Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import fusion | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def read_calib(calib_path): | |
""" | |
Modify from https://github.com/utiasSTARS/pykitti/blob/d3e1bb81676e831886726cc5ed79ce1f049aef2c/pykitti/utils.py#L68 | |
:param calib_path: Path to a calibration text file. | |
:return: dict with calibration matrices. | |
""" | |
calib_all = {} | |
with open(calib_path, "r") as f: | |
for line in f.readlines(): | |
if line == "\n": | |
break | |
key, value = line.split(":", 1) | |
calib_all[key] = np.array([float(x) for x in value.split()]) | |
# reshape matrices | |
calib_out = {} | |
# 3x4 projection matrix for left camera | |
calib_out["P2"] = calib_all["P2"].reshape(3, 4) | |
calib_out["Tr"] = np.identity(4) # 4x4 matrix | |
calib_out["Tr"][:3, :4] = calib_all["Tr"].reshape(3, 4) | |
return calib_out | |
def vox2pix(cam_E, cam_k, | |
vox_origin, voxel_size, | |
img_W, img_H, | |
scene_size): | |
""" | |
compute the 2D projection of voxels centroids | |
Parameters: | |
---------- | |
cam_E: 4x4 | |
=camera pose in case of NYUv2 dataset | |
=Transformation from camera to lidar coordinate in case of SemKITTI | |
cam_k: 3x3 | |
camera intrinsics | |
vox_origin: (3,) | |
world(NYU)/lidar(SemKITTI) cooridnates of the voxel at index (0, 0, 0) | |
img_W: int | |
image width | |
img_H: int | |
image height | |
scene_size: (3,) | |
scene size in meter: (51.2, 51.2, 6.4) for SemKITTI and (4.8, 4.8, 2.88) for NYUv2 | |
Returns | |
------- | |
projected_pix: (N, 2) | |
Projected 2D positions of voxels | |
fov_mask: (N,) | |
Voxels mask indice voxels inside image's FOV | |
pix_z: (N,) | |
Voxels'distance to the sensor in meter | |
""" | |
# Compute the x, y, z bounding of the scene in meter | |
vol_bnds = np.zeros((3,2)) | |
vol_bnds[:,0] = vox_origin | |
vol_bnds[:,1] = vox_origin + np.array(scene_size) | |
# Compute the voxels centroids in lidar cooridnates | |
vol_dim = np.ceil((vol_bnds[:,1]- vol_bnds[:,0])/ voxel_size).copy(order='C').astype(int) | |
xv, yv, zv = np.meshgrid( | |
range(vol_dim[0]), | |
range(vol_dim[1]), | |
range(vol_dim[2]), | |
indexing='ij' | |
) | |
vox_coords = np.concatenate([ | |
xv.reshape(1,-1), | |
yv.reshape(1,-1), | |
zv.reshape(1,-1) | |
], axis=0).astype(int).T | |
# Project voxels'centroid from lidar coordinates to camera coordinates | |
cam_pts = fusion.TSDFVolume.vox2world(vox_origin, vox_coords, voxel_size) | |
cam_pts = fusion.rigid_transform(cam_pts, cam_E) | |
# Project camera coordinates to pixel positions | |
projected_pix = fusion.TSDFVolume.cam2pix(cam_pts, cam_k) | |
pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1] | |
# Eliminate pixels outside view frustum | |
pix_z = cam_pts[:, 2] | |
fov_mask = np.logical_and(pix_x >= 0, | |
np.logical_and(pix_x < img_W, | |
np.logical_and(pix_y >= 0, | |
np.logical_and(pix_y < img_H, | |
pix_z > 0)))) | |
return torch.from_numpy(projected_pix), torch.from_numpy(fov_mask), torch.from_numpy(pix_z) | |
def get_grid_coords(dims, resolution): | |
""" | |
:param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32]) | |
:return coords_grid: is the center coords of voxels in the grid | |
""" | |
g_xx = np.arange(0, dims[0] + 1) | |
g_yy = np.arange(0, dims[1] + 1) | |
sensor_pose = 10 | |
g_zz = np.arange(0, dims[2] + 1) | |
# Obtaining the grid with coords... | |
xx, yy, zz = np.meshgrid(g_xx[:-1], g_yy[:-1], g_zz[:-1]) | |
coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T | |
coords_grid = coords_grid.astype(np.float) | |
coords_grid = (coords_grid * resolution) + resolution / 2 | |
temp = np.copy(coords_grid) | |
temp[:, 0] = coords_grid[:, 1] | |
temp[:, 1] = coords_grid[:, 0] | |
coords_grid = np.copy(temp) | |
return coords_grid | |
def get_projections(img_W, img_H): | |
scale_3ds = [2, 4] | |
data = {} | |
for scale_3d in scale_3ds: | |
scene_size = (51.2, 51.2, 6.4) | |
vox_origin = np.array([0, -25.6, -2]) | |
voxel_size = 0.2 | |
calib = read_calib("calib.txt") | |
cam_k = calib["P2"][:3, :3] | |
T_velo_2_cam = calib["Tr"] | |
# compute the 3D-2D mapping | |
projected_pix, fov_mask, pix_z = vox2pix( | |
T_velo_2_cam, | |
cam_k, | |
vox_origin, | |
voxel_size * scale_3d, | |
img_W, | |
img_H, | |
scene_size, | |
) | |
data["projected_pix_{}".format(scale_3d)] = projected_pix | |
data["pix_z_{}".format(scale_3d)] = pix_z | |
data["fov_mask_{}".format(scale_3d)] = fov_mask | |
return data | |
def majority_pooling(grid, k_size=2): | |
result = np.zeros( | |
(grid.shape[0] // k_size, grid.shape[1] // k_size, grid.shape[2] // k_size) | |
) | |
for xx in range(0, int(np.floor(grid.shape[0] / k_size))): | |
for yy in range(0, int(np.floor(grid.shape[1] / k_size))): | |
for zz in range(0, int(np.floor(grid.shape[2] / k_size))): | |
sub_m = grid[ | |
(xx * k_size) : (xx * k_size) + k_size, | |
(yy * k_size) : (yy * k_size) + k_size, | |
(zz * k_size) : (zz * k_size) + k_size, | |
] | |
unique, counts = np.unique(sub_m, return_counts=True) | |
if True in ((unique != 0) & (unique != 255)): | |
# Remove counts with 0 and 255 | |
counts = counts[((unique != 0) & (unique != 255))] | |
unique = unique[((unique != 0) & (unique != 255))] | |
else: | |
if True in (unique == 0): | |
counts = counts[(unique != 255)] | |
unique = unique[(unique != 255)] | |
value = unique[np.argmax(counts)] | |
result[xx, yy, zz] = value | |
return result | |
def draw( | |
voxels, | |
# T_velo_2_cam, | |
# vox_origin, | |
fov_mask, | |
# img_size, | |
# f, | |
voxel_size=0.4, | |
# d=7, # 7m - determine the size of the mesh representing the camera | |
): | |
fov_mask = fov_mask.reshape(-1) | |
# Compute the voxels coordinates | |
grid_coords = get_grid_coords( | |
[voxels.shape[0], voxels.shape[1], voxels.shape[2]], voxel_size | |
) | |
# Attach the predicted class to every voxel | |
grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T | |
# Get the voxels inside FOV | |
fov_grid_coords = grid_coords[fov_mask, :] | |
# Get the voxels outside FOV | |
outfov_grid_coords = grid_coords[~fov_mask, :] | |
# Remove empty and unknown voxels | |
fov_voxels = fov_grid_coords[ | |
(fov_grid_coords[:, 3] > 0) & (fov_grid_coords[:, 3] < 255), : | |
] | |
# print(np.unique(fov_voxels[:, 3], return_counts=True)) | |
outfov_voxels = outfov_grid_coords[ | |
(outfov_grid_coords[:, 3] > 0) & (outfov_grid_coords[:, 3] < 255), : | |
] | |
# figure = mlab.figure(size=(1400, 1400), bgcolor=(1, 1, 1)) | |
colors = np.array( | |
[ | |
[0,0,0], | |
[100, 150, 245], | |
[100, 230, 245], | |
[30, 60, 150], | |
[80, 30, 180], | |
[100, 80, 250], | |
[255, 30, 30], | |
[255, 40, 200], | |
[150, 30, 90], | |
[255, 0, 255], | |
[255, 150, 255], | |
[75, 0, 75], | |
[175, 0, 75], | |
[255, 200, 0], | |
[255, 120, 50], | |
[0, 175, 0], | |
[135, 60, 0], | |
[150, 240, 80], | |
[255, 240, 150], | |
[255, 0, 0], | |
] | |
).astype(np.uint8) | |
pts_colors = [f'rgb({colors[int(i)][0]}, {colors[int(i)][1]}, {colors[int(i)][2]})' for i in fov_voxels[:, 3]] | |
out_fov_colors = [f'rgb({colors[int(i)][0]//3*2}, {colors[int(i)][1]//3*2}, {colors[int(i)][2]//3*2})' for i in outfov_voxels[:, 3]] | |
pts_colors = pts_colors + out_fov_colors | |
fov_voxels = np.concatenate([fov_voxels, outfov_voxels], axis=0) | |
x = fov_voxels[:, 0].flatten() | |
y = fov_voxels[:, 1].flatten() | |
z = fov_voxels[:, 2].flatten() | |
# label = fov_voxels[:, 3].flatten() | |
fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,mode='markers', | |
marker=dict( | |
size=2, | |
color=pts_colors, # set color to an array/list of desired values | |
# colorscale='Viridis', # choose a colorscale | |
opacity=1.0, | |
symbol='square' | |
))]) | |
fig.update_layout( | |
scene = dict( | |
aspectmode='data', | |
xaxis = dict( | |
backgroundcolor="rgb(255, 255, 255)", | |
gridcolor="black", | |
showbackground=True, | |
zerolinecolor="black", | |
nticks=4, | |
visible=False, | |
range=[-1,55],), | |
yaxis = dict( | |
backgroundcolor="rgb(255, 255, 255)", | |
gridcolor="black", | |
showbackground=True, | |
zerolinecolor="black", | |
visible=False, | |
nticks=4, range=[-1,55],), | |
zaxis = dict( | |
backgroundcolor="rgb(255, 255, 255)", | |
gridcolor="black", | |
showbackground=True, | |
zerolinecolor="black", | |
visible=False, | |
nticks=4, range=[-1,7],), | |
bgcolor="black", | |
), | |
) | |
# fig = px.scatter_3d( | |
# fov_voxels, | |
# x=fov_voxels[:, 0], y="y", z="z", color="label") | |
# Draw occupied inside FOV voxels | |
# plt_plot_fov = mlab.points3d( | |
# fov_voxels[:, 0], | |
# fov_voxels[:, 1], | |
# fov_voxels[:, 2], | |
# fov_voxels[:, 3], | |
# colormap="viridis", | |
# scale_factor=voxel_size - 0.05 * voxel_size, | |
# mode="cube", | |
# opacity=1.0, | |
# vmin=1, | |
# vmax=19, | |
# ) | |
# # Draw occupied outside FOV voxels | |
# plt_plot_outfov = mlab.points3d( | |
# outfov_voxels[:, 0], | |
# outfov_voxels[:, 1], | |
# outfov_voxels[:, 2], | |
# outfov_voxels[:, 3], | |
# colormap="viridis", | |
# scale_factor=voxel_size - 0.05 * voxel_size, | |
# mode="cube", | |
# opacity=1.0, | |
# vmin=1, | |
# vmax=19, | |
# ) | |
# plt_plot_fov.glyph.scale_mode = "scale_by_vector" | |
# plt_plot_outfov.glyph.scale_mode = "scale_by_vector" | |
# plt_plot_fov.module_manager.scalar_lut_manager.lut.table = colors | |
# outfov_colors = colors | |
# outfov_colors[:, :3] = outfov_colors[:, :3] // 3 * 2 | |
# plt_plot_outfov.module_manager.scalar_lut_manager.lut.table = outfov_colors | |
# mlab.show() | |
return fig |