# Choice of image classification model img_cls_model_name = ['ResNet-50'] # Choice of object detection model obj_det_model_name = ['Faster-RCNN'] # Choice of image classification saliency algorithm img_cls_saliency_algo_name = ['RISE'] # Choice of object detection saliency algorithm obj_det_saliency_algo_name = ['DRISE'] # Number of threads to utilize when generating masks threads_state = [4] # Window_size for SlidingWindowStack algorithm window_size_state = ['(50,50)'] # Stride for SlidingWindowStack algorithm stride_state = ['(20,20)'] # Number of random masks for RISEStack/DRISEStack algorithm num_masks_state = [200] # Spatial resolution of masking grid for RISEStack/DRISEStack algorithm spatial_res_state = [8] # Probability of the grid cell being set to 1 (otherwise 0) p1_state = [0.5] # Random seed to allow for reproducibility seed_state = [0] # Debiased option for RISEStack/DRISEStack saliency algorithm debiased_state = [True] # Occlusion grid cell size in pixels for RandomGridStack algorithm occlusion_grid_state = ['(128,128)'] def select_img_cls_model(model_choice): img_cls_model_name.append(model_choice) return model_choice def select_obj_det_model(model_choice): obj_det_model_name.append(model_choice) return model_choice def select_img_cls_saliency_algo(sal_choice): img_cls_saliency_algo_name.append(sal_choice) return sal_choice def select_obj_det_saliency_algo(sal_choice): obj_det_saliency_algo_name.append(sal_choice) return sal_choice def select_threads(threads): threads_state.append(threads) return threads def enter_window_size(val): window_size_state.append(val) return val def enter_stride(val): stride_state.append(val) return val def enter_num_masks(val): num_masks_state.append(val) return val def enter_spatial_res(val): spatial_res_state.append(val) return val def select_p1(prob): p1_state.append(prob) return prob def enter_seed(seed): seed_state.append(seed) return seed def check_debiased(debiased): debiased_state.append(debiased) return debiased def enter_occlusion_grid_size(val): occlusion_grid_state.append(val) return val