"""extract feature and search with user query.""" import os import time import numpy as np import yaml from BCEmbedding.tools.langchain import BCERerank from langchain.embeddings import HuggingFaceEmbeddings from langchain.retrievers import ContextualCompressionRetriever from langchain.vectorstores.faiss import FAISS as Vectorstore from langchain_community.vectorstores.utils import DistanceStrategy from loguru import logger from modelscope import snapshot_download from sklearn.metrics import precision_recall_curve from utils.web_configs import WEB_CONFIGS try: from utils.rag.file_operation import FileOperation except: # 用于 DEBUG from file_operation import FileOperation class Retriever: """Tokenize and extract features from the project's documents, for use in the reject pipeline and response pipeline.""" def __init__(self, embeddings, reranker, work_dir: str, reject_throttle: float) -> None: """Init with model device type and config.""" self.reject_throttle = reject_throttle self.rejecter = Vectorstore.load_local( os.path.join(work_dir, "db_reject"), embeddings=embeddings, allow_dangerous_deserialization=True ) self.retriever = Vectorstore.load_local( os.path.join(work_dir, "db_response"), embeddings=embeddings, allow_dangerous_deserialization=True, distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT, ).as_retriever(search_type="similarity", search_kwargs={"score_threshold": 0.15, "k": 30}) self.compression_retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=self.retriever) def is_reject(self, question, k=30, disable_throttle=False): """If no search results below the threshold can be found from the database, reject this query.""" if disable_throttle: # for searching throttle during update sample docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=1) if len(docs_with_score) < 1: return True, docs_with_score return False, docs_with_score else: # for retrieve result # if no chunk passed the throttle, give the max docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=k) ret = [] max_score = -1 top1 = None for doc, score in docs_with_score: if score >= self.reject_throttle: ret.append(doc) if score > max_score: max_score = score top1 = (doc, score) reject = False if len(ret) > 0 else True return reject, [top1] def update_throttle(self, config_path: str = "config.yaml", good_questions=[], bad_questions=[]): """Update reject throttle based on positive and negative examples.""" if len(good_questions) == 0 or len(bad_questions) == 0: raise Exception("good and bad question examples cat not be empty.") questions = good_questions + bad_questions predictions = [] for question in questions: self.reject_throttle = -1 _, docs = self.is_reject(question=question, disable_throttle=True) score = docs[0][1] predictions.append(max(0, score)) labels = [1 for _ in range(len(good_questions))] + [0 for _ in range(len(bad_questions))] precision, recall, thresholds = precision_recall_curve(labels, predictions) # get the best index for sum(precision, recall) sum_precision_recall = precision[:-1] + recall[:-1] index_max = np.argmax(sum_precision_recall) optimal_threshold = max(thresholds[index_max], 0.0) with open(config_path, "r", encoding="utf-8") as f: config = yaml.safe_load(f) config["feature_store"]["reject_throttle"] = float(optimal_threshold) with open(config_path, "w", encoding="utf8") as f: yaml.dump(config, f) logger.info(f"The optimal threshold is: {optimal_threshold}, saved it to {config_path}") # noqa E501 def query(self, question: str, context_max_length: int = 16000): # , tracker: QueryTracker = None): """Processes a query and returns the best match from the vector store database. If the question is rejected, returns None. Args: question (str): The question asked by the user. Returns: str: The best matching chunk, or None. str: The best matching text, or None """ print(f"DEBUG -1: enter query") if question is None or len(question) < 1: print(f"DEBUG 0: len error") return None, None, [] if len(question) > 512: logger.warning("input too long, truncate to 512") question = question[0:512] # reject, docs = self.is_reject(question=question) # assert (len(docs) > 0) # if reject: # return None, None, [docs[0][0].metadata['source']] docs = self.compression_retriever.get_relevant_documents(question) print(f"DEBUG 1: {docs}") # if tracker is not None: # tracker.log('retrieve', [doc.metadata['source'] for doc in docs]) chunks = [] context = "" references = [] # add file text to context, until exceed `context_max_length` file_opr = FileOperation() for idx, doc in enumerate(docs): chunk = doc.page_content chunks.append(chunk) if "read" not in doc.metadata: logger.error( "If you are using the version before 20240319, please rerun `python3 -m huixiangdou.service.feature_store`" ) raise Exception("huixiangdou version mismatch") file_text, error = file_opr.read(doc.metadata["read"]) if error is not None: # read file failed, skip print(f"DEBUG 2: error") continue source = doc.metadata["source"] logger.info("target {} file length {}".format(source, len(file_text))) print(f"DEBUG 3: target {source}, file length {len(file_text)}") if len(file_text) + len(context) > context_max_length: if source in references: continue references.append(source) # add and break add_len = context_max_length - len(context) if add_len <= 0: break chunk_index = file_text.find(chunk) if chunk_index == -1: # chunk not in file_text context += chunk context += "\n" context += file_text[0 : add_len - len(chunk) - 1] else: start_index = max(0, chunk_index - (add_len - len(chunk))) context += file_text[start_index : start_index + add_len] break if source not in references: context += file_text context += "\n" references.append(source) context = context[0:context_max_length] logger.debug("query:{} top1 file:{}".format(question, references[0])) return "\n".join(chunks), context, [os.path.basename(r) for r in references] class CacheRetriever: def __init__(self, config_path: str, max_len: int = 4): self.cache = dict() self.max_len = max_len with open(config_path, "r", encoding="utf-8") as f: config = yaml.safe_load(f)["feature_store"] embedding_model_path = config["embedding_model_path"] reranker_model_path = config["reranker_model_path"] embedding_model_path = snapshot_download(embedding_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR) reranker_model_path = snapshot_download(reranker_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR) # load text2vec and rerank model logger.info("loading test2vec and rerank models") self.embeddings = HuggingFaceEmbeddings( model_name=embedding_model_path, model_kwargs={"device": "cuda"}, encode_kwargs={"batch_size": 1, "normalize_embeddings": True}, ) self.embeddings.client = self.embeddings.client.half() reranker_args = {"model": reranker_model_path, "top_n": 7, "device": "cuda", "use_fp16": True} self.reranker = BCERerank(**reranker_args) def get(self, fs_id: str = "default", config_path="config.yaml", work_dir="workdir"): if fs_id in self.cache: self.cache[fs_id]["time"] = time.time() return self.cache[fs_id]["retriever"] if not os.path.exists(work_dir) or not os.path.exists(config_path): return None, "workdir or config.yaml not exist" with open(config_path, "r", encoding="utf-8") as f: reject_throttle = yaml.safe_load(f)["feature_store"]["reject_throttle"] if len(self.cache) >= self.max_len: # drop the oldest one del_key = None min_time = time.time() for key, value in self.cache.items(): cur_time = value["time"] if cur_time < min_time: min_time = cur_time del_key = key if del_key is not None: del_value = self.cache[del_key] self.cache.pop(del_key) del del_value["retriever"] retriever = Retriever( embeddings=self.embeddings, reranker=self.reranker, work_dir=work_dir, reject_throttle=reject_throttle ) self.cache[fs_id] = {"retriever": retriever, "time": time.time()} return retriever def pop(self, fs_id: str): if fs_id not in self.cache: return del_value = self.cache[fs_id] self.cache.pop(fs_id) # manually free memory del del_value