import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM # Fix random seed for reproducibility tf.random.set_seed(7) # Function to create the dataset matrix def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) def lstm_prediction(file, epochs): # Load the dataset dataframe = pd.read_csv(file, usecols=[1], engine='python', encoding="big5") dataset = dataframe.values dataset = dataset.astype('float32') # Normalize the dataset scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset) # Split into train and test sets train_size = int(len(dataset) * 0.8) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] # Create the dataset matrix look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) # Reshape input to be [samples, time steps, features] trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) # Create and fit the LSTM network model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') # Set up a callback to update Streamlit during training class StreamlitCallback(tf.keras.callbacks.Callback): def __init__(self): super().__init__() self.epoch_bar = st.progress(0) self.loss_placeholder = st.empty() def on_epoch_end(self, epoch, logs=None): self.epoch_bar.progress((epoch + 1) / epochs) self.loss_placeholder.text(f'Epoch {epoch + 1}/{epochs}, Loss: {logs["loss"]:.4f}') # Fit the model model.fit(trainX, trainY, epochs=epochs, batch_size=1, verbose=0, callbacks=[StreamlitCallback()]) # Make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # Invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # Calculate root mean squared error trainScore = np.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) testScore = np.sqrt(mean_squared_error(testY[0], testPredict[:,0])) # Prepare the plot trainPredictPlot = np.empty_like(dataset) trainPredictPlot[:, :] = np.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict testPredictPlot = np.empty_like(dataset) testPredictPlot[:, :] = np.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict plt.figure(figsize=(12, 8)) plt.plot(scaler.inverse_transform(dataset), label='Original Data', color='blue') plt.plot(trainPredictPlot, label='Training Predictions', linestyle='--', color='green') plt.plot(testPredictPlot, label='Test Predictions', linestyle='--', color='red') plt.xlabel('Time') plt.ylabel('Scaled Values') plt.title('Original Data and Predictions') plt.legend() plt.grid(True, linestyle='--', alpha=0.7) # Show the plot st.pyplot(plt) return trainScore, testScore st.title("LSTM Time Series Prediction") st.write("Upload a CSV file with time series data for prediction.") # File uploader uploaded_file = st.file_uploader("Choose a CSV file", type="csv") # Number input for epochs epochs = st.number_input("Enter number of epochs", min_value=1, max_value=1000, value=50, step=1) if uploaded_file is not None: train_score, test_score = lstm_prediction(uploaded_file, epochs) st.write(f'Train Score: {train_score:.2f} RMSE') st.write(f'Test Score: {test_score:.2f} RMSE')