|
96 |
+
self.layers = layers
|
97 |
+
self.autogressive = autogressive
|
98 |
+
attn_mask = self.build_attention_mask() if autogressive else None
|
99 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule
|
100 |
+
self.resblocks = nn.ModuleList(
|
101 |
+
[
|
102 |
+
ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
|
103 |
+
for i in range(layers)
|
104 |
+
]
|
105 |
+
)
|
106 |
+
|
107 |
+
self.ln_final = LayerNorm(width)
|
108 |
+
|
109 |
+
trunc_normal_(self.positional_embedding, std=.02)
|
110 |
+
# nn.init.normal_(self.token_embedding, std=.02)
|
111 |
+
trunc_normal_(self.token_embedding.weight, std=.02)
|
112 |
+
self.apply(self._init_weights)
|
113 |
+
|
114 |
+
@property
|
115 |
+
def dim_out(self):
|
116 |
+
return self.width
|
117 |
+
|
118 |
+
def build_attention_mask(self):
|
119 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
120 |
+
# pytorch uses additive attention mask; fill with -inf
|
121 |
+
mask = torch.empty(self.context_length, self.context_length)
|
122 |
+
mask.fill_(float("-inf"))
|
123 |
+
mask.triu_(1) # zero out the lower diagonal
|
124 |
+
return mask
|
125 |
+
|
126 |
+
def _init_weights(self, m):
|
127 |
+
if isinstance(m, (nn.Linear, nn.Conv2d)):
|
128 |
+
logger.info('=> init weight of Linear/Conv2d from trunc norm')
|
129 |
+
trunc_normal_(m.weight, std=0.02)
|
130 |
+
if m.bias is not None:
|
131 |
+
logger.info('=> init bias of Linear/Conv2d to zeros')
|
132 |
+
nn.init.constant_(m.bias, 0)
|
133 |
+
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
|
134 |
+
nn.init.constant_(m.bias, 0)
|
135 |
+
|
136 |
+
def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
|
137 |
+
if os.path.isfile(pretrained):
|
138 |
+
pretrained_dict = torch.load(pretrained, map_location='cpu')
|
139 |
+
logging.info(f'=> loading pretrained model {pretrained}')
|
140 |
+
model_dict = self.state_dict()
|
141 |
+
pretrained_dict = {
|
142 |
+
k: v for k, v in pretrained_dict.items()
|
143 |
+
if k in model_dict.keys()
|
144 |
+
}
|
145 |
+
need_init_state_dict = {}
|
146 |
+
for k, v in pretrained_dict.items():
|
147 |
+
need_init = (
|
148 |
+
k.split('.')[0] in pretrained_layers
|
149 |
+
or pretrained_layers[0] == '*'
|
150 |
+
)
|
151 |
+
if need_init:
|
152 |
+
if verbose:
|
153 |
+
logging.info(f'=> init {k} from {pretrained}')
|
154 |
+
|
155 |
+
need_init_state_dict[k] = v
|
156 |
+
self.load_state_dict(need_init_state_dict, strict=False)
|
157 |
+
|
158 |
+
|
159 |
+
@torch.jit.ignore
|
160 |
+
def no_weight_decay(self):
|
161 |
+
return {
|
162 |
+
'positional_embedding',
|
163 |
+
'token_embedding',
|
164 |
+
}
|
165 |
+
|
166 |
+
def forward(self, input_ids, attention_mask=None):
|
167 |
+
key_padding_mask = (input_ids == 0) if not self.autogressive else None
|
168 |
+
x = self.token_embedding(input_ids) # [batch_size, n_ctx, d_model]
|
169 |
+
x = x + self.positional_embedding
|
170 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
171 |
+
for block in self.resblocks:
|
172 |
+
x = block(x, key_padding_mask)
|
173 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
174 |
+
|
175 |
+
x = self.ln_final(x)
|
176 |
+
|
177 |
+
return {'last_hidden_state': x}
|
178 |
+
|
179 |
+
|
180 |
+
@register_lang_encoder
|
181 |
+
def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
|
182 |
+
transformer = Transformer(
|
183 |
+
context_length=config_encoder['CONTEXT_LENGTH'],
|
184 |
+
vocab_size=tokenizer.vocab_size,
|
185 |
+
width=config_encoder['WIDTH'],
|
186 |
+
layers=config_encoder['LAYERS'],
|
187 |
+
heads=config_encoder['HEADS'],
|
188 |
+
autogressive=config_encoder.get('AUTOGRESSIVE', True)
|
189 |
+
)
|
190 |
+
|
191 |
+
if config_encoder['LOAD_PRETRAINED']:
|
192 |
+
transformer.load_pretrained()
|
193 |
+
|
194 |
+
return transformer
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.10.1
|
2 |
+
torchvision==0.11.2
|
3 |
+
opencv-python-headless==4.5.3.56
|
4 |
+
timm==0.4.12
|
5 |
+
numpy
|
6 |
+
yacs
|
7 |
+
transformers
|