Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +65 -0
- requirements.txt +24 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_openai import ChatOpenAI
|
4 |
+
from langchain_openai import OpenAIEmbeddings
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain_objectbox.vectorstores import ObjectBox
|
10 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
11 |
+
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
load_dotenv()
|
14 |
+
## load the Groq And OpenAI Api Key
|
15 |
+
os.environ['OPEN_API_KEY']=os.getenv("OPENAI_API_KEY")
|
16 |
+
groq_api_key=os.getenv('GROQ_API_KEY')
|
17 |
+
|
18 |
+
st.title("Objectbox VectorstoreDB With Llama3 Demo")
|
19 |
+
llm = ChatOpenAI(model="gpt-4o") ## Calling Gpt-4o
|
20 |
+
prompt=ChatPromptTemplate.from_template(
|
21 |
+
"""
|
22 |
+
Answer the questions based on the provided context only.
|
23 |
+
Please provide the most accurate response based on the question
|
24 |
+
<context>
|
25 |
+
{context}
|
26 |
+
<context>
|
27 |
+
Questions:{input}
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
|
31 |
+
## Vector Enbedding and Objectbox Vectorstore db
|
32 |
+
def vector_embedding():
|
33 |
+
if "vectors" not in st.session_state:
|
34 |
+
st.session_state.embeddings=OpenAIEmbeddings()
|
35 |
+
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
|
36 |
+
st.session_state.docs=st.session_state.loader.load() ## Documents Loading
|
37 |
+
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200)
|
38 |
+
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20])
|
39 |
+
st.session_state.vectors=ObjectBox.from_documents(st.session_state.final_documents,st.session_state.embeddings,embedding_dimensions=768)
|
40 |
+
|
41 |
+
|
42 |
+
input_prompt=st.text_input("Enter Your Question From Documents")
|
43 |
+
|
44 |
+
if st.button("Documents Embedding"):
|
45 |
+
vector_embedding()
|
46 |
+
st.write("ObjectBox Database is ready")
|
47 |
+
|
48 |
+
import time
|
49 |
+
if input_prompt:
|
50 |
+
document_chain=create_stuff_documents_chain(llm,prompt)
|
51 |
+
retriever=st.session_state.vectors.as_retriever()
|
52 |
+
retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
53 |
+
start=time.process_time()
|
54 |
+
|
55 |
+
response=retrieval_chain.invoke({'input':input_prompt})
|
56 |
+
|
57 |
+
print("Response time :",time.process_time()-start)
|
58 |
+
st.write(response['answer'])
|
59 |
+
|
60 |
+
# With a streamlit expander
|
61 |
+
with st.expander("Document Similarity Search"):
|
62 |
+
# Find the relevant chunks
|
63 |
+
for i, doc in enumerate(response["context"]):
|
64 |
+
st.write(doc.page_content)
|
65 |
+
st.write("--------------------------------")
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain_openai
|
2 |
+
langchain_core
|
3 |
+
python-dotenv
|
4 |
+
streamlit
|
5 |
+
langchain_community
|
6 |
+
langserve
|
7 |
+
fastapi
|
8 |
+
uvicorn
|
9 |
+
sse_starlette
|
10 |
+
bs4
|
11 |
+
pypdf
|
12 |
+
chromadb
|
13 |
+
faiss-cpu
|
14 |
+
groq
|
15 |
+
cassio
|
16 |
+
beautifulsoup4
|
17 |
+
langchain-groq
|
18 |
+
wikipedia
|
19 |
+
arxiv
|
20 |
+
langchainhub
|
21 |
+
sentence_transformers
|
22 |
+
PyPDF2
|
23 |
+
langchain-objectbox
|
24 |
+
langchain
|