Spaces:
Build error
Build error
#Librerias para cargar imagenes | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import streamlit as st | |
dim = 200 | |
modelo = './modelo.h5' | |
pesos = './pesos.h5' | |
cnn = load_model(modelo) | |
cnn.load_weights(pesos) | |
def clasificar(file): | |
x = load_img(file, target_size=(dim, dim), color_mode = "grayscale") | |
x = img_to_array(x) | |
x = np.expand_dims(x, axis=0) | |
arreglo = cnn.predict(x) | |
resultado = arreglo[0] | |
respuesta = np.argmax(resultado) | |
rta = "" | |
if respuesta==0: | |
rta = 'NORMAL' | |
else: | |
rta = 'TUMOR CEREBRAL' | |
return rta | |
st.title("CNN Clasificador de Casos de Cancer Cerebral") | |
uploaded_file = st.file_uploader("Sube una imagen...", type="jpg") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
st.write("Clasificacion:") | |
label = clasificar("./test/"+uploaded_file.name) ##aqui va el llamado a la IA | |
st.write(label) |