Spaces:
Running
Running
File size: 11,379 Bytes
af7ac2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# ONE EPOCH = one forward pass and one backward pass of all the training examples.
#
# BATCH SIZE = the number of training examples in one forward/backward pass. The
# higher the batch size, the more memory space you'll need.
#
# NUMBER OF ITERATIONS = number of passes, each pass using [batch size] number of
# examples. To be clear, one pass = one forward pass + one backward pass.
#
# Example: if you have 1000 training examples, and your batch size is 500, then
# it will take 2 iterations to complete 1 epoch.
import os
import time
import math
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from numpy import finfo
from Tacotron2 import tacotron_2
from fp16_optimizer import FP16_Optimizer
# from distributed import apply_gradient_allreduce
from loss_function import Tacotron2Loss
from logger import Tacotron2Logger
def batchnorm_to_float(module):
"""Converts batch norm modules to FP32"""
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.float()
for child in module.children():
batchnorm_to_float(child)
return module
def reduce_tensor(tensor, n_gpus):
# this function is recorded in the computation graph. Gradients propagating to the cloned tensor will propagate to
# the original tensor
rt = tensor.clone()
# Each rank has a tensor and all_reduce sums up all tensors from different ranks to all ranks. Computes the average
# of the tensor results of all ranks (a rank is a gpu as far as I understood):
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= n_gpus
return rt
def prepare_directories_and_logger(output_directory, log_directory, rank):
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
# logger = None
else:
logger = None
return logger
def warm_start_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
return model
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
optimizer.load_state_dict(checkpoint_dict['optimizer'])
learning_rate = checkpoint_dict['learning_rate']
iteration = checkpoint_dict['iteration']
print("Loaded checkpoint '{}' from iteration {}".format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(iteration, filepath))
torch.save({'iteration': iteration,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def init_distributed(hyper_params, n_gpus, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA"
print("Initializing distributed")
# Set CUDA device so everything is done on the right GPU
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
torch.distributed.init_process_group(backend=hyper_params['dist_backend'], rank=rank, world_size=n_gpus,
init_method=hyper_params['dist_url'], group_name=group_name)
print("Initializing distributed: Done")
def load_model(hyper_params):
# according to the documentation, it is recommended to move a model to GPU before constructing the optimizer
# model = tacotron_2(hyper_params).cuda()
model = tacotron_2(hyper_params)
if hyper_params['fp16_run']: # converts everything into half type (16 bits)
model = batchnorm_to_float(model.half())
model.decoder.attention_layer.score_mask_value = float(finfo('float16').min)
# if hyper_params['distributed_run']:
# model = apply_gradient_allreduce(model)
return model
def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank):
"""Handles all the validation scoring and printing"""
# We change to eval() because this is an evaluation stage and not a training
model.eval()
# temporarily set all the requires_grad flag to false
with torch.no_grad():
# Sampler that restricts data loading to a subset of the dataset. Distributed sampler for distributed batch.
# Which samples take (randomization?)
val_sampler = DistributedSampler(valset) if distributed_run else None
# data loader wraper to the validation data (same as for the training data)
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y = model.parse_batch(batch)
y_pred = model(x)
_, _, _, _, gst_scores = y_pred
if i == 0:
validation_gst_scores = gst_scores
else:
validation_gst_scores = torch.cat((validation_gst_scores, gst_scores), 0)
loss = criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() # gets the pure float value with item()
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1) # Averaged val_loss from all batches
model.train()
if rank == 0:
print("Validation loss {}: {:9f} ".format(iteration, val_loss)) # I changed this
# print("GST scores of the validation set: {}".format(validation_gst_scores.shape))
logger.log_validation(reduced_val_loss, model, y, y_pred, validation_gst_scores, iteration)
# ------------------------------------------- MAIN TRAINING METHOD -------------------------------------------------- #
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name,
hyper_params, train_loader, valset, collate_fn):
"""Training and validation method with logging results to tensorboard and stdout
:param output_directory (string): directory to save checkpoints
:param log_directory (string): directory to save tensorboard logs
:param checkpoint_path (string): checkpoint path
:param n_gpus (int): number of gpus
:param rank (int): rank of current gpu
:param hyper_params (object dictionary): dictionary with all hyper parameters
"""
# Check whether is a distributed running
if hyper_params['distributed_run']:
init_distributed(hyper_params, n_gpus, rank, group_name)
# set the same fixed seed to reproduce same results everytime we train
torch.manual_seed(hyper_params['seed'])
torch.cuda.manual_seed(hyper_params['seed'])
model = load_model(hyper_params)
learning_rate = hyper_params['learning_rate']
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hyper_params['weight_decay'])
if hyper_params['fp16_run']:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=hyper_params['dynamic_loss_scaling'])
# Define the criterion of the loss function. The objective.
criterion = Tacotron2Loss()
logger = prepare_directories_and_logger(output_directory, log_directory, rank)
# logger = ''
iteration = 0
epoch_offset = 0
if checkpoint_path is not None:
if warm_start:
# Re-start the model from the last checkpoint if we save the parameters and don't want to start from 0
model = warm_start_model(checkpoint_path, model)
else:
# CHECK THIS OUT!!!
model, optimizer, _learning_rate, iteration = load_checkpoint(checkpoint_path, model, optimizer)
if hyper_params['use_saved_learning_rate']:
learning_rate = _learning_rate
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
# Set this to make all modules and regularization aware this is the training stage:
model.train()
# MAIN LOOP
for epoch in range(epoch_offset, hyper_params['epochs']):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start = time.perf_counter()
# CHECK THIS OUT!!!
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
model.zero_grad()
input_data, output_target = model.parse_batch(batch)
output_predicted = model(input_data)
loss = criterion(output_predicted, output_target)
if hyper_params['distributed_run']:
reduced_loss = reduce_tensor(loss.data, n_gpus).item()
else:
reduced_loss = loss.item()
if hyper_params['fp16_run']:
optimizer.backward(loss) # transformed optimizer into fp16 type
grad_norm = optimizer.clip_fp32_grads(hyper_params['grad_clip_thresh'])
else:
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hyper_params['grad_clip_thresh'])
# Performs a single optimization step (parameter update)
optimizer.step()
# This boolean controls overflow when running in fp16 optimizer
overflow = optimizer.overflow if hyper_params['fp16_run'] else False
# If overflow is True, it will not enter. If isnan is True, it will not enter neither.
if not overflow and not math.isnan(reduced_loss) and rank == 0:
duration = time.perf_counter() - start
print("Train loss {} {:.6f} Grand Norm {:.6f} {:.2f}s/it".format(iteration, reduced_loss,
grad_norm, duration))
# logs training information of the current iteration
logger.log_training(reduced_loss, grad_norm, learning_rate, duration, iteration)
# Every iters_per_checkpoint steps there is a validation of the model and its updated parameters
if not overflow and (iteration % hyper_params['iters_per_checkpoint'] == 0):
validate(model, criterion, valset, iteration, hyper_params['batch_size'], n_gpus, collate_fn,
logger, hyper_params['distributed_run'], rank)
if rank == 0:
checkpoint_path = os.path.join(output_directory, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path)
iteration += 1
|