import numpy as np from scipy.io.wavfile import read import torch def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).byte() # mask = (ids < lengths.unsqueeze(1).cuda()).cpu() # mask = mask.byte() return mask # probably I won't use it from here def load_wav_to_torch(full_path, sr): sampling_rate, data = read(full_path) assert sr == sampling_rate, "{} SR doesn't match {} on path {}".format( sr, sampling_rate, full_path) return torch.FloatTensor(data.astype(np.float32)) # probably I won't use it from here def load_filepaths_and_text(filename, sort_by_length, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] if sort_by_length: filepaths_and_text.sort(key=lambda x: len(x[1])) return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) # I understand this lets asynchronous processing return torch.autograd.Variable(x)