S3BIR app demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +271 -0
- data/valid/Almohadas_y_cojines/6474eb7beca04255e216354707604caa.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_1.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_2.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_3.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_4.jpg +0 -0
- data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_5.jpg +0 -0
- data/valid/Almohadas_y_cojines/d319582ad5976fa0526871af907d75e5.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_1.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_2.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_3.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_4.jpg +0 -0
- data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_5.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_1.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_2.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_3.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_4.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_5.jpg +0 -0
- data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_6.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_1.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_2.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_3.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_4.jpg +0 -0
- data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_5.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_1.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_2.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_3.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_4.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_5.jpg +0 -0
- data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_6.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_1.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_2.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_3.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_4.jpg +0 -0
- data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_5.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_1.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_2.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_3.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_4.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_5.jpg +0 -0
- data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_6.jpg +0 -0
- data/valid/Baberos/e3188f410d687d5e9c939cf9dcc85bc8.jpg +0 -0
- data/valid/Baberos/e3188f410d687d5e9c939cf9dcc85bc8_1.jpg +0 -0
app.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import base64
|
| 6 |
+
from multiprocessing.dummy import Pool
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
|
| 12 |
+
# sketches
|
| 13 |
+
from streamlit_drawable_canvas import st_canvas
|
| 14 |
+
from PIL import Image, ImageOps
|
| 15 |
+
from torchvision import transforms
|
| 16 |
+
from src.model_LN_prompt import Model
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import pickle as pkl
|
| 20 |
+
from html import escape
|
| 21 |
+
from huggingface_hub import hf_hub_download,login
|
| 22 |
+
|
| 23 |
+
token = os.getenv("HUGGINGFACE_TOKEN")
|
| 24 |
+
|
| 25 |
+
# Autentica usando el token
|
| 26 |
+
login(token=token)
|
| 27 |
+
|
| 28 |
+
# Variables
|
| 29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
HEIGHT = 200
|
| 31 |
+
N_RESULTS = 15
|
| 32 |
+
color = st.get_option("theme.primaryColor")
|
| 33 |
+
if color is None:
|
| 34 |
+
color = (0, 0, 255)
|
| 35 |
+
else:
|
| 36 |
+
color = tuple(int(color.lstrip("#")[i: i + 2], 16) for i in (0, 2, 4))
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@st.cache_resource
|
| 40 |
+
def load():
|
| 41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 42 |
+
path_images = 'data'
|
| 43 |
+
|
| 44 |
+
# Descargar el modelo desde Hugging Face
|
| 45 |
+
path_model = hf_hub_download(repo_id="CHSTR/Ecommerce", filename="dinov2_ecommerce.ckpt")
|
| 46 |
+
print(f"Archivo del modelo descargado en: {path_model}")
|
| 47 |
+
|
| 48 |
+
# Cargar el modelo
|
| 49 |
+
model = Model().to(device)
|
| 50 |
+
model_checkpoint = torch.load(path_model, map_location=device)
|
| 51 |
+
model.load_state_dict(model_checkpoint['state_dict'])
|
| 52 |
+
model.eval()
|
| 53 |
+
print("Modelo cargado exitosamente")
|
| 54 |
+
|
| 55 |
+
# Descargar y cargar los embeddings desde Hugging Face
|
| 56 |
+
embeddings_file = hf_hub_download(repo_id="CHSTR/Ecommerce", filename="ecommerce_demo.pkl")
|
| 57 |
+
print(f"Archivo de embeddings descargado en: {embeddings_file}")
|
| 58 |
+
|
| 59 |
+
embeddings = {
|
| 60 |
+
0: pkl.load(open(embeddings_file, "rb")),
|
| 61 |
+
1: pkl.load(open(embeddings_file, "rb"))
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
# Actualizar los paths de las imágenes en los embeddings
|
| 65 |
+
for i in range(len(embeddings[0])):
|
| 66 |
+
embeddings[0][i] = (embeddings[0][i][0], path_images + embeddings[0][i][1].split("/images")[-1])
|
| 67 |
+
|
| 68 |
+
for i in range(len(embeddings[1])):
|
| 69 |
+
embeddings[1][i] = (embeddings[1][i][0], path_images + embeddings[1][i][1].split("/images")[-1])
|
| 70 |
+
|
| 71 |
+
return model, path_images, embeddings
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def compute_text_embeddings(sketch):
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
sketch_feat = model(sketch.to(device), dtype='sketch')
|
| 77 |
+
return sketch_feat
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def image_search(query, corpus, n_results=N_RESULTS):
|
| 81 |
+
query_embedding = compute_text_embeddings(query)
|
| 82 |
+
corpus_id = 0 if corpus == "Unsplash" else 1
|
| 83 |
+
image_features = torch.tensor(
|
| 84 |
+
[item[0] for item in embeddings[corpus_id]]).to(device)
|
| 85 |
+
|
| 86 |
+
dot_product = (image_features @ query_embedding.T)[:, 0]
|
| 87 |
+
_, max_indices = torch.topk(
|
| 88 |
+
dot_product, n_results, dim=0, largest=True, sorted=True)
|
| 89 |
+
|
| 90 |
+
# Diccionario para mapear los paths a labels
|
| 91 |
+
path_to_label = {path: idx for idx,
|
| 92 |
+
(_, path) in enumerate(embeddings[corpus_id])}
|
| 93 |
+
label_to_path = {idx: path for path, idx in path_to_label.items()}
|
| 94 |
+
label_of_images = torch.tensor(
|
| 95 |
+
[path_to_label[item[1]] for item in embeddings[corpus_id]]).to(device)
|
| 96 |
+
|
| 97 |
+
return [
|
| 98 |
+
(
|
| 99 |
+
# path_images + "page" + str(i) + ".jpg", # DocExplore
|
| 100 |
+
label_to_path[i], # DocExplore
|
| 101 |
+
)
|
| 102 |
+
for i in label_of_images[max_indices].cpu().numpy().tolist()
|
| 103 |
+
], dot_product[max_indices] # bbox_of_images[max_indices], dot_product[max_indices]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def make_square(img, fill_color=(255, 255, 255)):
|
| 107 |
+
x, y = img.size
|
| 108 |
+
size = max(x, y)
|
| 109 |
+
new_img = Image.new("RGB", (x, y), fill_color)
|
| 110 |
+
new_img.paste(img)
|
| 111 |
+
return new_img, x, y
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@st.cache_data
|
| 115 |
+
def get_images(paths):
|
| 116 |
+
def process_image(path):
|
| 117 |
+
return make_square(Image.open(path))
|
| 118 |
+
|
| 119 |
+
processed = Pool(N_RESULTS).map(process_image, paths)
|
| 120 |
+
imgs, xs, ys = [], [], []
|
| 121 |
+
for img, x, y in processed:
|
| 122 |
+
imgs.append(img)
|
| 123 |
+
xs.append(x)
|
| 124 |
+
ys.append(y)
|
| 125 |
+
return imgs, xs, ys
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def convert_pil_to_base64(image):
|
| 129 |
+
img_buffer = BytesIO()
|
| 130 |
+
image.save(img_buffer, format="JPEG")
|
| 131 |
+
byte_data = img_buffer.getvalue()
|
| 132 |
+
base64_str = base64.b64encode(byte_data)
|
| 133 |
+
return base64_str
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def draw_reshape_encode(img, boxes, x, y):
|
| 137 |
+
boxes = [boxes.tolist()]
|
| 138 |
+
image = img.copy()
|
| 139 |
+
draw = ImageDraw.Draw(image)
|
| 140 |
+
new_x, new_y = int(x * HEIGHT / y), HEIGHT
|
| 141 |
+
for box in boxes:
|
| 142 |
+
print("box:", box)
|
| 143 |
+
draw.rectangle(
|
| 144 |
+
# (x_min, y_min, x_max, y_max)
|
| 145 |
+
[(box[0], box[1]), (box[2], box[3])],
|
| 146 |
+
outline=color, # Box color
|
| 147 |
+
width=7 # Box width
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def get_html(url_list, encoded_images):
|
| 152 |
+
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
| 153 |
+
for i in range(len(url_list)):
|
| 154 |
+
title, encoded = url_list[i][0], encoded_images[i]
|
| 155 |
+
html = (
|
| 156 |
+
html
|
| 157 |
+
+ f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 5px' src='data:image/jpeg;base64,{encoded.decode()}'>"
|
| 158 |
+
)
|
| 159 |
+
html += "</div>"
|
| 160 |
+
return html
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
description = """
|
| 164 |
+
# Sketch-based Image Retrieval (SBIR)
|
| 165 |
+
"""
|
| 166 |
+
|
| 167 |
+
div_style = {
|
| 168 |
+
"display": "flex",
|
| 169 |
+
"justify-content": "center",
|
| 170 |
+
"flex-wrap": "wrap",
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
print("Cargando modelos...")
|
| 175 |
+
model, path_images, embeddings = load()
|
| 176 |
+
source = {0: "\Ecommerce", 1: "\nNone"}
|
| 177 |
+
|
| 178 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
|
| 179 |
+
|
| 180 |
+
dataset_transforms = transforms.Compose([
|
| 181 |
+
transforms.Resize((224, 224)),
|
| 182 |
+
transforms.ToTensor(),
|
| 183 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 184 |
+
])
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def main():
|
| 188 |
+
st.markdown(
|
| 189 |
+
"""
|
| 190 |
+
<style>
|
| 191 |
+
.block-container{
|
| 192 |
+
max-width: 1200px;
|
| 193 |
+
}
|
| 194 |
+
div.row-widget > div{
|
| 195 |
+
flex-direction: row;
|
| 196 |
+
display: flex;
|
| 197 |
+
justify-content: center;
|
| 198 |
+
}
|
| 199 |
+
div.row-widget.stRadio > div > label{
|
| 200 |
+
margin-left: 5px;
|
| 201 |
+
margin-right: 5px;
|
| 202 |
+
}
|
| 203 |
+
.row-widget {
|
| 204 |
+
margin-top: -25px;
|
| 205 |
+
}
|
| 206 |
+
section > div:first-child {
|
| 207 |
+
padding-top: 30px;
|
| 208 |
+
}
|
| 209 |
+
div.appview-container > section:first-child{
|
| 210 |
+
max-width: 320px;
|
| 211 |
+
}
|
| 212 |
+
#MainMenu {
|
| 213 |
+
visibility: hidden;
|
| 214 |
+
}
|
| 215 |
+
.stMarkdown {
|
| 216 |
+
display: grid;
|
| 217 |
+
place-items: center;
|
| 218 |
+
}
|
| 219 |
+
</style>
|
| 220 |
+
""",
|
| 221 |
+
unsafe_allow_html=True,
|
| 222 |
+
)
|
| 223 |
+
st.sidebar.markdown(description)
|
| 224 |
+
|
| 225 |
+
st.title("SBIR App")
|
| 226 |
+
_, col, _ = st.columns((1, 1, 1))
|
| 227 |
+
with col:
|
| 228 |
+
canvas_result = st_canvas(
|
| 229 |
+
background_color="#eee",
|
| 230 |
+
stroke_width=stroke_width,
|
| 231 |
+
update_streamlit=True,
|
| 232 |
+
height=300,
|
| 233 |
+
width=300,
|
| 234 |
+
key="color_annotation_app",
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
_, c, _ = st.columns((1, 3, 1))
|
| 238 |
+
query = ["koala"] # c.text_input("", value="koala")
|
| 239 |
+
corpus = c.radio("", ["Ecommerce"])
|
| 240 |
+
|
| 241 |
+
if canvas_result.image_data is not None:
|
| 242 |
+
draw = Image.fromarray(canvas_result.image_data.astype("uint8"))
|
| 243 |
+
draw = ImageOps.pad(draw.convert("RGB"), size=(224, 224))
|
| 244 |
+
draw.save("draw.jpg")
|
| 245 |
+
|
| 246 |
+
draw_tensor = transforms.ToTensor()(draw)
|
| 247 |
+
draw_tensor = transforms.Resize((224, 224))(draw_tensor)
|
| 248 |
+
draw_tensor = transforms.Normalize(
|
| 249 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 250 |
+
)(draw_tensor)
|
| 251 |
+
draw_tensor = draw_tensor.unsqueeze(0)
|
| 252 |
+
else:
|
| 253 |
+
return
|
| 254 |
+
|
| 255 |
+
if len(query) > 0:
|
| 256 |
+
retrieved, dot_product = image_search(draw_tensor, corpus)
|
| 257 |
+
imgs, xs, ys = get_images([x[0] for x in retrieved])
|
| 258 |
+
encoded_images = []
|
| 259 |
+
for image_idx in range(len(imgs)):
|
| 260 |
+
img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
|
| 261 |
+
|
| 262 |
+
new_x, new_y = int(x * HEIGHT / y), HEIGHT
|
| 263 |
+
|
| 264 |
+
encoded_images.append(convert_pil_to_base64(
|
| 265 |
+
img0.resize((new_x, new_y))))
|
| 266 |
+
st.markdown(get_html(retrieved, encoded_images),
|
| 267 |
+
unsafe_allow_html=True)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
if __name__ == "__main__":
|
| 271 |
+
main()
|
data/valid/Almohadas_y_cojines/6474eb7beca04255e216354707604caa.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_1.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_2.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_3.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_4.jpg
ADDED
|
data/valid/Almohadas_y_cojines/b6f4b43eb8e47193358b0b3b69b9cd4d_5.jpg
ADDED
|
data/valid/Almohadas_y_cojines/d319582ad5976fa0526871af907d75e5.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_1.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_2.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_3.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_4.jpg
ADDED
|
data/valid/Baberos/134673c99a13f9f17bb4a3420aa830bb_5.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_1.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_2.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_3.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_4.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_5.jpg
ADDED
|
data/valid/Baberos/80ff9b872165c3f13c72859dbbcbd4a4_6.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_1.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_2.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_3.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_4.jpg
ADDED
|
data/valid/Baberos/9daca95e1bd0ca6aad1812e44007a2ea_5.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_1.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_2.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_3.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_4.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_5.jpg
ADDED
|
data/valid/Baberos/c4bb79af1cdae49467eea9efca2ee32c_6.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_1.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_2.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_3.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_4.jpg
ADDED
|
data/valid/Baberos/c939ccd756d45577cb28f93ee5486a59_5.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_1.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_2.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_3.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_4.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_5.jpg
ADDED
|
data/valid/Baberos/cce281a309ee213c364cfa0bd62ba1f2_6.jpg
ADDED
|
data/valid/Baberos/e3188f410d687d5e9c939cf9dcc85bc8.jpg
ADDED
|
data/valid/Baberos/e3188f410d687d5e9c939cf9dcc85bc8_1.jpg
ADDED
|