diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..24eacf85b03521f3b08185efdfbc21c12a703d9f
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,107 @@
+Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
+
+Creative Commons Corporation ("Creative Commons") is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an "as-is" basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.
+
+Using Creative Commons Public Licenses
+
+Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.
+
+Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. More considerations for licensors : wiki.creativecommons.org/Considerations_for_licensors
+
+Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor's permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public : wiki.creativecommons.org/Considerations_for_licensees
+
+Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
+
+By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.
+
+Section 1 – Definitions.
+
+a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
+b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
+c. BY-NC-SA Compatible License means a license listed at creativecommons.org/compatiblelicenses, approved by Creative Commons as essentially the equivalent of this Public License.
+d. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
+e. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
+f. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
+g. License Elements means the license attributes listed in the name of a Creative Commons Public License. The License Elements of this Public License are Attribution, NonCommercial, and ShareAlike.
+h. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
+i. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
+j. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
+k. NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
+l. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
+m. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
+n. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
+Section 2 – Scope.
+
+a. License grant.
+1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
+A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
+B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
+2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
+3. Term. The term of this Public License is specified in Section 6(a).
+4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
+5. Downstream recipients.
+A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
+B. Additional offer from the Licensor – Adapted Material. Every recipient of Adapted Material from You automatically receives an offer from the Licensor to exercise the Licensed Rights in the Adapted Material under the conditions of the Adapter's License You apply.
+C. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
+6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
+b. Other rights.
+1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
+2. Patent and trademark rights are not licensed under this Public License.
+3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
+Section 3 – License Conditions.
+
+Your exercise of the Licensed Rights is expressly made subject to the following conditions.
+
+a. Attribution.
+1. If You Share the Licensed Material (including in modified form), You must:
+A. retain the following if it is supplied by the Licensor with the Licensed Material:
+i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
+ii. a copyright notice;
+iii. a notice that refers to this Public License;
+iv. a notice that refers to the disclaimer of warranties;
+v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
+
+B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
+C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
+2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
+3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
+b. ShareAlike.In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the following conditions also apply.
+1. The Adapter's License You apply must be a Creative Commons license with the same License Elements, this version or later, or a BY-NC-SA Compatible License.
+2. You must include the text of, or the URI or hyperlink to, the Adapter's License You apply. You may satisfy this condition in any reasonable manner based on the medium, means, and context in which You Share Adapted Material.
+3. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, Adapted Material that restrict exercise of the rights granted under the Adapter's License You apply.
+Section 4 – Sui Generis Database Rights.
+
+Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
+
+a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
+b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material, including for purposes of Section 3(b); and
+c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
+For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
+Section 5 – Disclaimer of Warranties and Limitation of Liability.
+
+a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.
+b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.
+c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
+Section 6 – Term and Termination.
+
+a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
+b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
+1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
+2. upon express reinstatement by the Licensor.
+For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
+
+c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
+d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
+Section 7 – Other Terms and Conditions.
+
+a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
+b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
+Section 8 – Interpretation.
+
+a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
+b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
+c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
+d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
+Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the "Licensor." The text of the Creative Commons public licenses is dedicated to the public domain under the CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies, Creative Commons does not authorize the use of the trademark "Creative Commons" or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.
+
+Creative Commons may be contacted at creativecommons.org.
\ No newline at end of file
diff --git a/README.md b/README.md
index 0a4ff936bc014efcd94265c0e1257c00125df544..122eaa18539b4a2d17f29046c3f25af9127a2661 100644
--- a/README.md
+++ b/README.md
@@ -8,7 +8,7 @@ sdk_version: 5.11.0
app_file: app.py
pinned: false
license: cc-by-nc-sa-4.0
-short_description: Advancing the Authentic Garment Details for High-fidelity Vi
+short_description: FitDiT is a high-fidelity virtual try-on model.
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..f986621697a877dde2a5ad6086e60fd2e9911b0e
--- /dev/null
+++ b/app.py
@@ -0,0 +1,309 @@
+import spaces
+import gradio as gr
+import os
+import math
+from preprocess.humanparsing.run_parsing import Parsing
+from preprocess.dwpose import DWposeDetector
+from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
+import torch
+import torch.nn as nn
+from src.pose_guider import PoseGuider
+from PIL import Image
+from src.utils_mask import get_mask_location
+import numpy as np
+from src.pipeline_stable_diffusion_3_tryon import StableDiffusion3TryOnPipeline
+from src.transformer_sd3_garm import SD3Transformer2DModel as SD3Transformer2DModel_Garm
+from src.transformer_sd3_vton import SD3Transformer2DModel as SD3Transformer2DModel_Vton
+import cv2
+import random
+from huggingface_hub import snapshot_download
+
+example_path = os.path.join(os.path.dirname(__file__), 'examples')
+
+access_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
+fitdit_repo = "BoyuanJiang/FitDiT"
+repo_path = snapshot_download(repo_id=fitdit_repo)
+
+class FitDiTGenerator:
+ def __init__(self, model_root, device="cuda", with_fp16=False):
+ weight_dtype = torch.float16 if with_fp16 else torch.bfloat16
+ transformer_garm = SD3Transformer2DModel_Garm.from_pretrained(os.path.join(model_root, "transformer_garm"), torch_dtype=weight_dtype)
+ transformer_vton = SD3Transformer2DModel_Vton.from_pretrained(os.path.join(model_root, "transformer_vton"), torch_dtype=weight_dtype)
+ pose_guider = PoseGuider(conditioning_embedding_channels=1536, conditioning_channels=3, block_out_channels=(32, 64, 256, 512))
+ pose_guider.load_state_dict(torch.load(os.path.join(model_root, "pose_guider", "diffusion_pytorch_model.bin")))
+ image_encoder_large = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=weight_dtype)
+ image_encoder_bigG = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", torch_dtype=weight_dtype)
+ pose_guider.to(device=device, dtype=weight_dtype)
+ image_encoder_large.to(device=device)
+ image_encoder_bigG.to(device=device)
+ self.pipeline = StableDiffusion3TryOnPipeline.from_pretrained(model_root, torch_dtype=weight_dtype, transformer_garm=transformer_garm, transformer_vton=transformer_vton, pose_guider=pose_guider, image_encoder_large=image_encoder_large, image_encoder_bigG=image_encoder_bigG)
+ self.pipeline.to(device)
+ self.dwprocessor = DWposeDetector(model_root=model_root, device=device)
+ self.parsing_model = Parsing(model_root=model_root, device=device)
+
+ @spaces.GPU
+ def generate_mask(self, vton_img, category, offset_top, offset_bottom, offset_left, offset_right):
+ with torch.inference_mode():
+ vton_img = Image.open(vton_img)
+ vton_img_det = resize_image(vton_img)
+ pose_image, keypoints, _, candidate = self.dwprocessor(np.array(vton_img_det)[:,:,::-1])
+ candidate[candidate<0]=0
+ candidate = candidate[0]
+
+ candidate[:, 0]*=vton_img_det.width
+ candidate[:, 1]*=vton_img_det.height
+
+ pose_image = pose_image[:,:,::-1] #rgb
+ pose_image = Image.fromarray(pose_image)
+ model_parse, _ = self.parsing_model(vton_img_det)
+
+ mask, mask_gray = get_mask_location(category, model_parse, \
+ candidate, model_parse.width, model_parse.height, \
+ offset_top, offset_bottom, offset_left, offset_right)
+ mask = mask.resize(vton_img.size)
+ mask_gray = mask_gray.resize(vton_img.size)
+ mask = mask.convert("L")
+ mask_gray = mask_gray.convert("L")
+ masked_vton_img = Image.composite(mask_gray, vton_img, mask)
+
+ im = {}
+ im['background'] = np.array(vton_img.convert("RGBA"))
+ im['layers'] = [np.concatenate((np.array(mask_gray.convert("RGB")), np.array(mask)[:,:,np.newaxis]),axis=2)]
+ im['composite'] = np.array(masked_vton_img.convert("RGBA"))
+
+ return im, pose_image
+
+ @spaces.GPU
+ def process(self, vton_img, garm_img, pre_mask, pose_image, n_steps, image_scale, seed, num_images_per_prompt, resolution):
+ assert resolution in ["768x1024", "1152x1536", "1536x2048"]
+ new_width, new_height = resolution.split("x")
+ new_width = int(new_width)
+ new_height = int(new_height)
+ with torch.inference_mode():
+ garm_img = Image.open(garm_img)
+ vton_img = Image.open(vton_img)
+
+ model_image_size = vton_img.size
+ garm_img, _, _ = pad_and_resize(garm_img, new_width=new_width, new_height=new_height)
+ vton_img, pad_w, pad_h = pad_and_resize(vton_img, new_width=new_width, new_height=new_height)
+
+ mask = pre_mask["layers"][0][:,:,3]
+ mask = Image.fromarray(mask)
+ mask, _, _ = pad_and_resize(mask, new_width=new_width, new_height=new_height, pad_color=(0,0,0))
+ mask = mask.convert("L")
+ pose_image = Image.fromarray(pose_image)
+ pose_image, _, _ = pad_and_resize(pose_image, new_width=new_width, new_height=new_height, pad_color=(0,0,0))
+ if seed==-1:
+ seed = random.randint(0, 2147483647)
+ res = self.pipeline(
+ height=new_height,
+ width=new_width,
+ guidance_scale=image_scale,
+ num_inference_steps=n_steps,
+ generator=torch.Generator("cpu").manual_seed(seed),
+ cloth_image=garm_img,
+ model_image=vton_img,
+ mask=mask,
+ pose_image=pose_image,
+ num_images_per_prompt=num_images_per_prompt
+ ).images
+ for idx in range(len(res)):
+ res[idx] = unpad_and_resize(res[idx], pad_w, pad_h, model_image_size[0], model_image_size[1])
+ return res
+
+
+def pad_and_resize(im, new_width=768, new_height=1024, pad_color=(255, 255, 255), mode=Image.LANCZOS):
+ old_width, old_height = im.size
+
+ ratio_w = new_width / old_width
+ ratio_h = new_height / old_height
+ if ratio_w < ratio_h:
+ new_size = (new_width, round(old_height * ratio_w))
+ else:
+ new_size = (round(old_width * ratio_h), new_height)
+
+ im_resized = im.resize(new_size, mode)
+
+ pad_w = math.ceil((new_width - im_resized.width) / 2)
+ pad_h = math.ceil((new_height - im_resized.height) / 2)
+
+ new_im = Image.new('RGB', (new_width, new_height), pad_color)
+
+ new_im.paste(im_resized, (pad_w, pad_h))
+
+ return new_im, pad_w, pad_h
+
+def unpad_and_resize(padded_im, pad_w, pad_h, original_width, original_height):
+ width, height = padded_im.size
+
+ left = pad_w
+ top = pad_h
+ right = width - pad_w
+ bottom = height - pad_h
+
+ cropped_im = padded_im.crop((left, top, right, bottom))
+
+ resized_im = cropped_im.resize((original_width, original_height), Image.LANCZOS)
+
+ return resized_im
+
+def resize_image(img, target_size=768):
+ width, height = img.size
+
+ if width < height:
+ scale = target_size / width
+ else:
+ scale = target_size / height
+
+ new_width = int(round(width * scale))
+ new_height = int(round(height * scale))
+
+ resized_img = img.resize((new_width, new_height), Image.LANCZOS)
+
+ return resized_img
+
+HEADER = """
+
FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
+
+FitDiT is designed for high-fidelity virtual try-on using Diffusion Transformers (DiT). It can only be used for Non-commercial Use.
+If you like our work, please star our github repository.
+"""
+
+def create_demo(model_path, device, with_fp16):
+ generator = FitDiTGenerator(model_path, device, with_fp16)
+ with gr.Blocks(title="FitDiT") as demo:
+ gr.Markdown(HEADER)
+ with gr.Row():
+ with gr.Column():
+ vton_img = gr.Image(label="Model", sources=None, type="filepath", height=512)
+
+ with gr.Column():
+ garm_img = gr.Image(label="Garment", sources=None, type="filepath", height=512)
+ with gr.Row():
+ with gr.Column():
+ masked_vton_img = gr.ImageEditor(label="masked_vton_img", type="numpy", height=512, interactive=True, brush=gr.Brush(default_color="rgb(127, 127, 127)", colors=[
+ "rgb(128, 128, 128)"
+ ]))
+ pose_image = gr.Image(label="pose_image", visible=False, interactive=False)
+ with gr.Column():
+ result_gallery = gr.Gallery(label="Output", elem_id="output-img", interactive=False, columns=[2], rows=[2], object_fit="contain", height="auto")
+ with gr.Row():
+ with gr.Column():
+ offset_top = gr.Slider(label="mask offset top", minimum=-200, maximum=200, step=1, value=0)
+ with gr.Column():
+ offset_bottom = gr.Slider(label="mask offset bottom", minimum=-200, maximum=200, step=1, value=0)
+ with gr.Column():
+ offset_left = gr.Slider(label="mask offset left", minimum=-200, maximum=200, step=1, value=0)
+ with gr.Column():
+ offset_right = gr.Slider(label="mask offset right", minimum=-200, maximum=200, step=1, value=0)
+ with gr.Row():
+ with gr.Column():
+ n_steps = gr.Slider(label="Steps", minimum=15, maximum=30, value=20, step=1)
+ with gr.Column():
+ image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2, step=0.1)
+ with gr.Column():
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
+ with gr.Column():
+ num_images_per_prompt = gr.Slider(label="num_images", minimum=1, maximum=4, step=1, value=1)
+
+ with gr.Row():
+ with gr.Column():
+ example = gr.Examples(
+ label="Model (upper-body)",
+ inputs=vton_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'model/0279.jpg'),
+ os.path.join(example_path, 'model/0303.jpg'),
+ os.path.join(example_path, 'model/2.jpg'),
+ os.path.join(example_path, 'model/0083.jpg'),
+ ])
+ example = gr.Examples(
+ label="Model (upper-body/lower-body)",
+ inputs=vton_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'model/0.jpg'),
+ os.path.join(example_path, 'model/0179.jpg'),
+ os.path.join(example_path, 'model/0223.jpg'),
+ os.path.join(example_path, 'model/0347.jpg'),
+ ])
+ example = gr.Examples(
+ label="Model (dresses)",
+ inputs=vton_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'model/4.jpg'),
+ os.path.join(example_path, 'model/5.jpg'),
+ os.path.join(example_path, 'model/6.jpg'),
+ os.path.join(example_path, 'model/7.jpg'),
+ ])
+ with gr.Column():
+ example = gr.Examples(
+ label="Garment (upper-body)",
+ inputs=garm_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'garment/12.jpg'),
+ os.path.join(example_path, 'garment/0012.jpg'),
+ os.path.join(example_path, 'garment/0047.jpg'),
+ os.path.join(example_path, 'garment/0049.jpg'),
+ ])
+ example = gr.Examples(
+ label="Garment (lower-body)",
+ inputs=garm_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'garment/0317.jpg'),
+ os.path.join(example_path, 'garment/0327.jpg'),
+ os.path.join(example_path, 'garment/0329.jpg'),
+ os.path.join(example_path, 'garment/0362.jpg'),
+ ])
+ example = gr.Examples(
+ label="Garment (dresses)",
+ inputs=garm_img,
+ examples_per_page=7,
+ examples=[
+ os.path.join(example_path, 'garment/8.jpg'),
+ os.path.join(example_path, 'garment/9.png'),
+ os.path.join(example_path, 'garment/10.jpg'),
+ os.path.join(example_path, 'garment/11.jpg'),
+ ])
+ with gr.Column():
+ category = gr.Dropdown(label="Garment category", choices=["Upper-body", "Lower-body", "Dresses"], value="Upper-body")
+ resolution = gr.Dropdown(label="Try-on resolution", choices=["768x1024", "1152x1536", "1536x2048"], value="1152x1536")
+ with gr.Column():
+ run_mask_button = gr.Button(value="Step1: Run Mask")
+ run_button = gr.Button(value="Step2: Run Try-on")
+
+ ips1 = [vton_img, category, offset_top, offset_bottom, offset_left, offset_right]
+ ips2 = [vton_img, garm_img, masked_vton_img, pose_image, n_steps, image_scale, seed, num_images_per_prompt, resolution]
+ run_mask_button.click(fn=generator.generate_mask, inputs=ips1, outputs=[masked_vton_img, pose_image])
+ run_button.click(fn=generator.process, inputs=ips2, outputs=[result_gallery])
+ return demo
+
+if __name__ == "__main__":
+ import argparse
+ parser = argparse.ArgumentParser(description="FitDiT")
+ parser.add_argument("--device", type=str, default="cuda:0", help="Device to use")
+ parser.add_argument("--fp16", action="store_true", help="Load model with fp16, default is bf16")
+ args = parser.parse_args()
+ demo = create_demo(repo_path, args.device, args.fp16)
+ demo.launch(share=True)
diff --git a/examples/garment/0.jpg b/examples/garment/0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..53196e050354d14f388a13f74ae15ea07dd3139c
Binary files /dev/null and b/examples/garment/0.jpg differ
diff --git a/examples/garment/0012.jpg b/examples/garment/0012.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d284a746e415db7a6235f21c4166246ac0d35cc3
Binary files /dev/null and b/examples/garment/0012.jpg differ
diff --git a/examples/garment/0023.jpg b/examples/garment/0023.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..340a0eb96677600e3bdc208f877afd0a1b9d363c
Binary files /dev/null and b/examples/garment/0023.jpg differ
diff --git a/examples/garment/0047.jpg b/examples/garment/0047.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2c35b2788adad766f0c558bd4db6ca38dc06bf46
Binary files /dev/null and b/examples/garment/0047.jpg differ
diff --git a/examples/garment/0049.jpg b/examples/garment/0049.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6ff8438a76485419d602b10409ad8f6245a272b2
Binary files /dev/null and b/examples/garment/0049.jpg differ
diff --git a/examples/garment/0317.jpg b/examples/garment/0317.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c033258889c6955a648c407ea19c315ac4795e2f
Binary files /dev/null and b/examples/garment/0317.jpg differ
diff --git a/examples/garment/0327.jpg b/examples/garment/0327.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1ea61c0927b908f2986be5fdd7fdefd013686cd1
Binary files /dev/null and b/examples/garment/0327.jpg differ
diff --git a/examples/garment/0329.jpg b/examples/garment/0329.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8904f0d9a01f6277d70bc13d91a877b80e45172e
Binary files /dev/null and b/examples/garment/0329.jpg differ
diff --git a/examples/garment/0362.jpg b/examples/garment/0362.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e8da05dab7c571c596d6931715981995ceda57ca
Binary files /dev/null and b/examples/garment/0362.jpg differ
diff --git a/examples/garment/1.jpg b/examples/garment/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d16eefc913f8b5bc32a94bee884ec4966034c8de
Binary files /dev/null and b/examples/garment/1.jpg differ
diff --git a/examples/garment/10.jpg b/examples/garment/10.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6237161be6d7ed9b0b8ff34819442147ba54e46b
Binary files /dev/null and b/examples/garment/10.jpg differ
diff --git a/examples/garment/11.jpg b/examples/garment/11.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c201bb8bcc99e1a1d3b52b28a6c7b991366af0b3
Binary files /dev/null and b/examples/garment/11.jpg differ
diff --git a/examples/garment/12.jpg b/examples/garment/12.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d70d11e3f4dc7dc27195a40a60c59113b918e7e9
Binary files /dev/null and b/examples/garment/12.jpg differ
diff --git a/examples/garment/2.jpg b/examples/garment/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..735326e9da202b90b12728b3e33051969fe41f21
Binary files /dev/null and b/examples/garment/2.jpg differ
diff --git a/examples/garment/3.jpg b/examples/garment/3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3ba40136e155df76655dc22b7d05c5d63952540d
Binary files /dev/null and b/examples/garment/3.jpg differ
diff --git a/examples/garment/4.jpg b/examples/garment/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..806556012ddefe4f376ab7c4ebcb663b74654a66
Binary files /dev/null and b/examples/garment/4.jpg differ
diff --git a/examples/garment/5.jpg b/examples/garment/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c9063bc869021cba9fbe2f4b72b34a23e53ff27b
Binary files /dev/null and b/examples/garment/5.jpg differ
diff --git a/examples/garment/6.jpeg b/examples/garment/6.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..b29e53a6e8b23f6af75c9b819548f066b441cd0b
Binary files /dev/null and b/examples/garment/6.jpeg differ
diff --git a/examples/garment/7.jpg b/examples/garment/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6887eabd078196bda4597679b375064c390ed98b
Binary files /dev/null and b/examples/garment/7.jpg differ
diff --git a/examples/garment/8.jpg b/examples/garment/8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..aab4a0aef46576aba61bef1cb159e687dcf7fc9e
Binary files /dev/null and b/examples/garment/8.jpg differ
diff --git a/examples/garment/9.png b/examples/garment/9.png
new file mode 100644
index 0000000000000000000000000000000000000000..b138ee556259c86d1c81a389ac22a67908f5314e
Binary files /dev/null and b/examples/garment/9.png differ
diff --git a/examples/model/0.jpg b/examples/model/0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4e1e3a0e60f352011e60f418fa2606fa961a1c20
Binary files /dev/null and b/examples/model/0.jpg differ
diff --git a/examples/model/0083.jpg b/examples/model/0083.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1016953a2a59445ea9a9e0f180426987d793ffe7
Binary files /dev/null and b/examples/model/0083.jpg differ
diff --git a/examples/model/0179.jpg b/examples/model/0179.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..11d1a7ce59c360a292721eec5fef3b07ed459ee5
Binary files /dev/null and b/examples/model/0179.jpg differ
diff --git a/examples/model/0220.jpg b/examples/model/0220.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..13fb57c84111d97982638616c651385a2c352e42
Binary files /dev/null and b/examples/model/0220.jpg differ
diff --git a/examples/model/0223.jpg b/examples/model/0223.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ccad16c22f650d34716c7afc0b0a733c971e76b3
Binary files /dev/null and b/examples/model/0223.jpg differ
diff --git a/examples/model/0274.jpg b/examples/model/0274.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..20fa57a7bdf9e9f8f2f9c489d7a93acd22315a83
Binary files /dev/null and b/examples/model/0274.jpg differ
diff --git a/examples/model/0279.jpg b/examples/model/0279.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..903b4fbaca118cbd13b66ec6385e4a1365fa172e
Binary files /dev/null and b/examples/model/0279.jpg differ
diff --git a/examples/model/0303.jpg b/examples/model/0303.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c5500b7a779c044e110fba89dd131a62a4702017
Binary files /dev/null and b/examples/model/0303.jpg differ
diff --git a/examples/model/0347.jpg b/examples/model/0347.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..98cbabff4b52ab7b1de788531f2209c28fcb609c
Binary files /dev/null and b/examples/model/0347.jpg differ
diff --git a/examples/model/1.jpg b/examples/model/1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..753a547fbf5574007213a0cd7f5f56220ed6ca45
Binary files /dev/null and b/examples/model/1.jpg differ
diff --git a/examples/model/2.jpg b/examples/model/2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..31db9a7b615d4886c2fe54ce077d84480e2e04d9
Binary files /dev/null and b/examples/model/2.jpg differ
diff --git a/examples/model/3.png b/examples/model/3.png
new file mode 100644
index 0000000000000000000000000000000000000000..a11a4177474c1a238bf10a9d9faedb5e6dae91ae
Binary files /dev/null and b/examples/model/3.png differ
diff --git a/examples/model/4.jpg b/examples/model/4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c363bfb7ce7d284429d04025b92a76d4e6061555
Binary files /dev/null and b/examples/model/4.jpg differ
diff --git a/examples/model/5.jpg b/examples/model/5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f8e598e3e531abacf1ae5b68ea41017427bbb5d1
Binary files /dev/null and b/examples/model/5.jpg differ
diff --git a/examples/model/6.jpg b/examples/model/6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b695d94dafa07d23f87ca18d57ef70f2ca45a967
Binary files /dev/null and b/examples/model/6.jpg differ
diff --git a/examples/model/7.jpg b/examples/model/7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a141e8043267f444f1aecf9f7f98847e8f605c09
Binary files /dev/null and b/examples/model/7.jpg differ
diff --git a/examples/model/8.png b/examples/model/8.png
new file mode 100644
index 0000000000000000000000000000000000000000..095df087b4a1c696609c166bc52b8bdb78095caa
Binary files /dev/null and b/examples/model/8.png differ
diff --git a/preprocess/dwpose/__init__.py b/preprocess/dwpose/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..31b0bf6cd87b6e95bc17c9a71a100a7a84756aa7
--- /dev/null
+++ b/preprocess/dwpose/__init__.py
@@ -0,0 +1,68 @@
+# Openpose
+# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
+# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
+# 3rd Edited by ControlNet
+# 4th Edited by ControlNet (added face and correct hands)
+
+import os
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+import torch
+import numpy as np
+from . import util
+from .wholebody import Wholebody
+
+def draw_pose(pose, H, W):
+ bodies = pose['bodies']
+ faces = pose['faces']
+ hands = pose['hands']
+ candidate = bodies['candidate']
+ subset = bodies['subset']
+ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
+
+ canvas = util.draw_bodypose(canvas, candidate, subset)
+
+ canvas = util.draw_handpose(canvas, hands)
+
+ canvas = util.draw_facepose(canvas, faces)
+
+ return canvas
+
+
+class DWposeDetector:
+ def __init__(self, model_root, device):
+
+ self.pose_estimation = Wholebody(model_root, device)
+
+ def __call__(self, oriImg):
+ oriImg = oriImg.copy()
+ H, W, C = oriImg.shape
+ with torch.no_grad():
+ candidate, subset = self.pose_estimation(oriImg)
+ nums, keys, locs = candidate.shape
+ candidate[..., 0] /= float(W)
+ candidate[..., 1] /= float(H)
+ body = candidate[:,:18].copy()
+ body = body.reshape(nums*18, locs)
+ ori_score = subset[:,:18].copy()
+ score = subset[:,:18].copy()
+ for i in range(len(score)):
+ for j in range(len(score[i])):
+ if score[i][j] > 0.3:
+ score[i][j] = int(18*i+j)
+ else:
+ score[i][j] = -1
+
+ un_visible = subset<0.3
+ candidate[un_visible] = -1
+
+ foot = candidate[:,18:24]
+
+ faces = candidate[:,24:92]
+
+ hands = candidate[:,92:113]
+ hands = np.vstack([hands, candidate[:,113:]])
+
+ bodies = dict(candidate=body, subset=score)
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
+ return draw_pose(pose, H, W), body, ori_score, candidate
\ No newline at end of file
diff --git a/preprocess/dwpose/onnxdet.py b/preprocess/dwpose/onnxdet.py
new file mode 100644
index 0000000000000000000000000000000000000000..2f29498d96898aca3557eb93bcb911f8dc32ae6e
--- /dev/null
+++ b/preprocess/dwpose/onnxdet.py
@@ -0,0 +1,125 @@
+import cv2
+import numpy as np
+
+import onnxruntime
+
+def nms(boxes, scores, nms_thr):
+ """Single class NMS implemented in Numpy."""
+ x1 = boxes[:, 0]
+ y1 = boxes[:, 1]
+ x2 = boxes[:, 2]
+ y2 = boxes[:, 3]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= nms_thr)[0]
+ order = order[inds + 1]
+
+ return keep
+
+def multiclass_nms(boxes, scores, nms_thr, score_thr):
+ """Multiclass NMS implemented in Numpy. Class-aware version."""
+ final_dets = []
+ num_classes = scores.shape[1]
+ for cls_ind in range(num_classes):
+ cls_scores = scores[:, cls_ind]
+ valid_score_mask = cls_scores > score_thr
+ if valid_score_mask.sum() == 0:
+ continue
+ else:
+ valid_scores = cls_scores[valid_score_mask]
+ valid_boxes = boxes[valid_score_mask]
+ keep = nms(valid_boxes, valid_scores, nms_thr)
+ if len(keep) > 0:
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
+ dets = np.concatenate(
+ [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
+ )
+ final_dets.append(dets)
+ if len(final_dets) == 0:
+ return None
+ return np.concatenate(final_dets, 0)
+
+def demo_postprocess(outputs, img_size, p6=False):
+ grids = []
+ expanded_strides = []
+ strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
+
+ hsizes = [img_size[0] // stride for stride in strides]
+ wsizes = [img_size[1] // stride for stride in strides]
+
+ for hsize, wsize, stride in zip(hsizes, wsizes, strides):
+ xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
+ grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
+ grids.append(grid)
+ shape = grid.shape[:2]
+ expanded_strides.append(np.full((*shape, 1), stride))
+
+ grids = np.concatenate(grids, 1)
+ expanded_strides = np.concatenate(expanded_strides, 1)
+ outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
+ outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
+
+ return outputs
+
+def preprocess(img, input_size, swap=(2, 0, 1)):
+ if len(img.shape) == 3:
+ padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
+ else:
+ padded_img = np.ones(input_size, dtype=np.uint8) * 114
+
+ r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
+ resized_img = cv2.resize(
+ img,
+ (int(img.shape[1] * r), int(img.shape[0] * r)),
+ interpolation=cv2.INTER_LINEAR,
+ ).astype(np.uint8)
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
+
+ padded_img = padded_img.transpose(swap)
+ padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
+ return padded_img, r
+
+def inference_detector(session, oriImg):
+ input_shape = (640,640)
+ img, ratio = preprocess(oriImg, input_shape)
+
+ ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
+ output = session.run(None, ort_inputs)
+ predictions = demo_postprocess(output[0], input_shape)[0]
+
+ boxes = predictions[:, :4]
+ scores = predictions[:, 4:5] * predictions[:, 5:]
+
+ boxes_xyxy = np.ones_like(boxes)
+ boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
+ boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
+ boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
+ boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
+ boxes_xyxy /= ratio
+ dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
+ if dets is not None:
+ final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
+ isscore = final_scores>0.3
+ iscat = final_cls_inds == 0
+ isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
+ final_boxes = final_boxes[isbbox]
+ else:
+ final_boxes = np.array([])
+
+ return final_boxes
\ No newline at end of file
diff --git a/preprocess/dwpose/onnxpose.py b/preprocess/dwpose/onnxpose.py
new file mode 100644
index 0000000000000000000000000000000000000000..79cd4a06241123af81ea22446a4ca8816716443f
--- /dev/null
+++ b/preprocess/dwpose/onnxpose.py
@@ -0,0 +1,360 @@
+from typing import List, Tuple
+
+import cv2
+import numpy as np
+import onnxruntime as ort
+
+def preprocess(
+ img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
+) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
+ """Do preprocessing for RTMPose model inference.
+
+ Args:
+ img (np.ndarray): Input image in shape.
+ input_size (tuple): Input image size in shape (w, h).
+
+ Returns:
+ tuple:
+ - resized_img (np.ndarray): Preprocessed image.
+ - center (np.ndarray): Center of image.
+ - scale (np.ndarray): Scale of image.
+ """
+ # get shape of image
+ img_shape = img.shape[:2]
+ out_img, out_center, out_scale = [], [], []
+ if len(out_bbox) == 0:
+ out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
+ for i in range(len(out_bbox)):
+ x0 = out_bbox[i][0]
+ y0 = out_bbox[i][1]
+ x1 = out_bbox[i][2]
+ y1 = out_bbox[i][3]
+ bbox = np.array([x0, y0, x1, y1])
+
+ # get center and scale
+ center, scale = bbox_xyxy2cs(bbox, padding=1.25)
+
+ # do affine transformation
+ resized_img, scale = top_down_affine(input_size, scale, center, img)
+
+ # normalize image
+ mean = np.array([123.675, 116.28, 103.53])
+ std = np.array([58.395, 57.12, 57.375])
+ resized_img = (resized_img - mean) / std
+
+ out_img.append(resized_img)
+ out_center.append(center)
+ out_scale.append(scale)
+
+ return out_img, out_center, out_scale
+
+
+def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
+ """Inference RTMPose model.
+
+ Args:
+ sess (ort.InferenceSession): ONNXRuntime session.
+ img (np.ndarray): Input image in shape.
+
+ Returns:
+ outputs (np.ndarray): Output of RTMPose model.
+ """
+ all_out = []
+ # build input
+ for i in range(len(img)):
+ input = [img[i].transpose(2, 0, 1)]
+
+ # build output
+ sess_input = {sess.get_inputs()[0].name: input}
+ sess_output = []
+ for out in sess.get_outputs():
+ sess_output.append(out.name)
+
+ # run model
+ outputs = sess.run(sess_output, sess_input)
+ all_out.append(outputs)
+
+ return all_out
+
+
+def postprocess(outputs: List[np.ndarray],
+ model_input_size: Tuple[int, int],
+ center: Tuple[int, int],
+ scale: Tuple[int, int],
+ simcc_split_ratio: float = 2.0
+ ) -> Tuple[np.ndarray, np.ndarray]:
+ """Postprocess for RTMPose model output.
+
+ Args:
+ outputs (np.ndarray): Output of RTMPose model.
+ model_input_size (tuple): RTMPose model Input image size.
+ center (tuple): Center of bbox in shape (x, y).
+ scale (tuple): Scale of bbox in shape (w, h).
+ simcc_split_ratio (float): Split ratio of simcc.
+
+ Returns:
+ tuple:
+ - keypoints (np.ndarray): Rescaled keypoints.
+ - scores (np.ndarray): Model predict scores.
+ """
+ all_key = []
+ all_score = []
+ for i in range(len(outputs)):
+ # use simcc to decode
+ simcc_x, simcc_y = outputs[i]
+ keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
+
+ # rescale keypoints
+ keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
+ all_key.append(keypoints[0])
+ all_score.append(scores[0])
+
+ return np.array(all_key), np.array(all_score)
+
+
+def bbox_xyxy2cs(bbox: np.ndarray,
+ padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
+ """Transform the bbox format from (x,y,w,h) into (center, scale)
+
+ Args:
+ bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
+ as (left, top, right, bottom)
+ padding (float): BBox padding factor that will be multilied to scale.
+ Default: 1.0
+
+ Returns:
+ tuple: A tuple containing center and scale.
+ - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
+ (n, 2)
+ - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
+ (n, 2)
+ """
+ # convert single bbox from (4, ) to (1, 4)
+ dim = bbox.ndim
+ if dim == 1:
+ bbox = bbox[None, :]
+
+ # get bbox center and scale
+ x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
+ center = np.hstack([x1 + x2, y1 + y2]) * 0.5
+ scale = np.hstack([x2 - x1, y2 - y1]) * padding
+
+ if dim == 1:
+ center = center[0]
+ scale = scale[0]
+
+ return center, scale
+
+
+def _fix_aspect_ratio(bbox_scale: np.ndarray,
+ aspect_ratio: float) -> np.ndarray:
+ """Extend the scale to match the given aspect ratio.
+
+ Args:
+ scale (np.ndarray): The image scale (w, h) in shape (2, )
+ aspect_ratio (float): The ratio of ``w/h``
+
+ Returns:
+ np.ndarray: The reshaped image scale in (2, )
+ """
+ w, h = np.hsplit(bbox_scale, [1])
+ bbox_scale = np.where(w > h * aspect_ratio,
+ np.hstack([w, w / aspect_ratio]),
+ np.hstack([h * aspect_ratio, h]))
+ return bbox_scale
+
+
+def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
+ """Rotate a point by an angle.
+
+ Args:
+ pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
+ angle_rad (float): rotation angle in radian
+
+ Returns:
+ np.ndarray: Rotated point in shape (2, )
+ """
+ sn, cs = np.sin(angle_rad), np.cos(angle_rad)
+ rot_mat = np.array([[cs, -sn], [sn, cs]])
+ return rot_mat @ pt
+
+
+def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
+ """To calculate the affine matrix, three pairs of points are required. This
+ function is used to get the 3rd point, given 2D points a & b.
+
+ The 3rd point is defined by rotating vector `a - b` by 90 degrees
+ anticlockwise, using b as the rotation center.
+
+ Args:
+ a (np.ndarray): The 1st point (x,y) in shape (2, )
+ b (np.ndarray): The 2nd point (x,y) in shape (2, )
+
+ Returns:
+ np.ndarray: The 3rd point.
+ """
+ direction = a - b
+ c = b + np.r_[-direction[1], direction[0]]
+ return c
+
+
+def get_warp_matrix(center: np.ndarray,
+ scale: np.ndarray,
+ rot: float,
+ output_size: Tuple[int, int],
+ shift: Tuple[float, float] = (0., 0.),
+ inv: bool = False) -> np.ndarray:
+ """Calculate the affine transformation matrix that can warp the bbox area
+ in the input image to the output size.
+
+ Args:
+ center (np.ndarray[2, ]): Center of the bounding box (x, y).
+ scale (np.ndarray[2, ]): Scale of the bounding box
+ wrt [width, height].
+ rot (float): Rotation angle (degree).
+ output_size (np.ndarray[2, ] | list(2,)): Size of the
+ destination heatmaps.
+ shift (0-100%): Shift translation ratio wrt the width/height.
+ Default (0., 0.).
+ inv (bool): Option to inverse the affine transform direction.
+ (inv=False: src->dst or inv=True: dst->src)
+
+ Returns:
+ np.ndarray: A 2x3 transformation matrix
+ """
+ shift = np.array(shift)
+ src_w = scale[0]
+ dst_w = output_size[0]
+ dst_h = output_size[1]
+
+ # compute transformation matrix
+ rot_rad = np.deg2rad(rot)
+ src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
+ dst_dir = np.array([0., dst_w * -0.5])
+
+ # get four corners of the src rectangle in the original image
+ src = np.zeros((3, 2), dtype=np.float32)
+ src[0, :] = center + scale * shift
+ src[1, :] = center + src_dir + scale * shift
+ src[2, :] = _get_3rd_point(src[0, :], src[1, :])
+
+ # get four corners of the dst rectangle in the input image
+ dst = np.zeros((3, 2), dtype=np.float32)
+ dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
+ dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
+ dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
+
+ if inv:
+ warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
+ else:
+ warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
+
+ return warp_mat
+
+
+def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
+ img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
+ """Get the bbox image as the model input by affine transform.
+
+ Args:
+ input_size (dict): The input size of the model.
+ bbox_scale (dict): The bbox scale of the img.
+ bbox_center (dict): The bbox center of the img.
+ img (np.ndarray): The original image.
+
+ Returns:
+ tuple: A tuple containing center and scale.
+ - np.ndarray[float32]: img after affine transform.
+ - np.ndarray[float32]: bbox scale after affine transform.
+ """
+ w, h = input_size
+ warp_size = (int(w), int(h))
+
+ # reshape bbox to fixed aspect ratio
+ bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
+
+ # get the affine matrix
+ center = bbox_center
+ scale = bbox_scale
+ rot = 0
+ warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
+
+ # do affine transform
+ img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
+
+ return img, bbox_scale
+
+
+def get_simcc_maximum(simcc_x: np.ndarray,
+ simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
+ """Get maximum response location and value from simcc representations.
+
+ Note:
+ instance number: N
+ num_keypoints: K
+ heatmap height: H
+ heatmap width: W
+
+ Args:
+ simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
+ simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
+
+ Returns:
+ tuple:
+ - locs (np.ndarray): locations of maximum heatmap responses in shape
+ (K, 2) or (N, K, 2)
+ - vals (np.ndarray): values of maximum heatmap responses in shape
+ (K,) or (N, K)
+ """
+ N, K, Wx = simcc_x.shape
+ simcc_x = simcc_x.reshape(N * K, -1)
+ simcc_y = simcc_y.reshape(N * K, -1)
+
+ # get maximum value locations
+ x_locs = np.argmax(simcc_x, axis=1)
+ y_locs = np.argmax(simcc_y, axis=1)
+ locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
+ max_val_x = np.amax(simcc_x, axis=1)
+ max_val_y = np.amax(simcc_y, axis=1)
+
+ # get maximum value across x and y axis
+ mask = max_val_x > max_val_y
+ max_val_x[mask] = max_val_y[mask]
+ vals = max_val_x
+ locs[vals <= 0.] = -1
+
+ # reshape
+ locs = locs.reshape(N, K, 2)
+ vals = vals.reshape(N, K)
+
+ return locs, vals
+
+
+def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
+ simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
+ """Modulate simcc distribution with Gaussian.
+
+ Args:
+ simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
+ simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
+ simcc_split_ratio (int): The split ratio of simcc.
+
+ Returns:
+ tuple: A tuple containing center and scale.
+ - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
+ - np.ndarray[float32]: scores in shape (K,) or (n, K)
+ """
+ keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
+ keypoints /= simcc_split_ratio
+
+ return keypoints, scores
+
+
+def inference_pose(session, out_bbox, oriImg):
+ h, w = session.get_inputs()[0].shape[2:]
+ model_input_size = (w, h)
+ resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
+ outputs = inference(session, resized_img)
+ keypoints, scores = postprocess(outputs, model_input_size, center, scale)
+
+ return keypoints, scores
\ No newline at end of file
diff --git a/preprocess/dwpose/util.py b/preprocess/dwpose/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..312216082fd75c3899fe44008343e56e99af6f3d
--- /dev/null
+++ b/preprocess/dwpose/util.py
@@ -0,0 +1,297 @@
+import math
+import numpy as np
+import matplotlib
+import cv2
+
+
+eps = 0.01
+
+
+def smart_resize(x, s):
+ Ht, Wt = s
+ if x.ndim == 2:
+ Ho, Wo = x.shape
+ Co = 1
+ else:
+ Ho, Wo, Co = x.shape
+ if Co == 3 or Co == 1:
+ k = float(Ht + Wt) / float(Ho + Wo)
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
+ else:
+ return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
+
+
+def smart_resize_k(x, fx, fy):
+ if x.ndim == 2:
+ Ho, Wo = x.shape
+ Co = 1
+ else:
+ Ho, Wo, Co = x.shape
+ Ht, Wt = Ho * fy, Wo * fx
+ if Co == 3 or Co == 1:
+ k = float(Ht + Wt) / float(Ho + Wo)
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
+ else:
+ return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
+
+
+def padRightDownCorner(img, stride, padValue):
+ h = img.shape[0]
+ w = img.shape[1]
+
+ pad = 4 * [None]
+ pad[0] = 0 # up
+ pad[1] = 0 # left
+ pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
+ pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
+
+ img_padded = img
+ pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
+ img_padded = np.concatenate((pad_up, img_padded), axis=0)
+ pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
+ img_padded = np.concatenate((pad_left, img_padded), axis=1)
+ pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
+ img_padded = np.concatenate((img_padded, pad_down), axis=0)
+ pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
+ img_padded = np.concatenate((img_padded, pad_right), axis=1)
+
+ return img_padded, pad
+
+
+def transfer(model, model_weights):
+ transfered_model_weights = {}
+ for weights_name in model.state_dict().keys():
+ transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
+ return transfered_model_weights
+
+
+def draw_bodypose(canvas, candidate, subset):
+ H, W, C = canvas.shape
+ candidate = np.array(candidate)
+ subset = np.array(subset)
+
+ stickwidth = 4
+
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
+ [1, 16], [16, 18], [3, 17], [6, 18]]
+
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
+
+ for i in range(17):
+ for n in range(len(subset)):
+ index = subset[n][np.array(limbSeq[i]) - 1]
+ if -1 in index:
+ continue
+ Y = candidate[index.astype(int), 0] * float(W)
+ X = candidate[index.astype(int), 1] * float(H)
+ mX = np.mean(X)
+ mY = np.mean(Y)
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
+ cv2.fillConvexPoly(canvas, polygon, colors[i])
+
+ canvas = (canvas * 0.6).astype(np.uint8)
+
+ for i in range(18):
+ for n in range(len(subset)):
+ index = int(subset[n][i])
+ if index == -1:
+ continue
+ x, y = candidate[index][0:2]
+ x = int(x * W)
+ y = int(y * H)
+ cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
+
+ return canvas
+
+
+def draw_handpose(canvas, all_hand_peaks):
+ H, W, C = canvas.shape
+
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
+
+ for peaks in all_hand_peaks:
+ peaks = np.array(peaks)
+
+ for ie, e in enumerate(edges):
+ x1, y1 = peaks[e[0]]
+ x2, y2 = peaks[e[1]]
+ x1 = int(x1 * W)
+ y1 = int(y1 * H)
+ x2 = int(x2 * W)
+ y2 = int(y2 * H)
+ if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
+
+ for i, keyponit in enumerate(peaks):
+ x, y = keyponit
+ x = int(x * W)
+ y = int(y * H)
+ if x > eps and y > eps:
+ cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
+ return canvas
+
+
+def draw_facepose(canvas, all_lmks):
+ H, W, C = canvas.shape
+ for lmks in all_lmks:
+ lmks = np.array(lmks)
+ for lmk in lmks:
+ x, y = lmk
+ x = int(x * W)
+ y = int(y * H)
+ if x > eps and y > eps:
+ cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
+ return canvas
+
+
+# detect hand according to body pose keypoints
+# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
+def handDetect(candidate, subset, oriImg):
+ # right hand: wrist 4, elbow 3, shoulder 2
+ # left hand: wrist 7, elbow 6, shoulder 5
+ ratioWristElbow = 0.33
+ detect_result = []
+ image_height, image_width = oriImg.shape[0:2]
+ for person in subset.astype(int):
+ # if any of three not detected
+ has_left = np.sum(person[[5, 6, 7]] == -1) == 0
+ has_right = np.sum(person[[2, 3, 4]] == -1) == 0
+ if not (has_left or has_right):
+ continue
+ hands = []
+ #left hand
+ if has_left:
+ left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
+ x1, y1 = candidate[left_shoulder_index][:2]
+ x2, y2 = candidate[left_elbow_index][:2]
+ x3, y3 = candidate[left_wrist_index][:2]
+ hands.append([x1, y1, x2, y2, x3, y3, True])
+ # right hand
+ if has_right:
+ right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
+ x1, y1 = candidate[right_shoulder_index][:2]
+ x2, y2 = candidate[right_elbow_index][:2]
+ x3, y3 = candidate[right_wrist_index][:2]
+ hands.append([x1, y1, x2, y2, x3, y3, False])
+
+ for x1, y1, x2, y2, x3, y3, is_left in hands:
+ # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
+ # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
+ # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
+ # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
+ # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
+ # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
+ x = x3 + ratioWristElbow * (x3 - x2)
+ y = y3 + ratioWristElbow * (y3 - y2)
+ distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
+ distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
+ width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
+ # x-y refers to the center --> offset to topLeft point
+ # handRectangle.x -= handRectangle.width / 2.f;
+ # handRectangle.y -= handRectangle.height / 2.f;
+ x -= width / 2
+ y -= width / 2 # width = height
+ # overflow the image
+ if x < 0: x = 0
+ if y < 0: y = 0
+ width1 = width
+ width2 = width
+ if x + width > image_width: width1 = image_width - x
+ if y + width > image_height: width2 = image_height - y
+ width = min(width1, width2)
+ # the max hand box value is 20 pixels
+ if width >= 20:
+ detect_result.append([int(x), int(y), int(width), is_left])
+
+ '''
+ return value: [[x, y, w, True if left hand else False]].
+ width=height since the network require squared input.
+ x, y is the coordinate of top left
+ '''
+ return detect_result
+
+
+# Written by Lvmin
+def faceDetect(candidate, subset, oriImg):
+ # left right eye ear 14 15 16 17
+ detect_result = []
+ image_height, image_width = oriImg.shape[0:2]
+ for person in subset.astype(int):
+ has_head = person[0] > -1
+ if not has_head:
+ continue
+
+ has_left_eye = person[14] > -1
+ has_right_eye = person[15] > -1
+ has_left_ear = person[16] > -1
+ has_right_ear = person[17] > -1
+
+ if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
+ continue
+
+ head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
+
+ width = 0.0
+ x0, y0 = candidate[head][:2]
+
+ if has_left_eye:
+ x1, y1 = candidate[left_eye][:2]
+ d = max(abs(x0 - x1), abs(y0 - y1))
+ width = max(width, d * 3.0)
+
+ if has_right_eye:
+ x1, y1 = candidate[right_eye][:2]
+ d = max(abs(x0 - x1), abs(y0 - y1))
+ width = max(width, d * 3.0)
+
+ if has_left_ear:
+ x1, y1 = candidate[left_ear][:2]
+ d = max(abs(x0 - x1), abs(y0 - y1))
+ width = max(width, d * 1.5)
+
+ if has_right_ear:
+ x1, y1 = candidate[right_ear][:2]
+ d = max(abs(x0 - x1), abs(y0 - y1))
+ width = max(width, d * 1.5)
+
+ x, y = x0, y0
+
+ x -= width
+ y -= width
+
+ if x < 0:
+ x = 0
+
+ if y < 0:
+ y = 0
+
+ width1 = width * 2
+ width2 = width * 2
+
+ if x + width > image_width:
+ width1 = image_width - x
+
+ if y + width > image_height:
+ width2 = image_height - y
+
+ width = min(width1, width2)
+
+ if width >= 20:
+ detect_result.append([int(x), int(y), int(width)])
+
+ return detect_result
+
+
+# get max index of 2d array
+def npmax(array):
+ arrayindex = array.argmax(1)
+ arrayvalue = array.max(1)
+ i = arrayvalue.argmax()
+ j = arrayindex[i]
+ return i, j
\ No newline at end of file
diff --git a/preprocess/dwpose/wholebody.py b/preprocess/dwpose/wholebody.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ae35701ef59e3fe6f6ec0dbe79bb2fc974ea763
--- /dev/null
+++ b/preprocess/dwpose/wholebody.py
@@ -0,0 +1,46 @@
+import cv2
+import numpy as np
+import os
+
+import onnxruntime as ort
+from .onnxdet import inference_detector
+from .onnxpose import inference_pose
+
+class Wholebody:
+ def __init__(self, model_root, device):
+ providers = ['CPUExecutionProvider'
+ ] if device == 'cpu' else ['CUDAExecutionProvider']
+ onnx_det = os.path.join(model_root, 'dwpose/yolox_l.onnx')
+ onnx_pose = os.path.join(model_root, 'dwpose/dw-ll_ucoco_384.onnx')
+
+ self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
+ self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
+
+ def __call__(self, oriImg):
+ det_result = inference_detector(self.session_det, oriImg)
+ keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
+
+ keypoints_info = np.concatenate(
+ (keypoints, scores[..., None]), axis=-1)
+ # compute neck joint
+ neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
+ # neck score when visualizing pred
+ neck[:, 2:4] = np.logical_and(
+ keypoints_info[:, 5, 2:4] > 0.3,
+ keypoints_info[:, 6, 2:4] > 0.3).astype(int)
+ new_keypoints_info = np.insert(
+ keypoints_info, 17, neck, axis=1)
+ mmpose_idx = [
+ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
+ ]
+ openpose_idx = [
+ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
+ ]
+ new_keypoints_info[:, openpose_idx] = \
+ new_keypoints_info[:, mmpose_idx]
+ keypoints_info = new_keypoints_info
+
+ keypoints, scores = keypoints_info[
+ ..., :2], keypoints_info[..., 2]
+
+ return keypoints, scores
\ No newline at end of file
diff --git a/preprocess/humanparsing/datasets/__init__.py b/preprocess/humanparsing/datasets/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/preprocess/humanparsing/datasets/datasets.py b/preprocess/humanparsing/datasets/datasets.py
new file mode 100644
index 0000000000000000000000000000000000000000..433f15af93029538b3b039f8f207764fcfe426d9
--- /dev/null
+++ b/preprocess/humanparsing/datasets/datasets.py
@@ -0,0 +1,201 @@
+#!/usr/bin/env python
+# -*- encoding: utf-8 -*-
+
+"""
+@Author : Peike Li
+@Contact : peike.li@yahoo.com
+@File : datasets.py
+@Time : 8/4/19 3:35 PM
+@Desc :
+@License : This source code is licensed under the license found in the
+ LICENSE file in the root directory of this source tree.
+"""
+
+import os
+import numpy as np
+import random
+import torch
+import cv2
+from torch.utils import data
+from utils.transforms import get_affine_transform
+
+
+class LIPDataSet(data.Dataset):
+ def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
+ rotation_factor=30, ignore_label=255, transform=None):
+ self.root = root
+ self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
+ self.crop_size = np.asarray(crop_size)
+ self.ignore_label = ignore_label
+ self.scale_factor = scale_factor
+ self.rotation_factor = rotation_factor
+ self.flip_prob = 0.5
+ self.transform = transform
+ self.dataset = dataset
+
+ list_path = os.path.join(self.root, self.dataset + '_id.txt')
+ train_list = [i_id.strip() for i_id in open(list_path)]
+
+ self.train_list = train_list
+ self.number_samples = len(self.train_list)
+
+ def __len__(self):
+ return self.number_samples
+
+ def _box2cs(self, box):
+ x, y, w, h = box[:4]
+ return self._xywh2cs(x, y, w, h)
+
+ def _xywh2cs(self, x, y, w, h):
+ center = np.zeros((2), dtype=np.float32)
+ center[0] = x + w * 0.5
+ center[1] = y + h * 0.5
+ if w > self.aspect_ratio * h:
+ h = w * 1.0 / self.aspect_ratio
+ elif w < self.aspect_ratio * h:
+ w = h * self.aspect_ratio
+ scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
+ return center, scale
+
+ def __getitem__(self, index):
+ train_item = self.train_list[index]
+
+ im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
+ parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
+
+ im = cv2.imread(im_path, cv2.IMREAD_COLOR)
+ h, w, _ = im.shape
+ parsing_anno = np.zeros((h, w), dtype=np.long)
+
+ # Get person center and scale
+ person_center, s = self._box2cs([0, 0, w - 1, h - 1])
+ r = 0
+
+ if self.dataset != 'test':
+ # Get pose annotation
+ parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
+ if self.dataset == 'train' or self.dataset == 'trainval':
+ sf = self.scale_factor
+ rf = self.rotation_factor
+ s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
+ r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
+
+ if random.random() <= self.flip_prob:
+ im = im[:, ::-1, :]
+ parsing_anno = parsing_anno[:, ::-1]
+ person_center[0] = im.shape[1] - person_center[0] - 1
+ right_idx = [15, 17, 19]
+ left_idx = [14, 16, 18]
+ for i in range(0, 3):
+ right_pos = np.where(parsing_anno == right_idx[i])
+ left_pos = np.where(parsing_anno == left_idx[i])
+ parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
+ parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
+
+ trans = get_affine_transform(person_center, s, r, self.crop_size)
+ input = cv2.warpAffine(
+ im,
+ trans,
+ (int(self.crop_size[1]), int(self.crop_size[0])),
+ flags=cv2.INTER_LINEAR,
+ borderMode=cv2.BORDER_CONSTANT,
+ borderValue=(0, 0, 0))
+
+ if self.transform:
+ input = self.transform(input)
+
+ meta = {
+ 'name': train_item,
+ 'center': person_center,
+ 'height': h,
+ 'width': w,
+ 'scale': s,
+ 'rotation': r
+ }
+
+ if self.dataset == 'val' or self.dataset == 'test':
+ return input, meta
+ else:
+ label_parsing = cv2.warpAffine(
+ parsing_anno,
+ trans,
+ (int(self.crop_size[1]), int(self.crop_size[0])),
+ flags=cv2.INTER_NEAREST,
+ borderMode=cv2.BORDER_CONSTANT,
+ borderValue=(255))
+
+ label_parsing = torch.from_numpy(label_parsing)
+
+ return input, label_parsing, meta
+
+
+class LIPDataValSet(data.Dataset):
+ def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
+ self.root = root
+ self.crop_size = crop_size
+ self.transform = transform
+ self.flip = flip
+ self.dataset = dataset
+ self.root = root
+ self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
+ self.crop_size = np.asarray(crop_size)
+
+ list_path = os.path.join(self.root, self.dataset + '_id.txt')
+ val_list = [i_id.strip() for i_id in open(list_path)]
+
+ self.val_list = val_list
+ self.number_samples = len(self.val_list)
+
+ def __len__(self):
+ return len(self.val_list)
+
+ def _box2cs(self, box):
+ x, y, w, h = box[:4]
+ return self._xywh2cs(x, y, w, h)
+
+ def _xywh2cs(self, x, y, w, h):
+ center = np.zeros((2), dtype=np.float32)
+ center[0] = x + w * 0.5
+ center[1] = y + h * 0.5
+ if w > self.aspect_ratio * h:
+ h = w * 1.0 / self.aspect_ratio
+ elif w < self.aspect_ratio * h:
+ w = h * self.aspect_ratio
+ scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
+
+ return center, scale
+
+ def __getitem__(self, index):
+ val_item = self.val_list[index]
+ # Load training image
+ im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
+ im = cv2.imread(im_path, cv2.IMREAD_COLOR)
+ h, w, _ = im.shape
+ # Get person center and scale
+ person_center, s = self._box2cs([0, 0, w - 1, h - 1])
+ r = 0
+ trans = get_affine_transform(person_center, s, r, self.crop_size)
+ input = cv2.warpAffine(
+ im,
+ trans,
+ (int(self.crop_size[1]), int(self.crop_size[0])),
+ flags=cv2.INTER_LINEAR,
+ borderMode=cv2.BORDER_CONSTANT,
+ borderValue=(0, 0, 0))
+ input = self.transform(input)
+ flip_input = input.flip(dims=[-1])
+ if self.flip:
+ batch_input_im = torch.stack([input, flip_input])
+ else:
+ batch_input_im = input
+
+ meta = {
+ 'name': val_item,
+ 'center': person_center,
+ 'height': h,
+ 'width': w,
+ 'scale': s,
+ 'rotation': r
+ }
+
+ return batch_input_im, meta
diff --git a/preprocess/humanparsing/datasets/simple_extractor_dataset.py b/preprocess/humanparsing/datasets/simple_extractor_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5e85240701231f9789b822219c8b9eda47be4de
--- /dev/null
+++ b/preprocess/humanparsing/datasets/simple_extractor_dataset.py
@@ -0,0 +1,89 @@
+#!/usr/bin/env python
+# -*- encoding: utf-8 -*-
+
+"""
+@Author : Peike Li
+@Contact : peike.li@yahoo.com
+@File : dataset.py
+@Time : 8/30/19 9:12 PM
+@Desc : Dataset Definition
+@License : This source code is licensed under the license found in the
+ LICENSE file in the root directory of this source tree.
+"""
+
+import os
+import pdb
+
+import cv2
+import numpy as np
+from PIL import Image
+from torch.utils import data
+from utils.transforms import get_affine_transform
+
+
+class SimpleFolderDataset(data.Dataset):
+ def __init__(self, root, input_size=[512, 512], transform=None):
+ self.root = root
+ self.input_size = input_size
+ self.transform = transform
+ self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
+ self.input_size = np.asarray(input_size)
+ self.is_pil_image = False
+ if isinstance(root, Image.Image):
+ self.file_list = [root]
+ self.is_pil_image = True
+ elif os.path.isfile(root):
+ self.file_list = [os.path.basename(root)]
+ self.root = os.path.dirname(root)
+ else:
+ self.file_list = os.listdir(self.root)
+
+ def __len__(self):
+ return len(self.file_list)
+
+ def _box2cs(self, box):
+ x, y, w, h = box[:4]
+ return self._xywh2cs(x, y, w, h)
+
+ def _xywh2cs(self, x, y, w, h):
+ center = np.zeros((2), dtype=np.float32)
+ center[0] = x + w * 0.5
+ center[1] = y + h * 0.5
+ if w > self.aspect_ratio * h:
+ h = w * 1.0 / self.aspect_ratio
+ elif w < self.aspect_ratio * h:
+ w = h * self.aspect_ratio
+ scale = np.array([w, h], dtype=np.float32)
+ return center, scale
+
+ def __getitem__(self, index):
+ if self.is_pil_image:
+ img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
+ else:
+ img_name = self.file_list[index]
+ img_path = os.path.join(self.root, img_name)
+ img = cv2.imread(img_path, cv2.IMREAD_COLOR)
+ h, w, _ = img.shape
+
+ # Get person center and scale
+ person_center, s = self._box2cs([0, 0, w - 1, h - 1])
+ r = 0
+ trans = get_affine_transform(person_center, s, r, self.input_size)
+ input = cv2.warpAffine(
+ img,
+ trans,
+ (int(self.input_size[1]), int(self.input_size[0])),
+ flags=cv2.INTER_LINEAR,
+ borderMode=cv2.BORDER_CONSTANT,
+ borderValue=(0, 0, 0))
+
+ input = self.transform(input)
+ meta = {
+ 'center': person_center,
+ 'height': h,
+ 'width': w,
+ 'scale': s,
+ 'rotation': r
+ }
+
+ return input, meta
diff --git a/preprocess/humanparsing/datasets/target_generation.py b/preprocess/humanparsing/datasets/target_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..8524db4427755c12ce71a4292d87ebb3e91762c1
--- /dev/null
+++ b/preprocess/humanparsing/datasets/target_generation.py
@@ -0,0 +1,40 @@
+import torch
+from torch.nn import functional as F
+
+
+def generate_edge_tensor(label, edge_width=3):
+ label = label.type(torch.cuda.FloatTensor)
+ if len(label.shape) == 2:
+ label = label.unsqueeze(0)
+ n, h, w = label.shape
+ edge = torch.zeros(label.shape, dtype=torch.float).cuda()
+ # right
+ edge_right = edge[:, 1:h, :]
+ edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
+ & (label[:, :h - 1, :] != 255)] = 1
+
+ # up
+ edge_up = edge[:, :, :w - 1]
+ edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
+ & (label[:, :, :w - 1] != 255)
+ & (label[:, :, 1:w] != 255)] = 1
+
+ # upright
+ edge_upright = edge[:, :h - 1, :w - 1]
+ edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
+ & (label[:, :h - 1, :w - 1] != 255)
+ & (label[:, 1:h, 1:w] != 255)] = 1
+
+ # bottomright
+ edge_bottomright = edge[:, :h - 1, 1:w]
+ edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
+ & (label[:, :h - 1, 1:w] != 255)
+ & (label[:, 1:h, :w - 1] != 255)] = 1
+
+ kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
+ with torch.no_grad():
+ edge = edge.unsqueeze(1)
+ edge = F.conv2d(edge, kernel, stride=1, padding=1)
+ edge[edge!=0] = 1
+ edge = edge.squeeze()
+ return edge
diff --git a/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py
new file mode 100644
index 0000000000000000000000000000000000000000..8eccb3a8f63e9b76eade5b2036526d91b8483dc2
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py
@@ -0,0 +1,166 @@
+import argparse
+import datetime
+import json
+import os
+from PIL import Image
+import numpy as np
+
+import pycococreatortools
+
+
+def get_arguments():
+ parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
+ parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
+ parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
+ help="path to save coco-style annotation json file")
+ parser.add_argument("--use_val", type=bool, default=False,
+ help="use train+val set for finetuning or not")
+ parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
+ help="train image path")
+ parser.add_argument("--train_anno_dir", type=str,
+ default='../data/instance-level_human_parsing/Training/Human_ids',
+ help="train human mask path")
+ parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
+ help="val image path")
+ parser.add_argument("--val_anno_dir", type=str,
+ default='../data/instance-level_human_parsing/Validation/Human_ids',
+ help="val human mask path")
+ return parser.parse_args()
+
+
+def main(args):
+ INFO = {
+ "description": args.split_name + " Dataset",
+ "url": "",
+ "version": "",
+ "year": 2019,
+ "contributor": "xyq",
+ "date_created": datetime.datetime.utcnow().isoformat(' ')
+ }
+
+ LICENSES = [
+ {
+ "id": 1,
+ "name": "",
+ "url": ""
+ }
+ ]
+
+ CATEGORIES = [
+ {
+ 'id': 1,
+ 'name': 'person',
+ 'supercategory': 'person',
+ },
+ ]
+
+ coco_output = {
+ "info": INFO,
+ "licenses": LICENSES,
+ "categories": CATEGORIES,
+ "images": [],
+ "annotations": []
+ }
+
+ image_id = 1
+ segmentation_id = 1
+
+ for image_name in os.listdir(args.train_img_dir):
+ image = Image.open(os.path.join(args.train_img_dir, image_name))
+ image_info = pycococreatortools.create_image_info(
+ image_id, image_name, image.size
+ )
+ coco_output["images"].append(image_info)
+
+ human_mask_name = os.path.splitext(image_name)[0] + '.png'
+ human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
+ human_gt_labels = np.unique(human_mask)
+
+ for i in range(1, len(human_gt_labels)):
+ category_info = {'id': 1, 'is_crowd': 0}
+ binary_mask = np.uint8(human_mask == i)
+ annotation_info = pycococreatortools.create_annotation_info(
+ segmentation_id, image_id, category_info, binary_mask,
+ image.size, tolerance=10
+ )
+ if annotation_info is not None:
+ coco_output["annotations"].append(annotation_info)
+
+ segmentation_id += 1
+ image_id += 1
+
+ if not os.path.exists(args.json_save_dir):
+ os.makedirs(args.json_save_dir)
+ if not args.use_val:
+ with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
+ json.dump(coco_output, output_json_file)
+ else:
+ for image_name in os.listdir(args.val_img_dir):
+ image = Image.open(os.path.join(args.val_img_dir, image_name))
+ image_info = pycococreatortools.create_image_info(
+ image_id, image_name, image.size
+ )
+ coco_output["images"].append(image_info)
+
+ human_mask_name = os.path.splitext(image_name)[0] + '.png'
+ human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
+ human_gt_labels = np.unique(human_mask)
+
+ for i in range(1, len(human_gt_labels)):
+ category_info = {'id': 1, 'is_crowd': 0}
+ binary_mask = np.uint8(human_mask == i)
+ annotation_info = pycococreatortools.create_annotation_info(
+ segmentation_id, image_id, category_info, binary_mask,
+ image.size, tolerance=10
+ )
+ if annotation_info is not None:
+ coco_output["annotations"].append(annotation_info)
+
+ segmentation_id += 1
+ image_id += 1
+
+ with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
+ json.dump(coco_output, output_json_file)
+
+ coco_output_val = {
+ "info": INFO,
+ "licenses": LICENSES,
+ "categories": CATEGORIES,
+ "images": [],
+ "annotations": []
+ }
+
+ image_id_val = 1
+ segmentation_id_val = 1
+
+ for image_name in os.listdir(args.val_img_dir):
+ image = Image.open(os.path.join(args.val_img_dir, image_name))
+ image_info = pycococreatortools.create_image_info(
+ image_id_val, image_name, image.size
+ )
+ coco_output_val["images"].append(image_info)
+
+ human_mask_name = os.path.splitext(image_name)[0] + '.png'
+ human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
+ human_gt_labels = np.unique(human_mask)
+
+ for i in range(1, len(human_gt_labels)):
+ category_info = {'id': 1, 'is_crowd': 0}
+ binary_mask = np.uint8(human_mask == i)
+ annotation_info = pycococreatortools.create_annotation_info(
+ segmentation_id_val, image_id_val, category_info, binary_mask,
+ image.size, tolerance=10
+ )
+ if annotation_info is not None:
+ coco_output_val["annotations"].append(annotation_info)
+
+ segmentation_id_val += 1
+ image_id_val += 1
+
+ with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
+ json.dump(coco_output_val, output_json_file_val)
+
+
+if __name__ == "__main__":
+ args = get_arguments()
+ main(args)
diff --git a/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f3d8332ceda5fa4409095a0ec56d181ea162273
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
@@ -0,0 +1,114 @@
+import re
+import datetime
+import numpy as np
+from itertools import groupby
+from skimage import measure
+from PIL import Image
+from pycocotools import mask
+
+convert = lambda text: int(text) if text.isdigit() else text.lower()
+natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
+
+
+def resize_binary_mask(array, new_size):
+ image = Image.fromarray(array.astype(np.uint8) * 255)
+ image = image.resize(new_size)
+ return np.asarray(image).astype(np.bool_)
+
+
+def close_contour(contour):
+ if not np.array_equal(contour[0], contour[-1]):
+ contour = np.vstack((contour, contour[0]))
+ return contour
+
+
+def binary_mask_to_rle(binary_mask):
+ rle = {'counts': [], 'size': list(binary_mask.shape)}
+ counts = rle.get('counts')
+ for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
+ if i == 0 and value == 1:
+ counts.append(0)
+ counts.append(len(list(elements)))
+
+ return rle
+
+
+def binary_mask_to_polygon(binary_mask, tolerance=0):
+ """Converts a binary mask to COCO polygon representation
+ Args:
+ binary_mask: a 2D binary numpy array where '1's represent the object
+ tolerance: Maximum distance from original points of polygon to approximated
+ polygonal chain. If tolerance is 0, the original coordinate array is returned.
+ """
+ polygons = []
+ # pad mask to close contours of shapes which start and end at an edge
+ padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
+ contours = measure.find_contours(padded_binary_mask, 0.5)
+ contours = np.subtract(contours, 1)
+ for contour in contours:
+ contour = close_contour(contour)
+ contour = measure.approximate_polygon(contour, tolerance)
+ if len(contour) < 3:
+ continue
+ contour = np.flip(contour, axis=1)
+ segmentation = contour.ravel().tolist()
+ # after padding and subtracting 1 we may get -0.5 points in our segmentation
+ segmentation = [0 if i < 0 else i for i in segmentation]
+ polygons.append(segmentation)
+
+ return polygons
+
+
+def create_image_info(image_id, file_name, image_size,
+ date_captured=datetime.datetime.utcnow().isoformat(' '),
+ license_id=1, coco_url="", flickr_url=""):
+ image_info = {
+ "id": image_id,
+ "file_name": file_name,
+ "width": image_size[0],
+ "height": image_size[1],
+ "date_captured": date_captured,
+ "license": license_id,
+ "coco_url": coco_url,
+ "flickr_url": flickr_url
+ }
+
+ return image_info
+
+
+def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
+ image_size=None, tolerance=2, bounding_box=None):
+ if image_size is not None:
+ binary_mask = resize_binary_mask(binary_mask, image_size)
+
+ binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
+
+ area = mask.area(binary_mask_encoded)
+ if area < 1:
+ return None
+
+ if bounding_box is None:
+ bounding_box = mask.toBbox(binary_mask_encoded)
+
+ if category_info["is_crowd"]:
+ is_crowd = 1
+ segmentation = binary_mask_to_rle(binary_mask)
+ else:
+ is_crowd = 0
+ segmentation = binary_mask_to_polygon(binary_mask, tolerance)
+ if not segmentation:
+ return None
+
+ annotation_info = {
+ "id": annotation_id,
+ "image_id": image_id,
+ "category_id": category_info["id"],
+ "iscrowd": is_crowd,
+ "area": area.tolist(),
+ "bbox": bounding_box.tolist(),
+ "segmentation": segmentation,
+ "width": binary_mask.shape[1],
+ "height": binary_mask.shape[0],
+ }
+
+ return annotation_info
diff --git a/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
new file mode 100644
index 0000000000000000000000000000000000000000..17339187305a97fa7ab198cf1d8127a76ebdf854
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
@@ -0,0 +1,74 @@
+import argparse
+import datetime
+import json
+import os
+from PIL import Image
+
+import pycococreatortools
+
+
+def get_arguments():
+ parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
+ parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
+ parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
+ help="path to save coco-style annotation json file")
+ parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
+ help="test image path")
+ return parser.parse_args()
+
+args = get_arguments()
+
+INFO = {
+ "description": args.dataset + "Dataset",
+ "url": "",
+ "version": "",
+ "year": 2020,
+ "contributor": "yunqiuxu",
+ "date_created": datetime.datetime.utcnow().isoformat(' ')
+}
+
+LICENSES = [
+ {
+ "id": 1,
+ "name": "",
+ "url": ""
+ }
+]
+
+CATEGORIES = [
+ {
+ 'id': 1,
+ 'name': 'person',
+ 'supercategory': 'person',
+ },
+]
+
+
+def main(args):
+ coco_output = {
+ "info": INFO,
+ "licenses": LICENSES,
+ "categories": CATEGORIES,
+ "images": [],
+ "annotations": []
+ }
+
+ image_id = 1
+
+ for image_name in os.listdir(args.test_img_dir):
+ image = Image.open(os.path.join(args.test_img_dir, image_name))
+ image_info = pycococreatortools.create_image_info(
+ image_id, image_name, image.size
+ )
+ coco_output["images"].append(image_info)
+ image_id += 1
+
+ if not os.path.exists(os.path.join(args.json_save_dir)):
+ os.mkdir(os.path.join(args.json_save_dir))
+
+ with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
+ json.dump(coco_output, output_json_file)
+
+
+if __name__ == "__main__":
+ main(args)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml b/preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml
new file mode 100644
index 0000000000000000000000000000000000000000..6c605889cf4ac01d3ed63f62d65a0d6ae1f6edd0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml
@@ -0,0 +1,179 @@
+# Python CircleCI 2.0 configuration file
+#
+# Check https://circleci.com/docs/2.0/language-python/ for more details
+#
+version: 2
+
+# -------------------------------------------------------------------------------------
+# Environments to run the jobs in
+# -------------------------------------------------------------------------------------
+cpu: &cpu
+ docker:
+ - image: circleci/python:3.6.8-stretch
+ resource_class: medium
+
+gpu: &gpu
+ machine:
+ image: ubuntu-1604:201903-01
+ docker_layer_caching: true
+ resource_class: gpu.small
+
+# -------------------------------------------------------------------------------------
+# Re-usable commands
+# -------------------------------------------------------------------------------------
+install_python: &install_python
+ - run:
+ name: Install Python
+ working_directory: ~/
+ command: |
+ pyenv install 3.6.1
+ pyenv global 3.6.1
+
+setup_venv: &setup_venv
+ - run:
+ name: Setup Virtual Env
+ working_directory: ~/
+ command: |
+ python -m venv ~/venv
+ echo ". ~/venv/bin/activate" >> $BASH_ENV
+ . ~/venv/bin/activate
+ python --version
+ which python
+ which pip
+ pip install --upgrade pip
+
+install_dep: &install_dep
+ - run:
+ name: Install Dependencies
+ command: |
+ pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
+ pip install --progress-bar off cython opencv-python
+ pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
+ pip install --progress-bar off torch torchvision
+
+install_detectron2: &install_detectron2
+ - run:
+ name: Install Detectron2
+ command: |
+ gcc --version
+ pip install -U --progress-bar off -e .[dev]
+ python -m detectron2.utils.collect_env
+
+install_nvidia_driver: &install_nvidia_driver
+ - run:
+ name: Install nvidia driver
+ working_directory: ~/
+ command: |
+ wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
+ sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
+ nvidia-smi
+
+run_unittests: &run_unittests
+ - run:
+ name: Run Unit Tests
+ command: |
+ python -m unittest discover -v -s tests
+
+# -------------------------------------------------------------------------------------
+# Jobs to run
+# -------------------------------------------------------------------------------------
+jobs:
+ cpu_tests:
+ <<: *cpu
+
+ working_directory: ~/detectron2
+
+ steps:
+ - checkout
+ - <<: *setup_venv
+
+ # Cache the venv directory that contains dependencies
+ - restore_cache:
+ keys:
+ - cache-key-{{ .Branch }}-ID-20200425
+
+ - <<: *install_dep
+
+ - save_cache:
+ paths:
+ - ~/venv
+ key: cache-key-{{ .Branch }}-ID-20200425
+
+ - <<: *install_detectron2
+
+ - run:
+ name: isort
+ command: |
+ isort -c -sp .
+ - run:
+ name: black
+ command: |
+ black --check -l 100 .
+ - run:
+ name: flake8
+ command: |
+ flake8 .
+
+ - <<: *run_unittests
+
+ gpu_tests:
+ <<: *gpu
+
+ working_directory: ~/detectron2
+
+ steps:
+ - checkout
+ - <<: *install_nvidia_driver
+
+ - run:
+ name: Install nvidia-docker
+ working_directory: ~/
+ command: |
+ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
+ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
+ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
+ sudo tee /etc/apt/sources.list.d/nvidia-docker.list
+ sudo apt-get update && sudo apt-get install -y nvidia-docker2
+ # reload the docker daemon configuration
+ sudo pkill -SIGHUP dockerd
+
+ - run:
+ name: Launch docker
+ working_directory: ~/detectron2/docker
+ command: |
+ nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
+ nvidia-docker run -itd --name d2 detectron2:v0
+ docker exec -it d2 nvidia-smi
+
+ - run:
+ name: Build Detectron2
+ command: |
+ docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
+ docker cp ~/detectron2 d2:/detectron2
+ # This will build d2 for the target GPU arch only
+ docker exec -it d2 pip install -e /detectron2
+ docker exec -it d2 python3 -m detectron2.utils.collect_env
+ docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
+
+ - run:
+ name: Run Unit Tests
+ command: |
+ docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
+
+workflows:
+ version: 2
+ regular_test:
+ jobs:
+ - cpu_tests
+ - gpu_tests
+
+ #nightly_test:
+ #jobs:
+ #- gpu_tests
+ #triggers:
+ #- schedule:
+ #cron: "0 0 * * *"
+ #filters:
+ #branches:
+ #only:
+ #- master
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.clang-format b/preprocess/humanparsing/mhp_extension/detectron2/.clang-format
new file mode 100644
index 0000000000000000000000000000000000000000..a757d4fff0c2f065d7d51719b52aef35ec48d04e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.clang-format
@@ -0,0 +1,85 @@
+AccessModifierOffset: -1
+AlignAfterOpenBracket: AlwaysBreak
+AlignConsecutiveAssignments: false
+AlignConsecutiveDeclarations: false
+AlignEscapedNewlinesLeft: true
+AlignOperands: false
+AlignTrailingComments: false
+AllowAllParametersOfDeclarationOnNextLine: false
+AllowShortBlocksOnASingleLine: false
+AllowShortCaseLabelsOnASingleLine: false
+AllowShortFunctionsOnASingleLine: Empty
+AllowShortIfStatementsOnASingleLine: false
+AllowShortLoopsOnASingleLine: false
+AlwaysBreakAfterReturnType: None
+AlwaysBreakBeforeMultilineStrings: true
+AlwaysBreakTemplateDeclarations: true
+BinPackArguments: false
+BinPackParameters: false
+BraceWrapping:
+ AfterClass: false
+ AfterControlStatement: false
+ AfterEnum: false
+ AfterFunction: false
+ AfterNamespace: false
+ AfterObjCDeclaration: false
+ AfterStruct: false
+ AfterUnion: false
+ BeforeCatch: false
+ BeforeElse: false
+ IndentBraces: false
+BreakBeforeBinaryOperators: None
+BreakBeforeBraces: Attach
+BreakBeforeTernaryOperators: true
+BreakConstructorInitializersBeforeComma: false
+BreakAfterJavaFieldAnnotations: false
+BreakStringLiterals: false
+ColumnLimit: 80
+CommentPragmas: '^ IWYU pragma:'
+ConstructorInitializerAllOnOneLineOrOnePerLine: true
+ConstructorInitializerIndentWidth: 4
+ContinuationIndentWidth: 4
+Cpp11BracedListStyle: true
+DerivePointerAlignment: false
+DisableFormat: false
+ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
+IncludeCategories:
+ - Regex: '^<.*\.h(pp)?>'
+ Priority: 1
+ - Regex: '^<.*'
+ Priority: 2
+ - Regex: '.*'
+ Priority: 3
+IndentCaseLabels: true
+IndentWidth: 2
+IndentWrappedFunctionNames: false
+KeepEmptyLinesAtTheStartOfBlocks: false
+MacroBlockBegin: ''
+MacroBlockEnd: ''
+MaxEmptyLinesToKeep: 1
+NamespaceIndentation: None
+ObjCBlockIndentWidth: 2
+ObjCSpaceAfterProperty: false
+ObjCSpaceBeforeProtocolList: false
+PenaltyBreakBeforeFirstCallParameter: 1
+PenaltyBreakComment: 300
+PenaltyBreakFirstLessLess: 120
+PenaltyBreakString: 1000
+PenaltyExcessCharacter: 1000000
+PenaltyReturnTypeOnItsOwnLine: 200
+PointerAlignment: Left
+ReflowComments: true
+SortIncludes: true
+SpaceAfterCStyleCast: false
+SpaceBeforeAssignmentOperators: true
+SpaceBeforeParens: ControlStatements
+SpaceInEmptyParentheses: false
+SpacesBeforeTrailingComments: 1
+SpacesInAngles: false
+SpacesInContainerLiterals: true
+SpacesInCStyleCastParentheses: false
+SpacesInParentheses: false
+SpacesInSquareBrackets: false
+Standard: Cpp11
+TabWidth: 8
+UseTab: Never
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.flake8 b/preprocess/humanparsing/mhp_extension/detectron2/.flake8
new file mode 100644
index 0000000000000000000000000000000000000000..0cc61b77a7e7005b3499394c36288dc8f3bcad39
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.flake8
@@ -0,0 +1,9 @@
+# This is an example .flake8 config, used when developing *Black* itself.
+# Keep in sync with setup.cfg which is used for source packages.
+
+[flake8]
+ignore = W503, E203, E221, C901, C408, E741
+max-line-length = 100
+max-complexity = 18
+select = B,C,E,F,W,T4,B9
+exclude = build,__init__.py
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
new file mode 100644
index 0000000000000000000000000000000000000000..0f7ad8bfc173eac554f0b6ef7c684861e8014bbe
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
@@ -0,0 +1,5 @@
+# Code of Conduct
+
+Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
+Please read the [full text](https://code.fb.com/codeofconduct/)
+so that you can understand what actions will and will not be tolerated.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
new file mode 100644
index 0000000000000000000000000000000000000000..81936dfedb495dd5cd21da2bfcf9819b97ed1dff
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
@@ -0,0 +1,49 @@
+# Contributing to detectron2
+
+## Issues
+We use GitHub issues to track public bugs and questions.
+Please make sure to follow one of the
+[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
+when reporting any issues.
+
+Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
+disclosure of security bugs. In those cases, please go through the process
+outlined on that page and do not file a public issue.
+
+## Pull Requests
+We actively welcome your pull requests.
+
+However, if you're adding any significant features (e.g. > 50 lines), please
+make sure to have a corresponding issue to discuss your motivation and proposals,
+before sending a PR. We do not always accept new features, and we take the following
+factors into consideration:
+
+1. Whether the same feature can be achieved without modifying detectron2.
+Detectron2 is designed so that you can implement many extensions from the outside, e.g.
+those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
+If some part is not as extensible, you can also bring up the issue to make it more extensible.
+2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
+3. Whether the proposed solution has a good design / interface.
+4. Whether the proposed solution adds extra mental/practical overhead to users who don't
+ need such feature.
+5. Whether the proposed solution breaks existing APIs.
+
+When sending a PR, please do:
+
+1. If a PR contains multiple orthogonal changes, split it to several PRs.
+2. If you've added code that should be tested, add tests.
+3. For PRs that need experiments (e.g. adding a new model or new methods),
+ you don't need to update model zoo, but do provide experiment results in the description of the PR.
+4. If APIs are changed, update the documentation.
+5. Make sure your code lints with `./dev/linter.sh`.
+
+
+## Contributor License Agreement ("CLA")
+In order to accept your pull request, we need you to submit a CLA. You only need
+to do this once to work on any of Facebook's open source projects.
+
+Complete your CLA here:
+
+## License
+By contributing to detectron2, you agree that your contributions will be licensed
+under the LICENSE file in the root directory of this source tree.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg b/preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
new file mode 100644
index 0000000000000000000000000000000000000000..eb2d643ddd940cd8bdb5eaad093029969ff2364c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
@@ -0,0 +1 @@
+
\ No newline at end of file
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
new file mode 100644
index 0000000000000000000000000000000000000000..5e8aaa2d3722e7e73a3d94b2b7dfc4f751d7a240
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
@@ -0,0 +1,5 @@
+
+Please select an issue template from
+https://github.com/facebookresearch/detectron2/issues/new/choose .
+
+Otherwise your issue will be closed.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
new file mode 100644
index 0000000000000000000000000000000000000000..52d299886a457480d27c54a27734a704786a1d28
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
@@ -0,0 +1,36 @@
+---
+name: "🐛 Bugs"
+about: Report bugs in detectron2
+title: Please read & provide the following
+
+---
+
+## Instructions To Reproduce the 🐛 Bug:
+
+1. what changes you made (`git diff`) or what code you wrote
+```
+
+```
+2. what exact command you run:
+3. what you observed (including __full logs__):
+```
+
+```
+4. please simplify the steps as much as possible so they do not require additional resources to
+ run, such as a private dataset.
+
+## Expected behavior:
+
+If there are no obvious error in "what you observed" provided above,
+please tell us the expected behavior.
+
+## Environment:
+
+Provide your environment information using the following command:
+```
+wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
+```
+
+If your issue looks like an installation issue / environment issue,
+please first try to solve it yourself with the instructions in
+https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 0000000000000000000000000000000000000000..c19e2490a71893c516b2bd54b887399493fadcd4
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,9 @@
+# require an issue template to be chosen
+blank_issues_enabled: false
+
+# Unexpected behaviors & bugs are split to two templates.
+# When they are one template, users think "it's not a bug" and don't choose the template.
+#
+# But the file name is still "unexpected-problems-bugs.md" so that old references
+# to this issue template still works.
+# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
new file mode 100644
index 0000000000000000000000000000000000000000..dd69a33478c85068cdd7b8b90161f97cc55c1621
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
@@ -0,0 +1,31 @@
+---
+name: "\U0001F680Feature Request"
+about: Submit a proposal/request for a new detectron2 feature
+
+---
+
+## 🚀 Feature
+A clear and concise description of the feature proposal.
+
+
+## Motivation & Examples
+
+Tell us why the feature is useful.
+
+Describe what the feature would look like, if it is implemented.
+Best demonstrated using **code examples** in addition to words.
+
+## Note
+
+We only consider adding new features if they are relevant to many users.
+
+If you request implementation of research papers --
+we only consider papers that have enough significance and prevalance in the object detection field.
+
+We do not take requests for most projects in the `projects/` directory,
+because they are research code release that is mainly for other researchers to reproduce results.
+
+Instead of adding features inside detectron2,
+you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
+The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
+
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md
new file mode 100644
index 0000000000000000000000000000000000000000..081156136b709b1e0ec4d27404b9cb8fa9ba1d27
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md
@@ -0,0 +1,26 @@
+---
+name: "❓How to do something?"
+about: How to do something using detectron2? What does an API do?
+
+---
+
+## ❓ How to do something using detectron2
+
+Describe what you want to do, including:
+1. what inputs you will provide, if any:
+2. what outputs you are expecting:
+
+## ❓ What does an API do and how to use it?
+Please link to which API or documentation you're asking about from
+https://detectron2.readthedocs.io/
+
+
+NOTE:
+
+1. Only general answers are provided.
+ If you want to ask about "why X did not work", please use the
+ [Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
+
+2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
+
+3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md
new file mode 100644
index 0000000000000000000000000000000000000000..bafee7a1a3897903d26e68001d3d3d2b7686015b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md
@@ -0,0 +1,45 @@
+---
+name: "Unexpected behaviors"
+about: Run into unexpected behaviors when using detectron2
+title: Please read & provide the following
+
+---
+
+If you do not know the root cause of the problem, and wish someone to help you, please
+post according to this template:
+
+## Instructions To Reproduce the Issue:
+
+1. what changes you made (`git diff`) or what code you wrote
+```
+
+```
+2. what exact command you run:
+3. what you observed (including __full logs__):
+```
+
+```
+4. please simplify the steps as much as possible so they do not require additional resources to
+ run, such as a private dataset.
+
+## Expected behavior:
+
+If there are no obvious error in "what you observed" provided above,
+please tell us the expected behavior.
+
+If you expect the model to converge / work better, note that we do not give suggestions
+on how to train a new model.
+Only in one of the two conditions we will help with it:
+(1) You're unable to reproduce the results in detectron2 model zoo.
+(2) It indicates a detectron2 bug.
+
+## Environment:
+
+Provide your environment information using the following command:
+```
+wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
+```
+
+If your issue looks like an installation issue / environment issue,
+please first try to solve it yourself with the instructions in
+https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md b/preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
new file mode 100644
index 0000000000000000000000000000000000000000..4ff5ea51776ff27b3e794e366a92a455e2f06a01
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
@@ -0,0 +1,9 @@
+Thanks for your contribution!
+
+If you're sending a large PR (e.g., >50 lines),
+please open an issue first about the feature / bug, and indicate how you want to contribute.
+
+Before submitting a PR, please run `dev/linter.sh` to lint the code.
+
+See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
+about how we handle PRs.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/.gitignore b/preprocess/humanparsing/mhp_extension/detectron2/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..e85df4cf713e2c4a6fc02885f2b2ff3d0f104763
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/.gitignore
@@ -0,0 +1,46 @@
+# output dir
+output
+instant_test_output
+inference_test_output
+
+
+*.jpg
+*.png
+*.txt
+*.json
+*.diff
+
+# compilation and distribution
+__pycache__
+_ext
+*.pyc
+*.so
+detectron2.egg-info/
+build/
+dist/
+wheels/
+
+# pytorch/python/numpy formats
+*.pth
+*.pkl
+*.npy
+
+# ipython/jupyter notebooks
+*.ipynb
+**/.ipynb_checkpoints/
+
+# Editor temporaries
+*.swn
+*.swo
+*.swp
+*~
+
+# editor settings
+.idea
+.vscode
+
+# project dirs
+/detectron2/model_zoo/configs
+/datasets
+/projects/*/datasets
+/models
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md b/preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md
new file mode 100644
index 0000000000000000000000000000000000000000..acaf13f02c906b45ffc2f49ee5a0ce01d82b4786
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md
@@ -0,0 +1,79 @@
+## Getting Started with Detectron2
+
+This document provides a brief intro of the usage of builtin command-line tools in detectron2.
+
+For a tutorial that involves actual coding with the API,
+see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
+which covers how to run inference with an
+existing model, and how to train a builtin model on a custom dataset.
+
+For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
+
+
+### Inference Demo with Pre-trained Models
+
+1. Pick a model and its config file from
+ [model zoo](MODEL_ZOO.md),
+ for example, `mask_rcnn_R_50_FPN_3x.yaml`.
+2. We provide `demo.py` that is able to run builtin standard models. Run it with:
+```
+cd demo/
+python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
+ --input input1.jpg input2.jpg \
+ [--other-options]
+ --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
+```
+The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
+This command will run the inference and show visualizations in an OpenCV window.
+
+For details of the command line arguments, see `demo.py -h` or look at its source code
+to understand its behavior. Some common arguments are:
+* To run __on your webcam__, replace `--input files` with `--webcam`.
+* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
+* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
+* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
+
+
+### Training & Evaluation in Command Line
+
+We provide a script in "tools/{,plain_}train_net.py", that is made to train
+all the configs provided in detectron2.
+You may want to use it as a reference to write your own training script.
+
+To train a model with "train_net.py", first
+setup the corresponding datasets following
+[datasets/README.md](./datasets/README.md),
+then run:
+```
+cd tools/
+./train_net.py --num-gpus 8 \
+ --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
+```
+
+The configs are made for 8-GPU training.
+To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
+```
+./train_net.py \
+ --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
+ --num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
+```
+
+For most models, CPU training is not supported.
+
+To evaluate a model's performance, use
+```
+./train_net.py \
+ --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
+ --eval-only MODEL.WEIGHTS /path/to/checkpoint_file
+```
+For more options, see `./train_net.py -h`.
+
+### Use Detectron2 APIs in Your Code
+
+See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
+to learn how to use detectron2 APIs to:
+1. run inference with an existing model
+2. train a builtin model on a custom dataset
+
+See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
+for more ways to build your project on detectron2.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md b/preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md
new file mode 100644
index 0000000000000000000000000000000000000000..3985f8ae4f5ecde26b310b4ab01c49b922f742e9
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md
@@ -0,0 +1,184 @@
+## Installation
+
+Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
+has step-by-step instructions that install detectron2.
+The [Dockerfile](docker)
+also installs detectron2 with a few simple commands.
+
+### Requirements
+- Linux or macOS with Python ≥ 3.6
+- PyTorch ≥ 1.4
+- [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
+ You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
+- OpenCV, optional, needed by demo and visualization
+- pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
+
+
+### Build Detectron2 from Source
+
+gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
+After having them, run:
+```
+python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
+# (add --user if you don't have permission)
+
+# Or, to install it from a local clone:
+git clone https://github.com/facebookresearch/detectron2.git
+python -m pip install -e detectron2
+
+# Or if you are on macOS
+# CC=clang CXX=clang++ python -m pip install -e .
+```
+
+To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
+old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
+
+### Install Pre-Built Detectron2 (Linux only)
+```
+# for CUDA 10.1:
+python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
+```
+You can replace cu101 with "cu{100,92}" or "cpu".
+
+Note that:
+1. Such installation has to be used with certain version of official PyTorch release.
+ See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
+ It will not work with a different version of PyTorch or a non-official build of PyTorch.
+2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
+ compatible with the master branch of a research project that uses detectron2 (e.g. those in
+ [projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
+
+### Common Installation Issues
+
+If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
+
+Click each issue for its solutions:
+
+
+
+Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
+
+
+
+This usually happens when detectron2 or torchvision is not
+compiled with the version of PyTorch you're running.
+
+Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
+If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
+following [pytorch.org](http://pytorch.org). So the versions will match.
+
+If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
+to see the corresponding pytorch version required for each pre-built detectron2.
+
+If the error comes from detectron2 or torchvision that you built manually from source,
+remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
+
+If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
+in your issue.
+
+
+
+
+Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
+
+
+Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
+
+This often happens with old anaconda.
+Try `conda update libgcc`. Then rebuild detectron2.
+
+The fundamental solution is to run the code with proper C++ runtime.
+One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
+
+
+
+
+
+"Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
+
+
+CUDA is not found when building detectron2.
+You should make sure
+
+```
+python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
+```
+
+print valid outputs at the time you build detectron2.
+
+Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
+
+
+
+
+"invalid device function" or "no kernel image is available for execution".
+
+
+Two possibilities:
+
+* You build detectron2 with one version of CUDA but run it with a different version.
+
+ To check whether it is the case,
+ use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
+ In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
+ to contain cuda libraries of the same version.
+
+ When they are inconsistent,
+ you need to either install a different build of PyTorch (or build by yourself)
+ to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
+
+* Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
+
+ The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
+ `python -m detectron2.utils.collect_env`.
+
+ The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
+ during compilation. This means the compiled code may not work on a different GPU model.
+ To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
+
+ For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
+ Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
+ the correct compute compatibility number for your device.
+
+
+
+
+
+Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
+
+
+The version of NVCC you use to build detectron2 or torchvision does
+not match the version of CUDA you are running with.
+This often happens when using anaconda's CUDA runtime.
+
+Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
+In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
+to contain cuda libraries of the same version.
+
+When they are inconsistent,
+you need to either install a different build of PyTorch (or build by yourself)
+to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
+
+
+
+
+
+"ImportError: cannot import name '_C'".
+
+
+Please build and install detectron2 following the instructions above.
+
+If you are running code from detectron2's root directory, `cd` to a different one.
+Otherwise you may not import the code that you installed.
+
+
+
+
+ONNX conversion segfault after some "TraceWarning".
+
+
+The ONNX package is compiled with too old compiler.
+
+Please build and install ONNX from its source code using a compiler
+whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
+
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/LICENSE b/preprocess/humanparsing/mhp_extension/detectron2/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..d4836895578c791dffd78d07d83a72a961e270a4
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/LICENSE
@@ -0,0 +1,201 @@
+Apache License
+Version 2.0, January 2004
+http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+"License" shall mean the terms and conditions for use, reproduction,
+and distribution as defined by Sections 1 through 9 of this document.
+
+"Licensor" shall mean the copyright owner or entity authorized by
+the copyright owner that is granting the License.
+
+"Legal Entity" shall mean the union of the acting entity and all
+other entities that control, are controlled by, or are under common
+control with that entity. For the purposes of this definition,
+"control" means (i) the power, direct or indirect, to cause the
+direction or management of such entity, whether by contract or
+otherwise, or (ii) ownership of fifty percent (50%) or more of the
+outstanding shares, or (iii) beneficial ownership of such entity.
+
+"You" (or "Your") shall mean an individual or Legal Entity
+exercising permissions granted by this License.
+
+"Source" form shall mean the preferred form for making modifications,
+including but not limited to software source code, documentation
+source, and configuration files.
+
+"Object" form shall mean any form resulting from mechanical
+transformation or translation of a Source form, including but
+not limited to compiled object code, generated documentation,
+and conversions to other media types.
+
+"Work" shall mean the work of authorship, whether in Source or
+Object form, made available under the License, as indicated by a
+copyright notice that is included in or attached to the work
+(an example is provided in the Appendix below).
+
+"Derivative Works" shall mean any work, whether in Source or Object
+form, that is based on (or derived from) the Work and for which the
+editorial revisions, annotations, elaborations, or other modifications
+represent, as a whole, an original work of authorship. For the purposes
+of this License, Derivative Works shall not include works that remain
+separable from, or merely link (or bind by name) to the interfaces of,
+the Work and Derivative Works thereof.
+
+"Contribution" shall mean any work of authorship, including
+the original version of the Work and any modifications or additions
+to that Work or Derivative Works thereof, that is intentionally
+submitted to Licensor for inclusion in the Work by the copyright owner
+or by an individual or Legal Entity authorized to submit on behalf of
+the copyright owner. For the purposes of this definition, "submitted"
+means any form of electronic, verbal, or written communication sent
+to the Licensor or its representatives, including but not limited to
+communication on electronic mailing lists, source code control systems,
+and issue tracking systems that are managed by, or on behalf of, the
+Licensor for the purpose of discussing and improving the Work, but
+excluding communication that is conspicuously marked or otherwise
+designated in writing by the copyright owner as "Not a Contribution."
+
+"Contributor" shall mean Licensor and any individual or Legal Entity
+on behalf of whom a Contribution has been received by Licensor and
+subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+this License, each Contributor hereby grants to You a perpetual,
+worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+copyright license to reproduce, prepare Derivative Works of,
+publicly display, publicly perform, sublicense, and distribute the
+Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+this License, each Contributor hereby grants to You a perpetual,
+worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+(except as stated in this section) patent license to make, have made,
+use, offer to sell, sell, import, and otherwise transfer the Work,
+where such license applies only to those patent claims licensable
+by such Contributor that are necessarily infringed by their
+Contribution(s) alone or by combination of their Contribution(s)
+with the Work to which such Contribution(s) was submitted. If You
+institute patent litigation against any entity (including a
+cross-claim or counterclaim in a lawsuit) alleging that the Work
+or a Contribution incorporated within the Work constitutes direct
+or contributory patent infringement, then any patent licenses
+granted to You under this License for that Work shall terminate
+as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+Work or Derivative Works thereof in any medium, with or without
+modifications, and in Source or Object form, provided that You
+meet the following conditions:
+
+(a) You must give any other recipients of the Work or
+Derivative Works a copy of this License; and
+
+(b) You must cause any modified files to carry prominent notices
+stating that You changed the files; and
+
+(c) You must retain, in the Source form of any Derivative Works
+that You distribute, all copyright, patent, trademark, and
+attribution notices from the Source form of the Work,
+excluding those notices that do not pertain to any part of
+the Derivative Works; and
+
+(d) If the Work includes a "NOTICE" text file as part of its
+distribution, then any Derivative Works that You distribute must
+include a readable copy of the attribution notices contained
+within such NOTICE file, excluding those notices that do not
+pertain to any part of the Derivative Works, in at least one
+of the following places: within a NOTICE text file distributed
+as part of the Derivative Works; within the Source form or
+documentation, if provided along with the Derivative Works; or,
+within a display generated by the Derivative Works, if and
+wherever such third-party notices normally appear. The contents
+of the NOTICE file are for informational purposes only and
+do not modify the License. You may add Your own attribution
+notices within Derivative Works that You distribute, alongside
+or as an addendum to the NOTICE text from the Work, provided
+that such additional attribution notices cannot be construed
+as modifying the License.
+
+You may add Your own copyright statement to Your modifications and
+may provide additional or different license terms and conditions
+for use, reproduction, or distribution of Your modifications, or
+for any such Derivative Works as a whole, provided Your use,
+reproduction, and distribution of the Work otherwise complies with
+the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+any Contribution intentionally submitted for inclusion in the Work
+by You to the Licensor shall be under the terms and conditions of
+this License, without any additional terms or conditions.
+Notwithstanding the above, nothing herein shall supersede or modify
+the terms of any separate license agreement you may have executed
+with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+names, trademarks, service marks, or product names of the Licensor,
+except as required for reasonable and customary use in describing the
+origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+agreed to in writing, Licensor provides the Work (and each
+Contributor provides its Contributions) on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+implied, including, without limitation, any warranties or conditions
+of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+PARTICULAR PURPOSE. You are solely responsible for determining the
+appropriateness of using or redistributing the Work and assume any
+risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+whether in tort (including negligence), contract, or otherwise,
+unless required by applicable law (such as deliberate and grossly
+negligent acts) or agreed to in writing, shall any Contributor be
+liable to You for damages, including any direct, indirect, special,
+incidental, or consequential damages of any character arising as a
+result of this License or out of the use or inability to use the
+Work (including but not limited to damages for loss of goodwill,
+work stoppage, computer failure or malfunction, or any and all
+other commercial damages or losses), even if such Contributor
+has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+the Work or Derivative Works thereof, You may choose to offer,
+and charge a fee for, acceptance of support, warranty, indemnity,
+or other liability obligations and/or rights consistent with this
+License. However, in accepting such obligations, You may act only
+on Your own behalf and on Your sole responsibility, not on behalf
+of any other Contributor, and only if You agree to indemnify,
+defend, and hold each Contributor harmless for any liability
+incurred by, or claims asserted against, such Contributor by reason
+of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+To apply the Apache License to your work, attach the following
+boilerplate notice, with the fields enclosed by brackets "[]"
+replaced with your own identifying information. (Don't include
+the brackets!) The text should be enclosed in the appropriate
+comment syntax for the file format. We also recommend that a
+file or class name and description of purpose be included on the
+same "printed page" as the copyright notice for easier
+identification within third-party archives.
+
+Copyright 2019 - present, Facebook, Inc
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md b/preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md
new file mode 100644
index 0000000000000000000000000000000000000000..07b81ffffa37d97b10f8d39f934b9f62bcb51cc1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md
@@ -0,0 +1,903 @@
+# Detectron2 Model Zoo and Baselines
+
+## Introduction
+
+This file documents a large collection of baselines trained
+with detectron2 in Sep-Oct, 2019.
+All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
+servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
+You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
+
+In addition to these official baseline models, you can find more models in [projects/](projects/).
+
+#### How to Read the Tables
+* The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
+ and 8 GPUs will reproduce the model.
+* Training speed is averaged across the entire training.
+ We keep updating the speed with latest version of detectron2/pytorch/etc.,
+ so they might be different from the `metrics` file.
+ Training speed for multi-machine jobs is not provided.
+* Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
+ with batch size 1 in detectron2 directly.
+ Measuring it with your own code will likely introduce other overhead.
+ Actual deployment in production should in general be faster than the given inference
+ speed due to more optimizations.
+* The *model id* column is provided for ease of reference.
+ To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
+* Training curves and other statistics can be found in `metrics` for each model.
+
+#### Common Settings for COCO Models
+* All COCO models were trained on `train2017` and evaluated on `val2017`.
+* The default settings are __not directly comparable__ with Detectron's standard settings.
+ For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
+
+ To make fair comparisons with Detectron's settings, see
+ [Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
+ and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
+ for speed comparison.
+* For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
+ * __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
+ respectively. It obtains the best
+ speed/accuracy tradeoff, but the other two are still useful for research.
+ * __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
+ * __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
+ for mask and box prediction, respectively.
+ This is used by the Deformable ConvNet paper.
+* Most models are trained with the 3x schedule (~37 COCO epochs).
+ Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
+ training schedule for comparison when doing quick research iteration.
+
+#### ImageNet Pretrained Models
+
+We provide backbone models pretrained on ImageNet-1k dataset.
+These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
+* [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
+* [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
+* [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
+
+Pretrained models in Detectron's format can still be used. For example:
+* [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
+ ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
+* [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
+ ResNet-50 with Group Normalization.
+* [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
+ ResNet-101 with Group Normalization.
+
+Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
+
+#### License
+
+All models available for download through this document are licensed under the
+[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
+
+### COCO Object Detection Baselines
+
+#### Faster R-CNN:
+
+
+
+
+
+
+### LVIS Instance Segmentation Baselines with Mask R-CNN
+
+Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
+These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
+
+NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
+They are roughly 24 epochs of LVISv0.5 data.
+The final results of these configs have large variance across different runs.
+
+
+
+
+
+
+
+Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
+(Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
+
+
+
+
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/README.md b/preprocess/humanparsing/mhp_extension/detectron2/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1fbb95b39ce9e9c0eab83079319a9298fca438b1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/README.md
@@ -0,0 +1,56 @@
+
+
+Detectron2 is Facebook AI Research's next generation software system
+that implements state-of-the-art object detection algorithms.
+It is a ground-up rewrite of the previous version,
+[Detectron](https://github.com/facebookresearch/Detectron/),
+and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
+
+
+
+
+
+### What's New
+* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
+* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
+* Can be used as a library to support [different projects](projects/) on top of it.
+ We'll open source more research projects in this way.
+* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
+
+See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
+to see more demos and learn about detectron2.
+
+## Installation
+
+See [INSTALL.md](INSTALL.md).
+
+## Quick Start
+
+See [GETTING_STARTED.md](GETTING_STARTED.md),
+or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
+
+Learn more at our [documentation](https://detectron2.readthedocs.org).
+And see [projects/](projects/) for some projects that are built on top of detectron2.
+
+## Model Zoo and Baselines
+
+We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
+
+
+## License
+
+Detectron2 is released under the [Apache 2.0 license](LICENSE).
+
+## Citing Detectron2
+
+If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
+
+```BibTeX
+@misc{wu2019detectron2,
+ author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
+ Wan-Yen Lo and Ross Girshick},
+ title = {Detectron2},
+ howpublished = {\url{https://github.com/facebookresearch/detectron2}},
+ year = {2019}
+}
+```
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fbf34a0ea57a587e09997edd94c4012d69d0b6ad
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
@@ -0,0 +1,18 @@
+MODEL:
+ META_ARCHITECTURE: "GeneralizedRCNN"
+ RPN:
+ PRE_NMS_TOPK_TEST: 6000
+ POST_NMS_TOPK_TEST: 1000
+ ROI_HEADS:
+ NAME: "Res5ROIHeads"
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ TEST: ("coco_2017_val",)
+SOLVER:
+ IMS_PER_BATCH: 16
+ BASE_LR: 0.02
+ STEPS: (60000, 80000)
+ MAX_ITER: 90000
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+VERSION: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c0d6d16bdaf532f09e4976f0aa240a49e748da27
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
@@ -0,0 +1,31 @@
+MODEL:
+ META_ARCHITECTURE: "GeneralizedRCNN"
+ RESNETS:
+ OUT_FEATURES: ["res5"]
+ RES5_DILATION: 2
+ RPN:
+ IN_FEATURES: ["res5"]
+ PRE_NMS_TOPK_TEST: 6000
+ POST_NMS_TOPK_TEST: 1000
+ ROI_HEADS:
+ NAME: "StandardROIHeads"
+ IN_FEATURES: ["res5"]
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_FC: 2
+ POOLER_RESOLUTION: 7
+ ROI_MASK_HEAD:
+ NAME: "MaskRCNNConvUpsampleHead"
+ NUM_CONV: 4
+ POOLER_RESOLUTION: 14
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ TEST: ("coco_2017_val",)
+SOLVER:
+ IMS_PER_BATCH: 16
+ BASE_LR: 0.02
+ STEPS: (60000, 80000)
+ MAX_ITER: 90000
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+VERSION: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3e020f2e7b2f26765be317f907126a1556621abf
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml
@@ -0,0 +1,42 @@
+MODEL:
+ META_ARCHITECTURE: "GeneralizedRCNN"
+ BACKBONE:
+ NAME: "build_resnet_fpn_backbone"
+ RESNETS:
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
+ FPN:
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
+ ANCHOR_GENERATOR:
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
+ RPN:
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
+ # Detectron1 uses 2000 proposals per-batch,
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
+ POST_NMS_TOPK_TRAIN: 1000
+ POST_NMS_TOPK_TEST: 1000
+ ROI_HEADS:
+ NAME: "StandardROIHeads"
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_FC: 2
+ POOLER_RESOLUTION: 7
+ ROI_MASK_HEAD:
+ NAME: "MaskRCNNConvUpsampleHead"
+ NUM_CONV: 4
+ POOLER_RESOLUTION: 14
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ TEST: ("coco_2017_val",)
+SOLVER:
+ IMS_PER_BATCH: 16
+ BASE_LR: 0.02
+ STEPS: (60000, 80000)
+ MAX_ITER: 90000
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+VERSION: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..12ec9d2fc20cc0438f17bde2c5f6fbee9496c1b0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml
@@ -0,0 +1,24 @@
+MODEL:
+ META_ARCHITECTURE: "RetinaNet"
+ BACKBONE:
+ NAME: "build_retinanet_resnet_fpn_backbone"
+ RESNETS:
+ OUT_FEATURES: ["res3", "res4", "res5"]
+ ANCHOR_GENERATOR:
+ SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
+ FPN:
+ IN_FEATURES: ["res3", "res4", "res5"]
+ RETINANET:
+ IOU_THRESHOLDS: [0.4, 0.5]
+ IOU_LABELS: [0, -1, 1]
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ TEST: ("coco_2017_val",)
+SOLVER:
+ IMS_PER_BATCH: 16
+ BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
+ STEPS: (60000, 80000)
+ MAX_ITER: 90000
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+VERSION: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..773ac10e87c626760d00d831bf664ce9ff073c49
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,17 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ LOAD_PROPOSALS: True
+ RESNETS:
+ DEPTH: 50
+ PROPOSAL_GENERATOR:
+ NAME: "PrecomputedProposals"
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
+ TEST: ("coco_2017_val",)
+ PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
+DATALOADER:
+ # proposals are part of the dataset_dicts, and take a lot of RAM
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..db142cd671c1841b4f64cf130bee7f7954ecdd28
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bceb6b343618d8cd9a6c414ff9eb86ab31cc230a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..57a098f53ee8c54ecfa354cc96efefd890dc1b72
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f96130105c3ba6ab393e0932870903875f5cb732
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bc51bce390a85ee3529ffdcebde05748e1646be0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0fe96f57febdac5790ea4cec168fa4b97ac4807a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..33fadeb87d1ef67ab2b55926b9a652ab4ac4a27d
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3262019a1211b910d3b371569199ed1afaacf6a4
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..41395182bf5c9dd8ab1241c4414068817298d554
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9c9b5ab77157baa581d90d9847c045c19ed6ffa3
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
@@ -0,0 +1,13 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ MASK_ON: False
+ WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
+ PIXEL_STD: [57.375, 57.120, 58.395]
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4abb1b9a547957aa6afc0b29129e00f89cf98d59
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "../Base-RetinaNet.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4a24ce3a9a108a8792e18c8aabfb7b712f0d3725
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
@@ -0,0 +1,5 @@
+_BASE_: "../Base-RetinaNet.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3b5412d4a7aef1d6c3f7c1e34f94007de639b833
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "../Base-RetinaNet.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e04821156b0376ba5215d5ce5b7010a36b43e6a1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
@@ -0,0 +1,10 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ META_ARCHITECTURE: "ProposalNetwork"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+ RPN:
+ PRE_NMS_TOPK_TEST: 12000
+ POST_NMS_TOPK_TEST: 2000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dc9c95203b1c3c9cd9bb9876bb8d9a5dd9b31d9a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "ProposalNetwork"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+ RPN:
+ POST_NMS_TOPK_TEST: 2000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1a94cc45a0f2aaa8c92e14871c553b736545e327
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..67b70cf4be8c19f5dc735b6f55a8690698f34b69
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1935a302d2d0fa7f69553b3fd50b5a7082c6c0d1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a9aeb4eac38026dbb867e799f9fd3a8d8eb3af80
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..38ed867d897dfec839cbcf11a2e2dc8abb92f07c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b13eefab2a049c48d94d5051c82ceb6dbde40579
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d401016358f967f6619d88b1c9bd5673a1cdeba8
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-DilatedC5.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d50fb866ca7811a87b42555c7213f88e00bf6df1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,6 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..be7d06b8e0f032ee7fcaabd7c122158518489fd2
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d14c63f74383bfc308750f51d51344398b02a239
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
@@ -0,0 +1,13 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ MASK_ON: True
+ WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
+ PIXEL_STD: [57.375, 57.120, 58.395]
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4e03944a42d2e497da5ceca17c8fda797dac3f82
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
@@ -0,0 +1,15 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ KEYPOINT_ON: True
+ ROI_HEADS:
+ NUM_CLASSES: 1
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
+ RPN:
+ # Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
+ # 1000 proposals per-image is found to hurt box AP.
+ # Therefore we increase it to 1500 per-image.
+ POST_NMS_TOPK_TRAIN: 1500
+DATASETS:
+ TRAIN: ("keypoints_coco_2017_train",)
+ TEST: ("keypoints_coco_2017_val",)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9309535c57a1aa7d23297aac80a9bd78a6c79fcc
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7bf85cf745b53b3e7ab28fe94b7f4f9e7fe6e335
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,5 @@
+_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a07f243f650a497b9372501e3face75194cf0941
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d4bfa20a98c0a65c6bd60e93b07e8f4b7d92a867
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
@@ -0,0 +1,12 @@
+_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
+ PIXEL_STD: [57.375, 57.120, 58.395]
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..755c12018c5db8ca456d5e7fa8cbd18d90f97527
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
@@ -0,0 +1,9 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "PanopticFPN"
+ MASK_ON: True
+ SEM_SEG_HEAD:
+ LOSS_WEIGHT: 0.5
+DATASETS:
+ TRAIN: ("coco_2017_train_panoptic_separated",)
+ TEST: ("coco_2017_val_panoptic_separated",)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0e01f6fb31e9b00b1857b7de3b5074184d1f4a21
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "Base-Panoptic-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ RESNETS:
+ DEPTH: 101
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6afa2c1cc92495309ed1553a17359fe5d7d6566e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
@@ -0,0 +1,5 @@
+_BASE_: "Base-Panoptic-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b956b3f673e78649184fe2c50e2700b3f1f14794
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
@@ -0,0 +1,8 @@
+_BASE_: "Base-Panoptic-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1a7aaeb961581ed9492c4cfe5a69a1eb60495b3e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
@@ -0,0 +1,27 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ # WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ # For better, more stable performance initialize from COCO
+ WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
+ MASK_ON: True
+ ROI_HEADS:
+ NUM_CLASSES: 8
+# This is similar to the setting used in Mask R-CNN paper, Appendix A
+# But there are some differences, e.g., we did not initialize the output
+# layer using the corresponding classes from COCO
+INPUT:
+ MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
+ MIN_SIZE_TEST: 1024
+ MAX_SIZE_TRAIN: 2048
+ MAX_SIZE_TEST: 2048
+DATASETS:
+ TRAIN: ("cityscapes_fine_instance_seg_train",)
+ TEST: ("cityscapes_fine_instance_seg_val",)
+SOLVER:
+ BASE_LR: 0.01
+ STEPS: (18000,)
+ MAX_ITER: 24000
+ IMS_PER_BATCH: 8
+TEST:
+ EVAL_PERIOD: 8000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/README.md b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a90ed9e433a00b8b9f43961d7a2696d5b9013127
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/README.md
@@ -0,0 +1,83 @@
+
+Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
+
+The differences in implementation details are shared in
+[Compatibility with Other Libraries](../../docs/notes/compatibility.md).
+
+The differences in model zoo's experimental settings include:
+* Use scale augmentation during training. This improves AP with lower training cost.
+* Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
+ affect other AP.
+* Use `POOLER_SAMPLING_RATIO=0` instead of 2. This does not significantly affect AP.
+* Use `ROIAlignV2`. This does not significantly affect AP.
+
+In this directory, we provide a few configs that __do not__ have the above changes.
+They mimic Detectron's behavior as close as possible,
+and provide a fair comparison of accuracy and speed against Detectron.
+
+
+
+
+
+
+## Comparisons:
+
+* Faster R-CNN: Detectron's AP is 36.7, similar to ours.
+* Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
+ [bug](https://github.com/facebookresearch/Detectron/issues/459) lead to a drop in box AP, and can be
+ compensated back by some parameter tuning.
+* Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
+
+For speed comparison, see [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html).
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6ce77f137fa2c4e5254a62b58c18b8b76096f2aa
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
@@ -0,0 +1,17 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+ # Detectron1 uses smooth L1 loss with some magic beta values.
+ # The defaults are changed to L1 loss in Detectron2.
+ RPN:
+ SMOOTH_L1_BETA: 0.1111
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 1.0
+ POOLER_SAMPLING_RATIO: 2
+ POOLER_TYPE: "ROIAlign"
+INPUT:
+ # no scale augmentation
+ MIN_SIZE_TRAIN: (800, )
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..aacf868ba5290c752031c130a2081af48afc0808
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,27 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ KEYPOINT_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NUM_CLASSES: 1
+ ROI_KEYPOINT_HEAD:
+ POOLER_RESOLUTION: 14
+ POOLER_SAMPLING_RATIO: 2
+ POOLER_TYPE: "ROIAlign"
+ # Detectron1 uses smooth L1 loss with some magic beta values.
+ # The defaults are changed to L1 loss in Detectron2.
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 1.0
+ POOLER_SAMPLING_RATIO: 2
+ POOLER_TYPE: "ROIAlign"
+ RPN:
+ SMOOTH_L1_BETA: 0.1111
+ # Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
+ # 1000 proposals per-image is found to hurt box AP.
+ # Therefore we increase it to 1500 per-image.
+ POST_NMS_TOPK_TRAIN: 1500
+DATASETS:
+ TRAIN: ("keypoints_coco_2017_train",)
+ TEST: ("keypoints_coco_2017_val",)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4ea86a8d8e2cd3e51cbc7311b0d00710c07d01f6
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
@@ -0,0 +1,20 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ # Detectron1 uses smooth L1 loss with some magic beta values.
+ # The defaults are changed to L1 loss in Detectron2.
+ RPN:
+ SMOOTH_L1_BETA: 0.1111
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 1.0
+ POOLER_SAMPLING_RATIO: 2
+ POOLER_TYPE: "ROIAlign"
+ ROI_MASK_HEAD:
+ POOLER_SAMPLING_RATIO: 2
+ POOLER_TYPE: "ROIAlign"
+INPUT:
+ # no scale augmentation
+ MIN_SIZE_TRAIN: (800, )
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f0c3a1bbc0a09e1384de522f30c443ba1e36fafa
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
@@ -0,0 +1,19 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 101
+ ROI_HEADS:
+ NUM_CLASSES: 1230
+ SCORE_THRESH_TEST: 0.0001
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+DATASETS:
+ TRAIN: ("lvis_v0.5_train",)
+ TEST: ("lvis_v0.5_val",)
+TEST:
+ DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
+DATALOADER:
+ SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
+ REPEAT_THRESHOLD: 0.001
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..64b4caa4ef2b284782367ea702e1ae6653472630
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,19 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NUM_CLASSES: 1230
+ SCORE_THRESH_TEST: 0.0001
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+DATASETS:
+ TRAIN: ("lvis_v0.5_train",)
+ TEST: ("lvis_v0.5_val",)
+TEST:
+ DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
+DATALOADER:
+ SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
+ REPEAT_THRESHOLD: 0.001
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c8b822c6c006ba642f4caf9b55e7983f6797427a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
@@ -0,0 +1,23 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
+ PIXEL_STD: [57.375, 57.120, 58.395]
+ MASK_ON: True
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 101
+ ROI_HEADS:
+ NUM_CLASSES: 1230
+ SCORE_THRESH_TEST: 0.0001
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+DATASETS:
+ TRAIN: ("lvis_v0.5_train",)
+ TEST: ("lvis_v0.5_val",)
+TEST:
+ DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
+DATALOADER:
+ SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
+ REPEAT_THRESHOLD: 0.001
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..abb33b618932e94b66239945ac892f4c84a6e8f8
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
@@ -0,0 +1,12 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NAME: CascadeROIHeads
+ ROI_BOX_HEAD:
+ CLS_AGNOSTIC_BBOX_REG: True
+ RPN:
+ POST_NMS_TOPK_TRAIN: 2000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e2201ad5c46ded91ccfa47b7698a521625c5e447
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
@@ -0,0 +1,15 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NAME: CascadeROIHeads
+ ROI_BOX_HEAD:
+ CLS_AGNOSTIC_BBOX_REG: True
+ RPN:
+ POST_NMS_TOPK_TRAIN: 2000
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fc117f6b5e3e51558ec2f01b73c5365622e5ce25
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
@@ -0,0 +1,36 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ MASK_ON: True
+ WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 152
+ DEFORM_ON_PER_STAGE: [False, True, True, True]
+ ROI_HEADS:
+ NAME: "CascadeROIHeads"
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_CONV: 4
+ NUM_FC: 1
+ NORM: "GN"
+ CLS_AGNOSTIC_BBOX_REG: True
+ ROI_MASK_HEAD:
+ NUM_CONV: 8
+ NORM: "GN"
+ RPN:
+ POST_NMS_TOPK_TRAIN: 2000
+SOLVER:
+ IMS_PER_BATCH: 128
+ STEPS: (35000, 45000)
+ MAX_ITER: 50000
+ BASE_LR: 0.16
+INPUT:
+ MIN_SIZE_TRAIN: (640, 864)
+ MIN_SIZE_TRAIN_SAMPLING: "range"
+ MAX_SIZE_TRAIN: 1440
+ CROP:
+ ENABLED: True
+TEST:
+ EVAL_PERIOD: 2500
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv_parsing.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv_parsing.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..544f58f620607ba6eb592593a2f85243c8670451
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv_parsing.yaml
@@ -0,0 +1,42 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ MASK_ON: True
+# WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
+ WEIGHTS: "model_0039999_e76410.pkl"
+ RESNETS:
+ STRIDE_IN_1X1: False # this is a C2 model
+ NUM_GROUPS: 32
+ WIDTH_PER_GROUP: 8
+ DEPTH: 152
+ DEFORM_ON_PER_STAGE: [False, True, True, True]
+ ROI_HEADS:
+ NAME: "CascadeROIHeads"
+ NUM_CLASSES: 1
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_CONV: 4
+ NUM_FC: 1
+ NORM: "GN"
+ CLS_AGNOSTIC_BBOX_REG: True
+ ROI_MASK_HEAD:
+ NUM_CONV: 8
+ NORM: "GN"
+ RPN:
+ POST_NMS_TOPK_TRAIN: 2000
+SOLVER:
+# IMS_PER_BATCH: 128
+ IMS_PER_BATCH: 1
+ STEPS: (35000, 45000)
+ MAX_ITER: 50000
+ BASE_LR: 0.16
+INPUT:
+ MIN_SIZE_TRAIN: (640, 864)
+ MIN_SIZE_TRAIN_SAMPLING: "range"
+ MAX_SIZE_TRAIN: 1440
+ CROP:
+ ENABLED: True
+TEST:
+ EVAL_PERIOD: 2500
+DATASETS:
+ TRAIN: ("CIHP_train","VIP_trainval")
+ TEST: ("CIHP_val",)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/demo.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/demo.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bbf9685f5921c7aa1c967b4e7da88aaf061a72e2
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/demo.yaml
@@ -0,0 +1,25 @@
+_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
+MODEL:
+ MASK_ON: True
+ ROI_HEADS:
+ NMS_THRESH_TEST: 0.95
+ SCORE_THRESH_TEST: 0.5
+ NUM_CLASSES: 1
+SOLVER:
+ IMS_PER_BATCH: 1
+ STEPS: (30000, 45000)
+ MAX_ITER: 50000
+ BASE_LR: 0.02
+INPUT:
+ MIN_SIZE_TRAIN: (640, 864)
+ MIN_SIZE_TRAIN_SAMPLING: "range"
+ MAX_SIZE_TRAIN: 1440
+ CROP:
+ ENABLED: True
+TEST:
+ AUG:
+ ENABLED: True
+DATASETS:
+ TRAIN: ("demo_train",)
+ TEST: ("demo_val",)
+OUTPUT_DIR: "../../data/DemoDataset/detectron2_prediction"
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4c3b767ff473bbab7225cc8a4a92608543d78246
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
@@ -0,0 +1,10 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_BOX_HEAD:
+ CLS_AGNOSTIC_BBOX_REG: True
+ ROI_MASK_HEAD:
+ CLS_AGNOSTIC_MASK: True
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..04ff988d073ef9169ee4ca2cbce0d6f030c15232
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
@@ -0,0 +1,8 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
+ DEFORM_MODULATED: False
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..68c0ca58d7df97ca728c339da0ca9828fe6be318
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
@@ -0,0 +1,11 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
+ DEFORM_MODULATED: False
+SOLVER:
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..74d274e5a529b5a8afe186940868f9d48c6112b3
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
@@ -0,0 +1,21 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ NORM: "GN"
+ STRIDE_IN_1X1: False
+ FPN:
+ NORM: "GN"
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_CONV: 4
+ NUM_FC: 1
+ NORM: "GN"
+ ROI_MASK_HEAD:
+ NORM: "GN"
+SOLVER:
+ # 3x schedule
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..11ebb076ba529f26c71a0d972e96ca4c2d6a830b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
@@ -0,0 +1,24 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ NORM: "SyncBN"
+ STRIDE_IN_1X1: True
+ FPN:
+ NORM: "SyncBN"
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_CONV: 4
+ NUM_FC: 1
+ NORM: "SyncBN"
+ ROI_MASK_HEAD:
+ NORM: "SyncBN"
+SOLVER:
+ # 3x schedule
+ STEPS: (210000, 250000)
+ MAX_ITER: 270000
+TEST:
+ PRECISE_BN:
+ ENABLED: True
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..34016cea3ca9d7fb69ef4fe01d6b47ee8690a13b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
@@ -0,0 +1,26 @@
+# A large PanopticFPN for demo purposes.
+# Use GN on backbone to support semantic seg.
+# Use Cascade + Deform Conv to improve localization.
+_BASE_: "../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
+MODEL:
+ WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-101-GN"
+ RESNETS:
+ DEPTH: 101
+ NORM: "GN"
+ DEFORM_ON_PER_STAGE: [False, True, True, True]
+ STRIDE_IN_1X1: False
+ FPN:
+ NORM: "GN"
+ ROI_HEADS:
+ NAME: CascadeROIHeads
+ ROI_BOX_HEAD:
+ CLS_AGNOSTIC_BBOX_REG: True
+ ROI_MASK_HEAD:
+ NORM: "GN"
+ RPN:
+ POST_NMS_TOPK_TRAIN: 2000
+SOLVER:
+ STEPS: (105000, 125000)
+ MAX_ITER: 135000
+ IMS_PER_BATCH: 32
+ BASE_LR: 0.04
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_finetune_cihp.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_finetune_cihp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..766f46aa0cd3a80efb330052bdb695bebb5efb7d
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_finetune_cihp.yaml
@@ -0,0 +1,24 @@
+_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
+MODEL:
+ MASK_ON: True
+ WEIGHTS: "model_0039999_e76410.pkl"
+ ROI_HEADS:
+ NUM_CLASSES: 1
+SOLVER:
+ IMS_PER_BATCH: 16
+ STEPS: (140000, 180000)
+ MAX_ITER: 200000
+ BASE_LR: 0.02
+INPUT:
+ MIN_SIZE_TRAIN: (640, 864)
+ MIN_SIZE_TRAIN_SAMPLING: "range"
+ MAX_SIZE_TRAIN: 1440
+ CROP:
+ ENABLED: True
+TEST:
+ EVAL_PERIOD: 0
+DATASETS:
+ TRAIN: ("CIHP_train")
+ TEST: ("CIHP_val",)
+OUTPUT_DIR: "./finetune_output"
+
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_inference.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_inference.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d6a529b1eff2ddf553b1ba32f7b65172f03fae1f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/parsing_inference.yaml
@@ -0,0 +1,26 @@
+_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
+MODEL:
+ MASK_ON: True
+ WEIGHTS: "./finetune_ouput/model_final.pth"
+ ROI_HEADS:
+ NMS_THRESH_TEST: 0.95
+ SCORE_THRESH_TEST: 0.5
+ NUM_CLASSES: 1
+SOLVER:
+ IMS_PER_BATCH: 1
+ STEPS: (30000, 45000)
+ MAX_ITER: 50000
+ BASE_LR: 0.02
+INPUT:
+ MIN_SIZE_TRAIN: (640, 864)
+ MIN_SIZE_TRAIN_SAMPLING: "range"
+ MAX_SIZE_TRAIN: 1440
+ CROP:
+ ENABLED: True
+TEST:
+ AUG:
+ ENABLED: True
+DATASETS:
+ TRAIN: ("CIHP_trainval",)
+ TEST: ("CIHP_test",)
+OUTPUT_DIR: "./inference_output"
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f3400288cde242fcf66eef7f63b5a9165ca663c5
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
@@ -0,0 +1,13 @@
+_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
+MODEL:
+ # Train from random initialization.
+ WEIGHTS: ""
+ # It makes sense to divide by STD when training from scratch
+ # But it seems to make no difference on the results and C2's models didn't do this.
+ # So we keep things consistent with C2.
+ # PIXEL_STD: [57.375, 57.12, 58.395]
+ MASK_ON: True
+ BACKBONE:
+ FREEZE_AT: 0
+# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
+# to learn what you need for training from scratch.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d90c9ff0ef4573252ee165b4c958ec5f74178176
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
@@ -0,0 +1,19 @@
+_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
+MODEL:
+ PIXEL_STD: [57.375, 57.12, 58.395]
+ WEIGHTS: ""
+ MASK_ON: True
+ RESNETS:
+ STRIDE_IN_1X1: False
+ BACKBONE:
+ FREEZE_AT: 0
+SOLVER:
+ # 9x schedule
+ IMS_PER_BATCH: 64 # 4x the standard
+ STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
+ MAX_ITER: 202500 # 90k * 9 / 4
+ BASE_LR: 0.08
+TEST:
+ EVAL_PERIOD: 2500
+# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
+# to learn what you need for training from scratch.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..60d4e42330e396a1901437df8e17b262d5ad547a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
@@ -0,0 +1,19 @@
+_BASE_: "mask_rcnn_R_50_FPN_3x_syncbn.yaml"
+MODEL:
+ PIXEL_STD: [57.375, 57.12, 58.395]
+ WEIGHTS: ""
+ MASK_ON: True
+ RESNETS:
+ STRIDE_IN_1X1: False
+ BACKBONE:
+ FREEZE_AT: 0
+SOLVER:
+ # 9x schedule
+ IMS_PER_BATCH: 64 # 4x the standard
+ STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
+ MAX_ITER: 202500 # 90k * 9 / 4
+ BASE_LR: 0.08
+TEST:
+ EVAL_PERIOD: 2500
+# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
+# to learn what you need for training from scratch.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ac256e1372770ab3d9ae522c962de0fd0dbceeb5
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml
@@ -0,0 +1,11 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "SemanticSegmentor"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+DATASETS:
+ TRAIN: ("coco_2017_train_panoptic_stuffonly",)
+ TEST: ("coco_2017_val_panoptic_stuffonly",)
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ea2a6baaebd1a186db18f2904430ffb25901898e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
@@ -0,0 +1,18 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NUM_CLASSES: 20
+INPUT:
+ MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
+ MIN_SIZE_TEST: 800
+DATASETS:
+ TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
+ TEST: ('voc_2007_test',)
+SOLVER:
+ STEPS: (12000, 16000)
+ MAX_ITER: 18000 # 17.4 epochs
+ WARMUP_ITERS: 100
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e554cab18a358a27b630c1ab0c2359666b0e1514
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
@@ -0,0 +1,18 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: False
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ NUM_CLASSES: 20
+INPUT:
+ MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
+ MIN_SIZE_TEST: 800
+DATASETS:
+ TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
+ TEST: ('voc_2007_test',)
+SOLVER:
+ STEPS: (12000, 16000)
+ MAX_ITER: 18000 # 17.4 epochs
+ WARMUP_ITERS: 100
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/my_Base-RCNN-FPN.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/my_Base-RCNN-FPN.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d649eed7f333dfb07d7a096c6267dc0066e847c1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/my_Base-RCNN-FPN.yaml
@@ -0,0 +1,42 @@
+MODEL:
+ META_ARCHITECTURE: "GeneralizedRCNN"
+ BACKBONE:
+ NAME: "build_resnet_fpn_backbone"
+ RESNETS:
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
+ FPN:
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
+ ANCHOR_GENERATOR:
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
+ RPN:
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
+ # Detectron1 uses 2000 proposals per-batch,
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
+ POST_NMS_TOPK_TRAIN: 1000
+ POST_NMS_TOPK_TEST: 1000
+ ROI_HEADS:
+ NAME: "StandardROIHeads"
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
+ ROI_BOX_HEAD:
+ NAME: "FastRCNNConvFCHead"
+ NUM_FC: 2
+ POOLER_RESOLUTION: 7
+ ROI_MASK_HEAD:
+ NAME: "MaskRCNNConvUpsampleHead"
+ NUM_CONV: 4
+ POOLER_RESOLUTION: 14
+DATASETS:
+ TRAIN: ("coco_2017_train",)
+ TEST: ("coco_2017_val",)
+SOLVER:
+ IMS_PER_BATCH: 2
+ BASE_LR: 0.02
+ STEPS: (60000, 80000)
+ MAX_ITER: 90000
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+VERSION: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/README.md b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a278199b8557a1e2fb341fe6757786a6cecb82b3
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/README.md
@@ -0,0 +1 @@
+These are quick configs for performance or accuracy regression tracking purposes.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fc5a4116cb096278823049c1f823e99f8e16e97e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e41a0fe7ffe9c3531741df49e546aa45cfe4fdee
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
@@ -0,0 +1,11 @@
+_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a2f37e5e2cc2a9e195e13703e9930e67e0f9a896
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..52fc0ec03c8b87ab2be1dda97bec1e8c93e6bb5c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
@@ -0,0 +1,15 @@
+_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
+ TEST: ("coco_2017_val_100",)
+ PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..14cf2aa82aec52ad44e28ead0665dad811d55457
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
+DATASETS:
+ TEST: ("keypoints_coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dc09034bdd3db9d3e0dc62a017a3883dbe79c649
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
@@ -0,0 +1,14 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ KEYPOINT_ON: True
+DATASETS:
+ TRAIN: ("keypoints_coco_2017_val_100",)
+ TEST: ("keypoints_coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4b92392f1c4457033ae4c87a521e339fe9e184ce
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
@@ -0,0 +1,30 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ KEYPOINT_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ BATCH_SIZE_PER_IMAGE: 256
+ NUM_CLASSES: 1
+ ROI_KEYPOINT_HEAD:
+ POOLER_RESOLUTION: 14
+ POOLER_SAMPLING_RATIO: 2
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: False
+ LOSS_WEIGHT: 4.0
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
+ RPN:
+ SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
+DATASETS:
+ TRAIN: ("keypoints_coco_2017_val",)
+ TEST: ("keypoints_coco_2017_val",)
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+SOLVER:
+ WARMUP_FACTOR: 0.33333333
+ WARMUP_ITERS: 100
+ STEPS: (5500, 5800)
+ MAX_ITER: 6000
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 55.35, 1.0], ["keypoints", "AP", 76.91, 1.0]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9bd962878fea64035887c48981beeb8d41bfdbd0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
@@ -0,0 +1,28 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ KEYPOINT_ON: True
+ RESNETS:
+ DEPTH: 50
+ ROI_HEADS:
+ BATCH_SIZE_PER_IMAGE: 256
+ NUM_CLASSES: 1
+ ROI_KEYPOINT_HEAD:
+ POOLER_RESOLUTION: 14
+ POOLER_SAMPLING_RATIO: 2
+ ROI_BOX_HEAD:
+ SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
+ RPN:
+ SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
+DATASETS:
+ TRAIN: ("keypoints_coco_2017_val",)
+ TEST: ("keypoints_coco_2017_val",)
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+SOLVER:
+ WARMUP_FACTOR: 0.33333333
+ WARMUP_ITERS: 100
+ STEPS: (5500, 5800)
+ MAX_ITER: 6000
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 53.5, 1.0], ["keypoints", "AP", 72.4, 1.0]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ab6e69812b94ea7e071f29d9a6937d5c70805b5b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
@@ -0,0 +1,18 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.001
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+ CLIP_GRADIENTS:
+ ENABLED: True
+ CLIP_TYPE: "value"
+ CLIP_VALUE: 1.0
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b2d5b7ff87e069f8c774a230bdfd47b8c12d18a3
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6c4f1214efa520944fd941daec082ad45c164a23
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
@@ -0,0 +1,14 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.001
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f68dd8f96c7896b5fc95d694a399f2ce417c1deb
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
@@ -0,0 +1,22 @@
+_BASE_: "../Base-RCNN-C4.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ ROI_HEADS:
+ BATCH_SIZE_PER_IMAGE: 256
+ MASK_ON: True
+DATASETS:
+ TRAIN: ("coco_2017_val",)
+ TEST: ("coco_2017_val",)
+INPUT:
+ MIN_SIZE_TRAIN: (600,)
+ MAX_SIZE_TRAIN: 1000
+ MIN_SIZE_TEST: 800
+ MAX_SIZE_TEST: 1000
+SOLVER:
+ IMS_PER_BATCH: 8 # base uses 16
+ WARMUP_FACTOR: 0.33333
+ WARMUP_ITERS: 100
+ STEPS: (11000, 11600)
+ MAX_ITER: 12000
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 41.88, 0.7], ["segm", "AP", 33.79, 0.5]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e3ce6cf922ae07fba5b5e01edbac19bf58a8e9dd
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 47.44, 0.02], ["segm", "AP", 42.94, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e5454bfd95cc37749c50aec7866f32d9a80ca2b7
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,10 @@
+_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 47.34, 0.02], ["segm", "AP", 42.67, 0.02], ["bbox_TTA", "AP", 49.11, 0.02], ["segm_TTA", "AP", 45.04, 0.02]]
+ AUG:
+ ENABLED: True
+ MIN_SIZES: (700, 800) # to save some time
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6dbfcde0bf837990634d419a6dda1e2909c3cd7f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml
@@ -0,0 +1,14 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ffca550461035967a565dca39bca039658a68eed
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_training_acc_test.yaml
@@ -0,0 +1,21 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ ROI_HEADS:
+ BATCH_SIZE_PER_IMAGE: 256
+ MASK_ON: True
+DATASETS:
+ TRAIN: ("coco_2017_val",)
+ TEST: ("coco_2017_val",)
+INPUT:
+ MIN_SIZE_TRAIN: (600,)
+ MAX_SIZE_TRAIN: 1000
+ MIN_SIZE_TEST: 800
+ MAX_SIZE_TEST: 1000
+SOLVER:
+ WARMUP_FACTOR: 0.3333333
+ WARMUP_ITERS: 100
+ STEPS: (5500, 5800)
+ MAX_ITER: 6000
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 42.0, 1.6], ["segm", "AP", 35.4, 1.25]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..70874e3a92c9034d75cbbebb145b61084ba15e42
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100_panoptic_separated",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 46.47, 0.02], ["segm", "AP", 43.39, 0.02], ["sem_seg", "mIoU", 42.55, 0.02], ["panoptic_seg", "PQ", 38.99, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7cdee7bfcf6dc75dda52602a0d9177ad0a9cc6ed
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml
@@ -0,0 +1,19 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "PanopticFPN"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ SEM_SEG_HEAD:
+ LOSS_WEIGHT: 0.5
+DATASETS:
+ TRAIN: ("coco_2017_val_100_panoptic_separated",)
+ TEST: ("coco_2017_val_100_panoptic_separated",)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 1
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..05816316f851690e60ee54b852b6f49ede73c886
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_training_acc_test.yaml
@@ -0,0 +1,20 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "PanopticFPN"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ MASK_ON: True
+ RESNETS:
+ DEPTH: 50
+ SEM_SEG_HEAD:
+ LOSS_WEIGHT: 0.5
+DATASETS:
+ TRAIN: ("coco_2017_val_panoptic_separated",)
+ TEST: ("coco_2017_val_panoptic_separated",)
+SOLVER:
+ BASE_LR: 0.01
+ WARMUP_FACTOR: 0.001
+ WARMUP_ITERS: 500
+ STEPS: (5500,)
+ MAX_ITER: 7000
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 46.70, 1.1], ["segm", "AP", 38.73, 0.7], ["sem_seg", "mIoU", 64.73, 1.2], ["panoptic_seg", "PQ", 48.13, 0.8]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..36b998833bac04c830d5ab9f44d5773b0437ac0b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-Detection/retinanet_R_50_FPN_3x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["bbox", "AP", 44.36, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8d95c1f614296716374686b22055a587ccd052b9
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml
@@ -0,0 +1,13 @@
+_BASE_: "../COCO-Detection/retinanet_R_50_FPN_1x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c7c3f908a9e80e98b2d25b6d384a60acaba9d4f8
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,7 @@
+_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl"
+DATASETS:
+ TEST: ("coco_2017_val_100",)
+TEST:
+ EXPECTED_RESULTS: [["box_proposals", "AR@1000", 58.16, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..402d432477507dc36f04c4a9777cb80fe06b2809
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml
@@ -0,0 +1,13 @@
+_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
+MODEL:
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+DATASETS:
+ TRAIN: ("coco_2017_val_100",)
+ TEST: ("coco_2017_val_100",)
+SOLVER:
+ STEPS: (30,)
+ MAX_ITER: 40
+ BASE_LR: 0.005
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bca74987d5218736983617883e0fe37f79d219b7
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml
@@ -0,0 +1,10 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "SemanticSegmentor"
+ WEIGHTS: "detectron2://semantic_R_50_FPN_1x/111802073/model_final_c18079783c55a94968edc28b7101c5f0.pkl"
+ RESNETS:
+ DEPTH: 50
+DATASETS:
+ TEST: ("coco_2017_val_100_panoptic_stuffonly",)
+TEST:
+ EXPECTED_RESULTS: [["sem_seg", "mIoU", 39.53, 0.02], ["sem_seg", "mACC", 51.50, 0.02]]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..14ab606f219b462fe37fcc7d5fbdbe65cb5c2642
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml
@@ -0,0 +1,18 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "SemanticSegmentor"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+DATASETS:
+ TRAIN: ("coco_2017_val_100_panoptic_stuffonly",)
+ TEST: ("coco_2017_val_100_panoptic_stuffonly",)
+INPUT:
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
+SOLVER:
+ BASE_LR: 0.005
+ STEPS: (30,)
+ MAX_ITER: 40
+ IMS_PER_BATCH: 4
+DATALOADER:
+ NUM_WORKERS: 2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_training_acc_test.yaml b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_training_acc_test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1f78d775889b11e9e76743de5ddb8139198edf61
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_training_acc_test.yaml
@@ -0,0 +1,20 @@
+_BASE_: "../Base-RCNN-FPN.yaml"
+MODEL:
+ META_ARCHITECTURE: "SemanticSegmentor"
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
+ RESNETS:
+ DEPTH: 50
+DATASETS:
+ TRAIN: ("coco_2017_val_panoptic_stuffonly",)
+ TEST: ("coco_2017_val_panoptic_stuffonly",)
+SOLVER:
+ BASE_LR: 0.01
+ WARMUP_FACTOR: 0.001
+ WARMUP_ITERS: 300
+ STEPS: (5500,)
+ MAX_ITER: 7000
+TEST:
+ EXPECTED_RESULTS: [["sem_seg", "mIoU", 76.51, 1.0], ["sem_seg", "mACC", 83.25, 1.0]]
+INPUT:
+ # no scale augmentation
+ MIN_SIZE_TRAIN: (800, )
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/demo/README.md b/preprocess/humanparsing/mhp_extension/detectron2/demo/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..caa755f6f0f472a04a419deec4a6acfdb949023b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/demo/README.md
@@ -0,0 +1,8 @@
+
+## Detectron2 Demo
+
+We provide a command line tool to run a simple demo of builtin models.
+The usage is explained in [GETTING_STARTED.md](../GETTING_STARTED.md).
+
+See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-)
+for a high-quality demo generated with this tool.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/demo/demo.py b/preprocess/humanparsing/mhp_extension/detectron2/demo/demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..1fd8df8f539cfe4a4f003fb820f49ffad0f54f80
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/demo/demo.py
@@ -0,0 +1,161 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import argparse
+import glob
+import multiprocessing as mp
+import os
+import time
+import cv2
+import tqdm
+
+from detectron2.config import get_cfg
+from detectron2.data.detection_utils import read_image
+from detectron2.utils.logger import setup_logger
+
+from predictor import VisualizationDemo
+
+# constants
+WINDOW_NAME = "COCO detections"
+
+
+def setup_cfg(args):
+ # load config from file and command-line arguments
+ cfg = get_cfg()
+ cfg.merge_from_file(args.config_file)
+ cfg.merge_from_list(args.opts)
+ # Set score_threshold for builtin models
+ cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
+ cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
+ cfg.freeze()
+ return cfg
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models")
+ parser.add_argument(
+ "--config-file",
+ default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
+ metavar="FILE",
+ help="path to config file",
+ )
+ parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
+ parser.add_argument("--video-input", help="Path to video file.")
+ parser.add_argument(
+ "--input",
+ nargs="+",
+ help="A list of space separated input images; "
+ "or a single glob pattern such as 'directory/*.jpg'",
+ )
+ parser.add_argument(
+ "--output",
+ help="A file or directory to save output visualizations. "
+ "If not given, will show output in an OpenCV window.",
+ )
+
+ parser.add_argument(
+ "--confidence-threshold",
+ type=float,
+ default=0.5,
+ help="Minimum score for instance predictions to be shown",
+ )
+ parser.add_argument(
+ "--opts",
+ help="Modify config options using the command-line 'KEY VALUE' pairs",
+ default=[],
+ nargs=argparse.REMAINDER,
+ )
+ return parser
+
+
+if __name__ == "__main__":
+ mp.set_start_method("spawn", force=True)
+ args = get_parser().parse_args()
+ setup_logger(name="fvcore")
+ logger = setup_logger()
+ logger.info("Arguments: " + str(args))
+
+ cfg = setup_cfg(args)
+
+ demo = VisualizationDemo(cfg)
+
+ if args.input:
+ if len(args.input) == 1:
+ args.input = glob.glob(os.path.expanduser(args.input[0]))
+ assert args.input, "The input path(s) was not found"
+ for path in tqdm.tqdm(args.input, disable=not args.output):
+ # use PIL, to be consistent with evaluation
+ img = read_image(path, format="BGR")
+ start_time = time.time()
+ predictions, visualized_output = demo.run_on_image(img)
+ logger.info(
+ "{}: {} in {:.2f}s".format(
+ path,
+ "detected {} instances".format(len(predictions["instances"]))
+ if "instances" in predictions
+ else "finished",
+ time.time() - start_time,
+ )
+ )
+
+ if args.output:
+ if os.path.isdir(args.output):
+ assert os.path.isdir(args.output), args.output
+ out_filename = os.path.join(args.output, os.path.basename(path))
+ else:
+ assert len(args.input) == 1, "Please specify a directory with args.output"
+ out_filename = args.output
+ visualized_output.save(out_filename)
+ else:
+ cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
+ cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1])
+ if cv2.waitKey(0) == 27:
+ break # esc to quit
+ elif args.webcam:
+ assert args.input is None, "Cannot have both --input and --webcam!"
+ assert args.output is None, "output not yet supported with --webcam!"
+ cam = cv2.VideoCapture(0)
+ for vis in tqdm.tqdm(demo.run_on_video(cam)):
+ cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
+ cv2.imshow(WINDOW_NAME, vis)
+ if cv2.waitKey(1) == 27:
+ break # esc to quit
+ cam.release()
+ cv2.destroyAllWindows()
+ elif args.video_input:
+ video = cv2.VideoCapture(args.video_input)
+ width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
+ height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ frames_per_second = video.get(cv2.CAP_PROP_FPS)
+ num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
+ basename = os.path.basename(args.video_input)
+
+ if args.output:
+ if os.path.isdir(args.output):
+ output_fname = os.path.join(args.output, basename)
+ output_fname = os.path.splitext(output_fname)[0] + ".mkv"
+ else:
+ output_fname = args.output
+ assert not os.path.isfile(output_fname), output_fname
+ output_file = cv2.VideoWriter(
+ filename=output_fname,
+ # some installation of opencv may not support x264 (due to its license),
+ # you can try other format (e.g. MPEG)
+ fourcc=cv2.VideoWriter_fourcc(*"x264"),
+ fps=float(frames_per_second),
+ frameSize=(width, height),
+ isColor=True,
+ )
+ assert os.path.isfile(args.video_input)
+ for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames):
+ if args.output:
+ output_file.write(vis_frame)
+ else:
+ cv2.namedWindow(basename, cv2.WINDOW_NORMAL)
+ cv2.imshow(basename, vis_frame)
+ if cv2.waitKey(1) == 27:
+ break # esc to quit
+ video.release()
+ if args.output:
+ output_file.release()
+ else:
+ cv2.destroyAllWindows()
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/demo/predictor.py b/preprocess/humanparsing/mhp_extension/detectron2/demo/predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..689fa85436d928858e652df665f5e7460a1f3154
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/demo/predictor.py
@@ -0,0 +1,220 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import atexit
+import bisect
+import multiprocessing as mp
+from collections import deque
+import cv2
+import torch
+
+from detectron2.data import MetadataCatalog
+from detectron2.engine.defaults import DefaultPredictor
+from detectron2.utils.video_visualizer import VideoVisualizer
+from detectron2.utils.visualizer import ColorMode, Visualizer
+
+
+class VisualizationDemo(object):
+ def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False):
+ """
+ Args:
+ cfg (CfgNode):
+ instance_mode (ColorMode):
+ parallel (bool): whether to run the model in different processes from visualization.
+ Useful since the visualization logic can be slow.
+ """
+ self.metadata = MetadataCatalog.get(
+ cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
+ )
+ self.cpu_device = torch.device("cpu")
+ self.instance_mode = instance_mode
+
+ self.parallel = parallel
+ if parallel:
+ num_gpu = torch.cuda.device_count()
+ self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
+ else:
+ self.predictor = DefaultPredictor(cfg)
+
+ def run_on_image(self, image):
+ """
+ Args:
+ image (np.ndarray): an image of shape (H, W, C) (in BGR order).
+ This is the format used by OpenCV.
+
+ Returns:
+ predictions (dict): the output of the model.
+ vis_output (VisImage): the visualized image output.
+ """
+ vis_output = None
+ predictions = self.predictor(image)
+ # Convert image from OpenCV BGR format to Matplotlib RGB format.
+ image = image[:, :, ::-1]
+ visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
+ if "panoptic_seg" in predictions:
+ panoptic_seg, segments_info = predictions["panoptic_seg"]
+ vis_output = visualizer.draw_panoptic_seg_predictions(
+ panoptic_seg.to(self.cpu_device), segments_info
+ )
+ else:
+ if "sem_seg" in predictions:
+ vis_output = visualizer.draw_sem_seg(
+ predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
+ )
+ if "instances" in predictions:
+ instances = predictions["instances"].to(self.cpu_device)
+ vis_output = visualizer.draw_instance_predictions(predictions=instances)
+
+ return predictions, vis_output
+
+ def _frame_from_video(self, video):
+ while video.isOpened():
+ success, frame = video.read()
+ if success:
+ yield frame
+ else:
+ break
+
+ def run_on_video(self, video):
+ """
+ Visualizes predictions on frames of the input video.
+
+ Args:
+ video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
+ either a webcam or a video file.
+
+ Yields:
+ ndarray: BGR visualizations of each video frame.
+ """
+ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
+
+ def process_predictions(frame, predictions):
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
+ if "panoptic_seg" in predictions:
+ panoptic_seg, segments_info = predictions["panoptic_seg"]
+ vis_frame = video_visualizer.draw_panoptic_seg_predictions(
+ frame, panoptic_seg.to(self.cpu_device), segments_info
+ )
+ elif "instances" in predictions:
+ predictions = predictions["instances"].to(self.cpu_device)
+ vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
+ elif "sem_seg" in predictions:
+ vis_frame = video_visualizer.draw_sem_seg(
+ frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
+ )
+
+ # Converts Matplotlib RGB format to OpenCV BGR format
+ vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
+ return vis_frame
+
+ frame_gen = self._frame_from_video(video)
+ if self.parallel:
+ buffer_size = self.predictor.default_buffer_size
+
+ frame_data = deque()
+
+ for cnt, frame in enumerate(frame_gen):
+ frame_data.append(frame)
+ self.predictor.put(frame)
+
+ if cnt >= buffer_size:
+ frame = frame_data.popleft()
+ predictions = self.predictor.get()
+ yield process_predictions(frame, predictions)
+
+ while len(frame_data):
+ frame = frame_data.popleft()
+ predictions = self.predictor.get()
+ yield process_predictions(frame, predictions)
+ else:
+ for frame in frame_gen:
+ yield process_predictions(frame, self.predictor(frame))
+
+
+class AsyncPredictor:
+ """
+ A predictor that runs the model asynchronously, possibly on >1 GPUs.
+ Because rendering the visualization takes considerably amount of time,
+ this helps improve throughput when rendering videos.
+ """
+
+ class _StopToken:
+ pass
+
+ class _PredictWorker(mp.Process):
+ def __init__(self, cfg, task_queue, result_queue):
+ self.cfg = cfg
+ self.task_queue = task_queue
+ self.result_queue = result_queue
+ super().__init__()
+
+ def run(self):
+ predictor = DefaultPredictor(self.cfg)
+
+ while True:
+ task = self.task_queue.get()
+ if isinstance(task, AsyncPredictor._StopToken):
+ break
+ idx, data = task
+ result = predictor(data)
+ self.result_queue.put((idx, result))
+
+ def __init__(self, cfg, num_gpus: int = 1):
+ """
+ Args:
+ cfg (CfgNode):
+ num_gpus (int): if 0, will run on CPU
+ """
+ num_workers = max(num_gpus, 1)
+ self.task_queue = mp.Queue(maxsize=num_workers * 3)
+ self.result_queue = mp.Queue(maxsize=num_workers * 3)
+ self.procs = []
+ for gpuid in range(max(num_gpus, 1)):
+ cfg = cfg.clone()
+ cfg.defrost()
+ cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
+ self.procs.append(
+ AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
+ )
+
+ self.put_idx = 0
+ self.get_idx = 0
+ self.result_rank = []
+ self.result_data = []
+
+ for p in self.procs:
+ p.start()
+ atexit.register(self.shutdown)
+
+ def put(self, image):
+ self.put_idx += 1
+ self.task_queue.put((self.put_idx, image))
+
+ def get(self):
+ self.get_idx += 1 # the index needed for this request
+ if len(self.result_rank) and self.result_rank[0] == self.get_idx:
+ res = self.result_data[0]
+ del self.result_data[0], self.result_rank[0]
+ return res
+
+ while True:
+ # make sure the results are returned in the correct order
+ idx, res = self.result_queue.get()
+ if idx == self.get_idx:
+ return res
+ insert = bisect.bisect(self.result_rank, idx)
+ self.result_rank.insert(insert, idx)
+ self.result_data.insert(insert, res)
+
+ def __len__(self):
+ return self.put_idx - self.get_idx
+
+ def __call__(self, image):
+ self.put(image)
+ return self.get()
+
+ def shutdown(self):
+ for _ in self.procs:
+ self.task_queue.put(AsyncPredictor._StopToken())
+
+ @property
+ def default_buffer_size(self):
+ return len(self.procs) * 5
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..41816af2e8e538fa2ef4dc7b34f5667e0e823b90
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/__init__.py
@@ -0,0 +1,10 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+
+from .utils.env import setup_environment
+
+setup_environment()
+
+
+# This line will be programatically read/write by setup.py.
+# Leave them at the bottom of this file and don't touch them.
+__version__ = "0.1.3"
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e17a9df03d886b379ffbb1c4ec41e03c5025410f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/__init__.py
@@ -0,0 +1,10 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+# File:
+
+
+from . import catalog as _UNUSED # register the handler
+from .detection_checkpoint import DetectionCheckpointer
+from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
+
+__all__ = ["Checkpointer", "PeriodicCheckpointer", "DetectionCheckpointer"]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/c2_model_loading.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/c2_model_loading.py
new file mode 100644
index 0000000000000000000000000000000000000000..e27ba8463c744438d44f04f23fd4975525eba667
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/c2_model_loading.py
@@ -0,0 +1,313 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import logging
+import re
+import torch
+from fvcore.common.checkpoint import (
+ get_missing_parameters_message,
+ get_unexpected_parameters_message,
+)
+
+
+def convert_basic_c2_names(original_keys):
+ """
+ Apply some basic name conversion to names in C2 weights.
+ It only deals with typical backbone models.
+
+ Args:
+ original_keys (list[str]):
+ Returns:
+ list[str]: The same number of strings matching those in original_keys.
+ """
+ layer_keys = copy.deepcopy(original_keys)
+ layer_keys = [
+ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys
+ ] # some hard-coded mappings
+
+ layer_keys = [k.replace("_", ".") for k in layer_keys]
+ layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys]
+ layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys]
+ # Uniform both bn and gn names to "norm"
+ layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys]
+ layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys]
+ layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys]
+ layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys]
+
+ # stem
+ layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys]
+ # to avoid mis-matching with "conv1" in other components (e.g. detection head)
+ layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys]
+
+ # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5)
+ # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys]
+ # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys]
+ # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys]
+ # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys]
+
+ # blocks
+ layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys]
+ layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys]
+ layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys]
+ layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys]
+
+ # DensePose substitutions
+ layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys]
+ layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys]
+ layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys]
+ layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys]
+ layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys]
+ return layer_keys
+
+
+def convert_c2_detectron_names(weights):
+ """
+ Map Caffe2 Detectron weight names to Detectron2 names.
+
+ Args:
+ weights (dict): name -> tensor
+
+ Returns:
+ dict: detectron2 names -> tensor
+ dict: detectron2 names -> C2 names
+ """
+ logger = logging.getLogger(__name__)
+ logger.info("Remapping C2 weights ......")
+ original_keys = sorted(weights.keys())
+ layer_keys = copy.deepcopy(original_keys)
+
+ layer_keys = convert_basic_c2_names(layer_keys)
+
+ # --------------------------------------------------------------------------
+ # RPN hidden representation conv
+ # --------------------------------------------------------------------------
+ # FPN case
+ # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then
+ # shared for all other levels, hence the appearance of "fpn2"
+ layer_keys = [
+ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys
+ ]
+ # Non-FPN case
+ layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys]
+
+ # --------------------------------------------------------------------------
+ # RPN box transformation conv
+ # --------------------------------------------------------------------------
+ # FPN case (see note above about "fpn2")
+ layer_keys = [
+ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas")
+ for k in layer_keys
+ ]
+ layer_keys = [
+ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits")
+ for k in layer_keys
+ ]
+ # Non-FPN case
+ layer_keys = [
+ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys
+ ]
+ layer_keys = [
+ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits")
+ for k in layer_keys
+ ]
+
+ # --------------------------------------------------------------------------
+ # Fast R-CNN box head
+ # --------------------------------------------------------------------------
+ layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys]
+ layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys]
+ layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys]
+ layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys]
+ # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s
+ layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys]
+
+ # --------------------------------------------------------------------------
+ # FPN lateral and output convolutions
+ # --------------------------------------------------------------------------
+ def fpn_map(name):
+ """
+ Look for keys with the following patterns:
+ 1) Starts with "fpn.inner."
+ Example: "fpn.inner.res2.2.sum.lateral.weight"
+ Meaning: These are lateral pathway convolutions
+ 2) Starts with "fpn.res"
+ Example: "fpn.res2.2.sum.weight"
+ Meaning: These are FPN output convolutions
+ """
+ splits = name.split(".")
+ norm = ".norm" if "norm" in splits else ""
+ if name.startswith("fpn.inner."):
+ # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight']
+ stage = int(splits[2][len("res") :])
+ return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1])
+ elif name.startswith("fpn.res"):
+ # splits example: ['fpn', 'res2', '2', 'sum', 'weight']
+ stage = int(splits[1][len("res") :])
+ return "fpn_output{}{}.{}".format(stage, norm, splits[-1])
+ return name
+
+ layer_keys = [fpn_map(k) for k in layer_keys]
+
+ # --------------------------------------------------------------------------
+ # Mask R-CNN mask head
+ # --------------------------------------------------------------------------
+ # roi_heads.StandardROIHeads case
+ layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys]
+ layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys]
+ layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys]
+ # roi_heads.Res5ROIHeads case
+ layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys]
+
+ # --------------------------------------------------------------------------
+ # Keypoint R-CNN head
+ # --------------------------------------------------------------------------
+ # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX"
+ layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys]
+ layer_keys = [
+ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys
+ ]
+ layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys]
+
+ # --------------------------------------------------------------------------
+ # Done with replacements
+ # --------------------------------------------------------------------------
+ assert len(set(layer_keys)) == len(layer_keys)
+ assert len(original_keys) == len(layer_keys)
+
+ new_weights = {}
+ new_keys_to_original_keys = {}
+ for orig, renamed in zip(original_keys, layer_keys):
+ new_keys_to_original_keys[renamed] = orig
+ if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."):
+ # remove the meaningless prediction weight for background class
+ new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1
+ new_weights[renamed] = weights[orig][new_start_idx:]
+ logger.info(
+ "Remove prediction weight for background class in {}. The shape changes from "
+ "{} to {}.".format(
+ renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape)
+ )
+ )
+ elif renamed.startswith("cls_score."):
+ # move weights of bg class from original index 0 to last index
+ logger.info(
+ "Move classification weights for background class in {} from index 0 to "
+ "index {}.".format(renamed, weights[orig].shape[0] - 1)
+ )
+ new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]])
+ else:
+ new_weights[renamed] = weights[orig]
+
+ return new_weights, new_keys_to_original_keys
+
+
+# Note the current matching is not symmetric.
+# it assumes model_state_dict will have longer names.
+def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True):
+ """
+ Match names between the two state-dict, and update the values of model_state_dict in-place with
+ copies of the matched tensor in ckpt_state_dict.
+ If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2
+ model and will be renamed at first.
+
+ Strategy: suppose that the models that we will create will have prefixes appended
+ to each of its keys, for example due to an extra level of nesting that the original
+ pre-trained weights from ImageNet won't contain. For example, model.state_dict()
+ might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains
+ res2.conv1.weight. We thus want to match both parameters together.
+ For that, we look for each model weight, look among all loaded keys if there is one
+ that is a suffix of the current weight name, and use it if that's the case.
+ If multiple matches exist, take the one with longest size
+ of the corresponding name. For example, for the same model as before, the pretrained
+ weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case,
+ we want to match backbone[0].body.conv1.weight to conv1.weight, and
+ backbone[0].body.res2.conv1.weight to res2.conv1.weight.
+ """
+ model_keys = sorted(model_state_dict.keys())
+ if c2_conversion:
+ ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict)
+ # original_keys: the name in the original dict (before renaming)
+ else:
+ original_keys = {x: x for x in ckpt_state_dict.keys()}
+ ckpt_keys = sorted(ckpt_state_dict.keys())
+
+ def match(a, b):
+ # Matched ckpt_key should be a complete (starts with '.') suffix.
+ # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1,
+ # but matches whatever_conv1 or mesh_head.whatever_conv1.
+ return a == b or a.endswith("." + b)
+
+ # get a matrix of string matches, where each (i, j) entry correspond to the size of the
+ # ckpt_key string, if it matches
+ match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys]
+ match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys))
+ # use the matched one with longest size in case of multiple matches
+ max_match_size, idxs = match_matrix.max(1)
+ # remove indices that correspond to no-match
+ idxs[max_match_size == 0] = -1
+
+ # used for logging
+ max_len_model = max(len(key) for key in model_keys) if model_keys else 1
+ max_len_ckpt = max(len(key) for key in ckpt_keys) if ckpt_keys else 1
+ log_str_template = "{: <{}} loaded from {: <{}} of shape {}"
+ logger = logging.getLogger(__name__)
+ # matched_pairs (matched checkpoint key --> matched model key)
+ matched_keys = {}
+ for idx_model, idx_ckpt in enumerate(idxs.tolist()):
+ if idx_ckpt == -1:
+ continue
+ key_model = model_keys[idx_model]
+ key_ckpt = ckpt_keys[idx_ckpt]
+ value_ckpt = ckpt_state_dict[key_ckpt]
+ shape_in_model = model_state_dict[key_model].shape
+
+ if shape_in_model != value_ckpt.shape:
+ logger.warning(
+ "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format(
+ key_ckpt, value_ckpt.shape, key_model, shape_in_model
+ )
+ )
+ logger.warning(
+ "{} will not be loaded. Please double check and see if this is desired.".format(
+ key_ckpt
+ )
+ )
+ continue
+
+ model_state_dict[key_model] = value_ckpt.clone()
+ if key_ckpt in matched_keys: # already added to matched_keys
+ logger.error(
+ "Ambiguity found for {} in checkpoint!"
+ "It matches at least two keys in the model ({} and {}).".format(
+ key_ckpt, key_model, matched_keys[key_ckpt]
+ )
+ )
+ raise ValueError("Cannot match one checkpoint key to multiple keys in the model.")
+
+ matched_keys[key_ckpt] = key_model
+ logger.info(
+ log_str_template.format(
+ key_model,
+ max_len_model,
+ original_keys[key_ckpt],
+ max_len_ckpt,
+ tuple(shape_in_model),
+ )
+ )
+ matched_model_keys = matched_keys.values()
+ matched_ckpt_keys = matched_keys.keys()
+ # print warnings about unmatched keys on both side
+ unmatched_model_keys = [k for k in model_keys if k not in matched_model_keys]
+ if len(unmatched_model_keys):
+ logger.info(get_missing_parameters_message(unmatched_model_keys))
+
+ unmatched_ckpt_keys = [k for k in ckpt_keys if k not in matched_ckpt_keys]
+ if len(unmatched_ckpt_keys):
+ logger.info(
+ get_unexpected_parameters_message(original_keys[x] for x in unmatched_ckpt_keys)
+ )
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/catalog.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/catalog.py
new file mode 100644
index 0000000000000000000000000000000000000000..62f81f3c1531e2726400cba4c97b60d744670da5
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/catalog.py
@@ -0,0 +1,134 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import logging
+from fvcore.common.file_io import PathHandler, PathManager
+
+
+class ModelCatalog(object):
+ """
+ Store mappings from names to third-party models.
+ """
+
+ S3_C2_DETECTRON_PREFIX = "https://dl.fbaipublicfiles.com/detectron"
+
+ # MSRA models have STRIDE_IN_1X1=True. False otherwise.
+ # NOTE: all BN models here have fused BN into an affine layer.
+ # As a result, you should only load them to a model with "FrozenBN".
+ # Loading them to a model with regular BN or SyncBN is wrong.
+ # Even when loaded to FrozenBN, it is still different from affine by an epsilon,
+ # which should be negligible for training.
+ # NOTE: all models here uses PIXEL_STD=[1,1,1]
+ # NOTE: Most of the BN models here are no longer used. We use the
+ # re-converted pre-trained models under detectron2 model zoo instead.
+ C2_IMAGENET_MODELS = {
+ "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl",
+ "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl",
+ "FAIR/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl",
+ "FAIR/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl",
+ "FAIR/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl",
+ "FAIR/X-101-64x4d": "ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl",
+ "FAIR/X-152-32x8d-IN5k": "ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl",
+ }
+
+ C2_DETECTRON_PATH_FORMAT = (
+ "{prefix}/{url}/output/train/{dataset}/{type}/model_final.pkl" # noqa B950
+ )
+
+ C2_DATASET_COCO = "coco_2014_train%3Acoco_2014_valminusminival"
+ C2_DATASET_COCO_KEYPOINTS = "keypoints_coco_2014_train%3Akeypoints_coco_2014_valminusminival"
+
+ # format: {model_name} -> part of the url
+ C2_DETECTRON_MODELS = {
+ "35857197/e2e_faster_rcnn_R-50-C4_1x": "35857197/12_2017_baselines/e2e_faster_rcnn_R-50-C4_1x.yaml.01_33_49.iAX0mXvW", # noqa B950
+ "35857345/e2e_faster_rcnn_R-50-FPN_1x": "35857345/12_2017_baselines/e2e_faster_rcnn_R-50-FPN_1x.yaml.01_36_30.cUF7QR7I", # noqa B950
+ "35857890/e2e_faster_rcnn_R-101-FPN_1x": "35857890/12_2017_baselines/e2e_faster_rcnn_R-101-FPN_1x.yaml.01_38_50.sNxI7sX7", # noqa B950
+ "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "36761737/12_2017_baselines/e2e_faster_rcnn_X-101-32x8d-FPN_1x.yaml.06_31_39.5MIHi1fZ", # noqa B950
+ "35858791/e2e_mask_rcnn_R-50-C4_1x": "35858791/12_2017_baselines/e2e_mask_rcnn_R-50-C4_1x.yaml.01_45_57.ZgkA7hPB", # noqa B950
+ "35858933/e2e_mask_rcnn_R-50-FPN_1x": "35858933/12_2017_baselines/e2e_mask_rcnn_R-50-FPN_1x.yaml.01_48_14.DzEQe4wC", # noqa B950
+ "35861795/e2e_mask_rcnn_R-101-FPN_1x": "35861795/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_1x.yaml.02_31_37.KqyEK4tT", # noqa B950
+ "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "36761843/12_2017_baselines/e2e_mask_rcnn_X-101-32x8d-FPN_1x.yaml.06_35_59.RZotkLKI", # noqa B950
+ "48616381/e2e_mask_rcnn_R-50-FPN_2x_gn": "GN/48616381/04_2018_gn_baselines/e2e_mask_rcnn_R-50-FPN_2x_gn_0416.13_23_38.bTlTI97Q", # noqa B950
+ "37697547/e2e_keypoint_rcnn_R-50-FPN_1x": "37697547/12_2017_baselines/e2e_keypoint_rcnn_R-50-FPN_1x.yaml.08_42_54.kdzV35ao", # noqa B950
+ "35998355/rpn_R-50-C4_1x": "35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L", # noqa B950
+ "35998814/rpn_R-50-FPN_1x": "35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179", # noqa B950
+ "36225147/fast_R-50-FPN_1x": "36225147/12_2017_baselines/fast_rcnn_R-50-FPN_1x.yaml.08_39_09.L3obSdQ2", # noqa B950
+ }
+
+ @staticmethod
+ def get(name):
+ if name.startswith("Caffe2Detectron/COCO"):
+ return ModelCatalog._get_c2_detectron_baseline(name)
+ if name.startswith("ImageNetPretrained/"):
+ return ModelCatalog._get_c2_imagenet_pretrained(name)
+ raise RuntimeError("model not present in the catalog: {}".format(name))
+
+ @staticmethod
+ def _get_c2_imagenet_pretrained(name):
+ prefix = ModelCatalog.S3_C2_DETECTRON_PREFIX
+ name = name[len("ImageNetPretrained/") :]
+ name = ModelCatalog.C2_IMAGENET_MODELS[name]
+ url = "/".join([prefix, name])
+ return url
+
+ @staticmethod
+ def _get_c2_detectron_baseline(name):
+ name = name[len("Caffe2Detectron/COCO/") :]
+ url = ModelCatalog.C2_DETECTRON_MODELS[name]
+ if "keypoint_rcnn" in name:
+ dataset = ModelCatalog.C2_DATASET_COCO_KEYPOINTS
+ else:
+ dataset = ModelCatalog.C2_DATASET_COCO
+
+ if "35998355/rpn_R-50-C4_1x" in name:
+ # this one model is somehow different from others ..
+ type = "rpn"
+ else:
+ type = "generalized_rcnn"
+
+ # Detectron C2 models are stored in the structure defined in `C2_DETECTRON_PATH_FORMAT`.
+ url = ModelCatalog.C2_DETECTRON_PATH_FORMAT.format(
+ prefix=ModelCatalog.S3_C2_DETECTRON_PREFIX, url=url, type=type, dataset=dataset
+ )
+ return url
+
+
+class ModelCatalogHandler(PathHandler):
+ """
+ Resolve URL like catalog://.
+ """
+
+ PREFIX = "catalog://"
+
+ def _get_supported_prefixes(self):
+ return [self.PREFIX]
+
+ def _get_local_path(self, path):
+ logger = logging.getLogger(__name__)
+ catalog_path = ModelCatalog.get(path[len(self.PREFIX) :])
+ logger.info("Catalog entry {} points to {}".format(path, catalog_path))
+ return PathManager.get_local_path(catalog_path)
+
+ def _open(self, path, mode="r", **kwargs):
+ return PathManager.open(self._get_local_path(path), mode, **kwargs)
+
+
+class Detectron2Handler(PathHandler):
+ """
+ Resolve anything that's in Detectron2 model zoo.
+ """
+
+ PREFIX = "detectron2://"
+ S3_DETECTRON2_PREFIX = "https://dl.fbaipublicfiles.com/detectron2/"
+
+ def _get_supported_prefixes(self):
+ return [self.PREFIX]
+
+ def _get_local_path(self, path):
+ name = path[len(self.PREFIX) :]
+ return PathManager.get_local_path(self.S3_DETECTRON2_PREFIX + name)
+
+ def _open(self, path, mode="r", **kwargs):
+ return PathManager.open(self._get_local_path(path), mode, **kwargs)
+
+
+PathManager.register_handler(ModelCatalogHandler())
+PathManager.register_handler(Detectron2Handler())
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/detection_checkpoint.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/detection_checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..06e6739f7b2070cf3e2d34099188e5ea1f7cf622
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/checkpoint/detection_checkpoint.py
@@ -0,0 +1,73 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import pickle
+from fvcore.common.checkpoint import Checkpointer
+from fvcore.common.file_io import PathManager
+
+import detectron2.utils.comm as comm
+
+from .c2_model_loading import align_and_update_state_dicts
+
+
+class DetectionCheckpointer(Checkpointer):
+ """
+ Same as :class:`Checkpointer`, but is able to handle models in detectron & detectron2
+ model zoo, and apply conversions for legacy models.
+ """
+
+ def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables):
+ is_main_process = comm.is_main_process()
+ super().__init__(
+ model,
+ save_dir,
+ save_to_disk=is_main_process if save_to_disk is None else save_to_disk,
+ **checkpointables,
+ )
+
+ def _load_file(self, filename):
+ if filename.endswith(".pkl"):
+ with PathManager.open(filename, "rb") as f:
+ data = pickle.load(f, encoding="latin1")
+ if "model" in data and "__author__" in data:
+ # file is in Detectron2 model zoo format
+ self.logger.info("Reading a file from '{}'".format(data["__author__"]))
+ return data
+ else:
+ # assume file is from Caffe2 / Detectron1 model zoo
+ if "blobs" in data:
+ # Detection models have "blobs", but ImageNet models don't
+ data = data["blobs"]
+ data = {k: v for k, v in data.items() if not k.endswith("_momentum")}
+ return {"model": data, "__author__": "Caffe2", "matching_heuristics": True}
+
+ loaded = super()._load_file(filename) # load native pth checkpoint
+ if "model" not in loaded:
+ loaded = {"model": loaded}
+ return loaded
+
+ def _load_model(self, checkpoint):
+ if checkpoint.get("matching_heuristics", False):
+ self._convert_ndarray_to_tensor(checkpoint["model"])
+ # convert weights by name-matching heuristics
+ model_state_dict = self.model.state_dict()
+ align_and_update_state_dicts(
+ model_state_dict,
+ checkpoint["model"],
+ c2_conversion=checkpoint.get("__author__", None) == "Caffe2",
+ )
+ checkpoint["model"] = model_state_dict
+ # for non-caffe2 models, use standard ways to load it
+ incompatible = super()._load_model(checkpoint)
+ if incompatible is None: # support older versions of fvcore
+ return None
+
+ model_buffers = dict(self.model.named_buffers(recurse=False))
+ for k in ["pixel_mean", "pixel_std"]:
+ # Ignore missing key message about pixel_mean/std.
+ # Though they may be missing in old checkpoints, they will be correctly
+ # initialized from config anyway.
+ if k in model_buffers:
+ try:
+ incompatible.missing_keys.remove(k)
+ except ValueError:
+ pass
+ return incompatible
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f996ecd74947c504f86e3e6854a45bd74ad32c1c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/__init__.py
@@ -0,0 +1,13 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .compat import downgrade_config, upgrade_config
+from .config import CfgNode, get_cfg, global_cfg, set_global_cfg, configurable
+
+__all__ = [
+ "CfgNode",
+ "get_cfg",
+ "global_cfg",
+ "set_global_cfg",
+ "downgrade_config",
+ "upgrade_config",
+ "configurable",
+]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/compat.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/compat.py
new file mode 100644
index 0000000000000000000000000000000000000000..41fe3a00ca05885abf28106808fe7f8d862b5036
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/compat.py
@@ -0,0 +1,229 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Backward compatibility of configs.
+
+Instructions to bump version:
++ It's not needed to bump version if new keys are added.
+ It's only needed when backward-incompatible changes happen
+ (i.e., some existing keys disappear, or the meaning of a key changes)
++ To bump version, do the following:
+ 1. Increment _C.VERSION in defaults.py
+ 2. Add a converter in this file.
+
+ Each ConverterVX has a function "upgrade" which in-place upgrades config from X-1 to X,
+ and a function "downgrade" which in-place downgrades config from X to X-1
+
+ In each function, VERSION is left unchanged.
+
+ Each converter assumes that its input has the relevant keys
+ (i.e., the input is not a partial config).
+ 3. Run the tests (test_config.py) to make sure the upgrade & downgrade
+ functions are consistent.
+"""
+
+import logging
+from typing import List, Optional, Tuple
+
+from .config import CfgNode as CN
+from .defaults import _C
+
+__all__ = ["upgrade_config", "downgrade_config"]
+
+
+def upgrade_config(cfg: CN, to_version: Optional[int] = None) -> CN:
+ """
+ Upgrade a config from its current version to a newer version.
+
+ Args:
+ cfg (CfgNode):
+ to_version (int): defaults to the latest version.
+ """
+ cfg = cfg.clone()
+ if to_version is None:
+ to_version = _C.VERSION
+
+ assert cfg.VERSION <= to_version, "Cannot upgrade from v{} to v{}!".format(
+ cfg.VERSION, to_version
+ )
+ for k in range(cfg.VERSION, to_version):
+ converter = globals()["ConverterV" + str(k + 1)]
+ converter.upgrade(cfg)
+ cfg.VERSION = k + 1
+ return cfg
+
+
+def downgrade_config(cfg: CN, to_version: int) -> CN:
+ """
+ Downgrade a config from its current version to an older version.
+
+ Args:
+ cfg (CfgNode):
+ to_version (int):
+
+ Note:
+ A general downgrade of arbitrary configs is not always possible due to the
+ different functionalities in different versions.
+ The purpose of downgrade is only to recover the defaults in old versions,
+ allowing it to load an old partial yaml config.
+ Therefore, the implementation only needs to fill in the default values
+ in the old version when a general downgrade is not possible.
+ """
+ cfg = cfg.clone()
+ assert cfg.VERSION >= to_version, "Cannot downgrade from v{} to v{}!".format(
+ cfg.VERSION, to_version
+ )
+ for k in range(cfg.VERSION, to_version, -1):
+ converter = globals()["ConverterV" + str(k)]
+ converter.downgrade(cfg)
+ cfg.VERSION = k - 1
+ return cfg
+
+
+def guess_version(cfg: CN, filename: str) -> int:
+ """
+ Guess the version of a partial config where the VERSION field is not specified.
+ Returns the version, or the latest if cannot make a guess.
+
+ This makes it easier for users to migrate.
+ """
+ logger = logging.getLogger(__name__)
+
+ def _has(name: str) -> bool:
+ cur = cfg
+ for n in name.split("."):
+ if n not in cur:
+ return False
+ cur = cur[n]
+ return True
+
+ # Most users' partial configs have "MODEL.WEIGHT", so guess on it
+ ret = None
+ if _has("MODEL.WEIGHT") or _has("TEST.AUG_ON"):
+ ret = 1
+
+ if ret is not None:
+ logger.warning("Config '{}' has no VERSION. Assuming it to be v{}.".format(filename, ret))
+ else:
+ ret = _C.VERSION
+ logger.warning(
+ "Config '{}' has no VERSION. Assuming it to be compatible with latest v{}.".format(
+ filename, ret
+ )
+ )
+ return ret
+
+
+def _rename(cfg: CN, old: str, new: str) -> None:
+ old_keys = old.split(".")
+ new_keys = new.split(".")
+
+ def _set(key_seq: List[str], val: str) -> None:
+ cur = cfg
+ for k in key_seq[:-1]:
+ if k not in cur:
+ cur[k] = CN()
+ cur = cur[k]
+ cur[key_seq[-1]] = val
+
+ def _get(key_seq: List[str]) -> CN:
+ cur = cfg
+ for k in key_seq:
+ cur = cur[k]
+ return cur
+
+ def _del(key_seq: List[str]) -> None:
+ cur = cfg
+ for k in key_seq[:-1]:
+ cur = cur[k]
+ del cur[key_seq[-1]]
+ if len(cur) == 0 and len(key_seq) > 1:
+ _del(key_seq[:-1])
+
+ _set(new_keys, _get(old_keys))
+ _del(old_keys)
+
+
+class _RenameConverter:
+ """
+ A converter that handles simple rename.
+ """
+
+ RENAME: List[Tuple[str, str]] = [] # list of tuples of (old name, new name)
+
+ @classmethod
+ def upgrade(cls, cfg: CN) -> None:
+ for old, new in cls.RENAME:
+ _rename(cfg, old, new)
+
+ @classmethod
+ def downgrade(cls, cfg: CN) -> None:
+ for old, new in cls.RENAME[::-1]:
+ _rename(cfg, new, old)
+
+
+class ConverterV1(_RenameConverter):
+ RENAME = [("MODEL.RPN_HEAD.NAME", "MODEL.RPN.HEAD_NAME")]
+
+
+class ConverterV2(_RenameConverter):
+ """
+ A large bulk of rename, before public release.
+ """
+
+ RENAME = [
+ ("MODEL.WEIGHT", "MODEL.WEIGHTS"),
+ ("MODEL.PANOPTIC_FPN.SEMANTIC_LOSS_SCALE", "MODEL.SEM_SEG_HEAD.LOSS_WEIGHT"),
+ ("MODEL.PANOPTIC_FPN.RPN_LOSS_SCALE", "MODEL.RPN.LOSS_WEIGHT"),
+ ("MODEL.PANOPTIC_FPN.INSTANCE_LOSS_SCALE", "MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT"),
+ ("MODEL.PANOPTIC_FPN.COMBINE_ON", "MODEL.PANOPTIC_FPN.COMBINE.ENABLED"),
+ (
+ "MODEL.PANOPTIC_FPN.COMBINE_OVERLAP_THRESHOLD",
+ "MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH",
+ ),
+ (
+ "MODEL.PANOPTIC_FPN.COMBINE_STUFF_AREA_LIMIT",
+ "MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT",
+ ),
+ (
+ "MODEL.PANOPTIC_FPN.COMBINE_INSTANCES_CONFIDENCE_THRESHOLD",
+ "MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH",
+ ),
+ ("MODEL.ROI_HEADS.SCORE_THRESH", "MODEL.ROI_HEADS.SCORE_THRESH_TEST"),
+ ("MODEL.ROI_HEADS.NMS", "MODEL.ROI_HEADS.NMS_THRESH_TEST"),
+ ("MODEL.RETINANET.INFERENCE_SCORE_THRESHOLD", "MODEL.RETINANET.SCORE_THRESH_TEST"),
+ ("MODEL.RETINANET.INFERENCE_TOPK_CANDIDATES", "MODEL.RETINANET.TOPK_CANDIDATES_TEST"),
+ ("MODEL.RETINANET.INFERENCE_NMS_THRESHOLD", "MODEL.RETINANET.NMS_THRESH_TEST"),
+ ("TEST.DETECTIONS_PER_IMG", "TEST.DETECTIONS_PER_IMAGE"),
+ ("TEST.AUG_ON", "TEST.AUG.ENABLED"),
+ ("TEST.AUG_MIN_SIZES", "TEST.AUG.MIN_SIZES"),
+ ("TEST.AUG_MAX_SIZE", "TEST.AUG.MAX_SIZE"),
+ ("TEST.AUG_FLIP", "TEST.AUG.FLIP"),
+ ]
+
+ @classmethod
+ def upgrade(cls, cfg: CN) -> None:
+ super().upgrade(cfg)
+
+ if cfg.MODEL.META_ARCHITECTURE == "RetinaNet":
+ _rename(
+ cfg, "MODEL.RETINANET.ANCHOR_ASPECT_RATIOS", "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS"
+ )
+ _rename(cfg, "MODEL.RETINANET.ANCHOR_SIZES", "MODEL.ANCHOR_GENERATOR.SIZES")
+ del cfg["MODEL"]["RPN"]["ANCHOR_SIZES"]
+ del cfg["MODEL"]["RPN"]["ANCHOR_ASPECT_RATIOS"]
+ else:
+ _rename(cfg, "MODEL.RPN.ANCHOR_ASPECT_RATIOS", "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS")
+ _rename(cfg, "MODEL.RPN.ANCHOR_SIZES", "MODEL.ANCHOR_GENERATOR.SIZES")
+ del cfg["MODEL"]["RETINANET"]["ANCHOR_SIZES"]
+ del cfg["MODEL"]["RETINANET"]["ANCHOR_ASPECT_RATIOS"]
+ del cfg["MODEL"]["RETINANET"]["ANCHOR_STRIDES"]
+
+ @classmethod
+ def downgrade(cls, cfg: CN) -> None:
+ super().downgrade(cfg)
+
+ _rename(cfg, "MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS", "MODEL.RPN.ANCHOR_ASPECT_RATIOS")
+ _rename(cfg, "MODEL.ANCHOR_GENERATOR.SIZES", "MODEL.RPN.ANCHOR_SIZES")
+ cfg.MODEL.RETINANET.ANCHOR_ASPECT_RATIOS = cfg.MODEL.RPN.ANCHOR_ASPECT_RATIOS
+ cfg.MODEL.RETINANET.ANCHOR_SIZES = cfg.MODEL.RPN.ANCHOR_SIZES
+ cfg.MODEL.RETINANET.ANCHOR_STRIDES = [] # this is not used anywhere in any version
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/config.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..14ad524f00e706ddba567a62f805481c2f185a8e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/config.py
@@ -0,0 +1,202 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import functools
+import inspect
+import logging
+from fvcore.common.config import CfgNode as _CfgNode
+from fvcore.common.file_io import PathManager
+
+
+class CfgNode(_CfgNode):
+ """
+ The same as `fvcore.common.config.CfgNode`, but different in:
+
+ 1. Use unsafe yaml loading by default.
+ Note that this may lead to arbitrary code execution: you must not
+ load a config file from untrusted sources before manually inspecting
+ the content of the file.
+ 2. Support config versioning.
+ When attempting to merge an old config, it will convert the old config automatically.
+ """
+
+ # Note that the default value of allow_unsafe is changed to True
+ def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None:
+ assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!"
+ loaded_cfg = _CfgNode.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe)
+ loaded_cfg = type(self)(loaded_cfg)
+
+ # defaults.py needs to import CfgNode
+ from .defaults import _C
+
+ latest_ver = _C.VERSION
+ assert (
+ latest_ver == self.VERSION
+ ), "CfgNode.merge_from_file is only allowed on a config object of latest version!"
+
+ logger = logging.getLogger(__name__)
+
+ loaded_ver = loaded_cfg.get("VERSION", None)
+ if loaded_ver is None:
+ from .compat import guess_version
+
+ loaded_ver = guess_version(loaded_cfg, cfg_filename)
+ assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format(
+ loaded_ver, self.VERSION
+ )
+
+ if loaded_ver == self.VERSION:
+ self.merge_from_other_cfg(loaded_cfg)
+ else:
+ # compat.py needs to import CfgNode
+ from .compat import upgrade_config, downgrade_config
+
+ logger.warning(
+ "Loading an old v{} config file '{}' by automatically upgrading to v{}. "
+ "See docs/CHANGELOG.md for instructions to update your files.".format(
+ loaded_ver, cfg_filename, self.VERSION
+ )
+ )
+ # To convert, first obtain a full config at an old version
+ old_self = downgrade_config(self, to_version=loaded_ver)
+ old_self.merge_from_other_cfg(loaded_cfg)
+ new_config = upgrade_config(old_self)
+ self.clear()
+ self.update(new_config)
+
+ def dump(self, *args, **kwargs):
+ """
+ Returns:
+ str: a yaml string representation of the config
+ """
+ # to make it show up in docs
+ return super().dump(*args, **kwargs)
+
+
+global_cfg = CfgNode()
+
+
+def get_cfg() -> CfgNode:
+ """
+ Get a copy of the default config.
+
+ Returns:
+ a detectron2 CfgNode instance.
+ """
+ from .defaults import _C
+
+ return _C.clone()
+
+
+def set_global_cfg(cfg: CfgNode) -> None:
+ """
+ Let the global config point to the given cfg.
+
+ Assume that the given "cfg" has the key "KEY", after calling
+ `set_global_cfg(cfg)`, the key can be accessed by:
+
+ .. code-block:: python
+
+ from detectron2.config import global_cfg
+ print(global_cfg.KEY)
+
+ By using a hacky global config, you can access these configs anywhere,
+ without having to pass the config object or the values deep into the code.
+ This is a hacky feature introduced for quick prototyping / research exploration.
+ """
+ global global_cfg
+ global_cfg.clear()
+ global_cfg.update(cfg)
+
+
+def configurable(init_func):
+ """
+ Decorate a class's __init__ method so that it can be called with a CfgNode
+ object using the class's from_config classmethod.
+
+ Examples:
+
+ .. code-block:: python
+
+ class A:
+ @configurable
+ def __init__(self, a, b=2, c=3):
+ pass
+
+ @classmethod
+ def from_config(cls, cfg):
+ # Returns kwargs to be passed to __init__
+ return {"a": cfg.A, "b": cfg.B}
+
+ a1 = A(a=1, b=2) # regular construction
+ a2 = A(cfg) # construct with a cfg
+ a3 = A(cfg, b=3, c=4) # construct with extra overwrite
+ """
+ assert init_func.__name__ == "__init__", "@configurable should only be used for __init__!"
+ if init_func.__module__.startswith("detectron2."):
+ assert (
+ init_func.__doc__ is not None and "experimental" in init_func.__doc__
+ ), f"configurable {init_func} should be marked experimental"
+
+ @functools.wraps(init_func)
+ def wrapped(self, *args, **kwargs):
+ try:
+ from_config_func = type(self).from_config
+ except AttributeError:
+ raise AttributeError("Class with @configurable must have a 'from_config' classmethod.")
+ if not inspect.ismethod(from_config_func):
+ raise TypeError("Class with @configurable must have a 'from_config' classmethod.")
+
+ if _called_with_cfg(*args, **kwargs):
+ explicit_args = _get_args_from_config(from_config_func, *args, **kwargs)
+ init_func(self, **explicit_args)
+ else:
+ init_func(self, *args, **kwargs)
+
+ return wrapped
+
+
+def _get_args_from_config(from_config_func, *args, **kwargs):
+ """
+ Use `from_config` to obtain explicit arguments.
+
+ Returns:
+ dict: arguments to be used for cls.__init__
+ """
+ signature = inspect.signature(from_config_func)
+ if list(signature.parameters.keys())[0] != "cfg":
+ raise TypeError(
+ f"{from_config_func.__self__}.from_config must take 'cfg' as the first argument!"
+ )
+ support_var_arg = any(
+ param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD]
+ for param in signature.parameters.values()
+ )
+ if support_var_arg: # forward all arguments to from_config, if from_config accepts them
+ ret = from_config_func(*args, **kwargs)
+ else:
+ # forward supported arguments to from_config
+ supported_arg_names = set(signature.parameters.keys())
+ extra_kwargs = {}
+ for name in list(kwargs.keys()):
+ if name not in supported_arg_names:
+ extra_kwargs[name] = kwargs.pop(name)
+ ret = from_config_func(*args, **kwargs)
+ # forward the other arguments to __init__
+ ret.update(extra_kwargs)
+ return ret
+
+
+def _called_with_cfg(*args, **kwargs):
+ """
+ Returns:
+ bool: whether the arguments contain CfgNode and should be considered
+ forwarded to from_config.
+ """
+ if len(args) and isinstance(args[0], _CfgNode):
+ return True
+ if isinstance(kwargs.pop("cfg", None), _CfgNode):
+ return True
+ # `from_config`'s first argument is forced to be "cfg".
+ # So the above check covers all cases.
+ return False
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/defaults.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/defaults.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9ad62f5f01606438082e012ba5a4a68381c3b3c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/config/defaults.py
@@ -0,0 +1,598 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .config import CfgNode as CN
+
+# -----------------------------------------------------------------------------
+# Convention about Training / Test specific parameters
+# -----------------------------------------------------------------------------
+# Whenever an argument can be either used for training or for testing, the
+# corresponding name will be post-fixed by a _TRAIN for a training parameter,
+# or _TEST for a test-specific parameter.
+# For example, the number of images during training will be
+# IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be
+# IMAGES_PER_BATCH_TEST
+
+# -----------------------------------------------------------------------------
+# Config definition
+# -----------------------------------------------------------------------------
+
+_C = CN()
+
+# The version number, to upgrade from old configs to new ones if any
+# changes happen. It's recommended to keep a VERSION in your config file.
+_C.VERSION = 2
+
+_C.MODEL = CN()
+_C.MODEL.LOAD_PROPOSALS = False
+_C.MODEL.MASK_ON = False
+_C.MODEL.KEYPOINT_ON = False
+_C.MODEL.DEVICE = "cuda"
+_C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN"
+
+# Path (possibly with schema like catalog:// or detectron2://) to a checkpoint file
+# to be loaded to the model. You can find available models in the model zoo.
+_C.MODEL.WEIGHTS = ""
+
+# Values to be used for image normalization (BGR order, since INPUT.FORMAT defaults to BGR).
+# To train on images of different number of channels, just set different mean & std.
+# Default values are the mean pixel value from ImageNet: [103.53, 116.28, 123.675]
+_C.MODEL.PIXEL_MEAN = [103.530, 116.280, 123.675]
+# When using pre-trained models in Detectron1 or any MSRA models,
+# std has been absorbed into its conv1 weights, so the std needs to be set 1.
+# Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std)
+_C.MODEL.PIXEL_STD = [1.0, 1.0, 1.0]
+
+
+# -----------------------------------------------------------------------------
+# INPUT
+# -----------------------------------------------------------------------------
+_C.INPUT = CN()
+# Size of the smallest side of the image during training
+_C.INPUT.MIN_SIZE_TRAIN = (800,)
+# Sample size of smallest side by choice or random selection from range give by
+# INPUT.MIN_SIZE_TRAIN
+_C.INPUT.MIN_SIZE_TRAIN_SAMPLING = "choice"
+# Maximum size of the side of the image during training
+_C.INPUT.MAX_SIZE_TRAIN = 1333
+# Size of the smallest side of the image during testing. Set to zero to disable resize in testing.
+_C.INPUT.MIN_SIZE_TEST = 800
+# Maximum size of the side of the image during testing
+_C.INPUT.MAX_SIZE_TEST = 1333
+
+# `True` if cropping is used for data augmentation during training
+_C.INPUT.CROP = CN({"ENABLED": False})
+# Cropping type:
+# - "relative" crop (H * CROP.SIZE[0], W * CROP.SIZE[1]) part of an input of size (H, W)
+# - "relative_range" uniformly sample relative crop size from between [CROP.SIZE[0], [CROP.SIZE[1]].
+# and [1, 1] and use it as in "relative" scenario.
+# - "absolute" crop part of an input with absolute size: (CROP.SIZE[0], CROP.SIZE[1]).
+_C.INPUT.CROP.TYPE = "relative_range"
+# Size of crop in range (0, 1] if CROP.TYPE is "relative" or "relative_range" and in number of
+# pixels if CROP.TYPE is "absolute"
+_C.INPUT.CROP.SIZE = [0.9, 0.9]
+
+
+# Whether the model needs RGB, YUV, HSV etc.
+# Should be one of the modes defined here, as we use PIL to read the image:
+# https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes
+# with BGR being the one exception. One can set image format to BGR, we will
+# internally use RGB for conversion and flip the channels over
+_C.INPUT.FORMAT = "BGR"
+# The ground truth mask format that the model will use.
+# Mask R-CNN supports either "polygon" or "bitmask" as ground truth.
+_C.INPUT.MASK_FORMAT = "polygon" # alternative: "bitmask"
+
+
+# -----------------------------------------------------------------------------
+# Dataset
+# -----------------------------------------------------------------------------
+_C.DATASETS = CN()
+# List of the dataset names for training. Must be registered in DatasetCatalog
+_C.DATASETS.TRAIN = ()
+# List of the pre-computed proposal files for training, which must be consistent
+# with data listed in DATASETS.TRAIN.
+_C.DATASETS.PROPOSAL_FILES_TRAIN = ()
+# Number of top scoring precomputed proposals to keep for training
+_C.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN = 2000
+# List of the dataset names for testing. Must be registered in DatasetCatalog
+_C.DATASETS.TEST = ()
+# List of the pre-computed proposal files for test, which must be consistent
+# with data listed in DATASETS.TEST.
+_C.DATASETS.PROPOSAL_FILES_TEST = ()
+# Number of top scoring precomputed proposals to keep for test
+_C.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST = 1000
+
+# -----------------------------------------------------------------------------
+# DataLoader
+# -----------------------------------------------------------------------------
+_C.DATALOADER = CN()
+# Number of data loading threads
+_C.DATALOADER.NUM_WORKERS = 4
+# If True, each batch should contain only images for which the aspect ratio
+# is compatible. This groups portrait images together, and landscape images
+# are not batched with portrait images.
+_C.DATALOADER.ASPECT_RATIO_GROUPING = True
+# Options: TrainingSampler, RepeatFactorTrainingSampler
+_C.DATALOADER.SAMPLER_TRAIN = "TrainingSampler"
+# Repeat threshold for RepeatFactorTrainingSampler
+_C.DATALOADER.REPEAT_THRESHOLD = 0.0
+# if True, the dataloader will filter out images that have no associated
+# annotations at train time.
+_C.DATALOADER.FILTER_EMPTY_ANNOTATIONS = True
+
+# ---------------------------------------------------------------------------- #
+# Backbone options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.BACKBONE = CN()
+
+_C.MODEL.BACKBONE.NAME = "build_resnet_backbone"
+# Freeze the first several stages so they are not trained.
+# There are 5 stages in ResNet. The first is a convolution, and the following
+# stages are each group of residual blocks.
+_C.MODEL.BACKBONE.FREEZE_AT = 2
+
+
+# ---------------------------------------------------------------------------- #
+# FPN options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.FPN = CN()
+# Names of the input feature maps to be used by FPN
+# They must have contiguous power of 2 strides
+# e.g., ["res2", "res3", "res4", "res5"]
+_C.MODEL.FPN.IN_FEATURES = []
+_C.MODEL.FPN.OUT_CHANNELS = 256
+
+# Options: "" (no norm), "GN"
+_C.MODEL.FPN.NORM = ""
+
+# Types for fusing the FPN top-down and lateral features. Can be either "sum" or "avg"
+_C.MODEL.FPN.FUSE_TYPE = "sum"
+
+
+# ---------------------------------------------------------------------------- #
+# Proposal generator options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.PROPOSAL_GENERATOR = CN()
+# Current proposal generators include "RPN", "RRPN" and "PrecomputedProposals"
+_C.MODEL.PROPOSAL_GENERATOR.NAME = "RPN"
+# Proposal height and width both need to be greater than MIN_SIZE
+# (a the scale used during training or inference)
+_C.MODEL.PROPOSAL_GENERATOR.MIN_SIZE = 0
+
+
+# ---------------------------------------------------------------------------- #
+# Anchor generator options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ANCHOR_GENERATOR = CN()
+# The generator can be any name in the ANCHOR_GENERATOR registry
+_C.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator"
+# Anchor sizes (i.e. sqrt of area) in absolute pixels w.r.t. the network input.
+# Format: list[list[float]]. SIZES[i] specifies the list of sizes
+# to use for IN_FEATURES[i]; len(SIZES) == len(IN_FEATURES) must be true,
+# or len(SIZES) == 1 is true and size list SIZES[0] is used for all
+# IN_FEATURES.
+_C.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64, 128, 256, 512]]
+# Anchor aspect ratios. For each area given in `SIZES`, anchors with different aspect
+# ratios are generated by an anchor generator.
+# Format: list[list[float]]. ASPECT_RATIOS[i] specifies the list of aspect ratios (H/W)
+# to use for IN_FEATURES[i]; len(ASPECT_RATIOS) == len(IN_FEATURES) must be true,
+# or len(ASPECT_RATIOS) == 1 is true and aspect ratio list ASPECT_RATIOS[0] is used
+# for all IN_FEATURES.
+_C.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.5, 1.0, 2.0]]
+# Anchor angles.
+# list[list[float]], the angle in degrees, for each input feature map.
+# ANGLES[i] specifies the list of angles for IN_FEATURES[i].
+_C.MODEL.ANCHOR_GENERATOR.ANGLES = [[-90, 0, 90]]
+# Relative offset between the center of the first anchor and the top-left corner of the image
+# Value has to be in [0, 1). Recommend to use 0.5, which means half stride.
+# The value is not expected to affect model accuracy.
+_C.MODEL.ANCHOR_GENERATOR.OFFSET = 0.0
+
+# ---------------------------------------------------------------------------- #
+# RPN options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.RPN = CN()
+_C.MODEL.RPN.HEAD_NAME = "StandardRPNHead" # used by RPN_HEAD_REGISTRY
+
+# Names of the input feature maps to be used by RPN
+# e.g., ["p2", "p3", "p4", "p5", "p6"] for FPN
+_C.MODEL.RPN.IN_FEATURES = ["res4"]
+# Remove RPN anchors that go outside the image by BOUNDARY_THRESH pixels
+# Set to -1 or a large value, e.g. 100000, to disable pruning anchors
+_C.MODEL.RPN.BOUNDARY_THRESH = -1
+# IOU overlap ratios [BG_IOU_THRESHOLD, FG_IOU_THRESHOLD]
+# Minimum overlap required between an anchor and ground-truth box for the
+# (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD
+# ==> positive RPN example: 1)
+# Maximum overlap allowed between an anchor and ground-truth box for the
+# (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD
+# ==> negative RPN example: 0)
+# Anchors with overlap in between (BG_IOU_THRESHOLD <= IoU < FG_IOU_THRESHOLD)
+# are ignored (-1)
+_C.MODEL.RPN.IOU_THRESHOLDS = [0.3, 0.7]
+_C.MODEL.RPN.IOU_LABELS = [0, -1, 1]
+# Total number of RPN examples per image
+_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256
+# Target fraction of foreground (positive) examples per RPN minibatch
+_C.MODEL.RPN.POSITIVE_FRACTION = 0.5
+# Weights on (dx, dy, dw, dh) for normalizing RPN anchor regression targets
+_C.MODEL.RPN.BBOX_REG_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
+# The transition point from L1 to L2 loss. Set to 0.0 to make the loss simply L1.
+_C.MODEL.RPN.SMOOTH_L1_BETA = 0.0
+_C.MODEL.RPN.LOSS_WEIGHT = 1.0
+# Number of top scoring RPN proposals to keep before applying NMS
+# When FPN is used, this is *per FPN level* (not total)
+_C.MODEL.RPN.PRE_NMS_TOPK_TRAIN = 12000
+_C.MODEL.RPN.PRE_NMS_TOPK_TEST = 6000
+# Number of top scoring RPN proposals to keep after applying NMS
+# When FPN is used, this limit is applied per level and then again to the union
+# of proposals from all levels
+# NOTE: When FPN is used, the meaning of this config is different from Detectron1.
+# It means per-batch topk in Detectron1, but per-image topk here.
+# See "modeling/rpn/rpn_outputs.py" for details.
+_C.MODEL.RPN.POST_NMS_TOPK_TRAIN = 2000
+_C.MODEL.RPN.POST_NMS_TOPK_TEST = 1000
+# NMS threshold used on RPN proposals
+_C.MODEL.RPN.NMS_THRESH = 0.7
+
+# ---------------------------------------------------------------------------- #
+# ROI HEADS options
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ROI_HEADS = CN()
+_C.MODEL.ROI_HEADS.NAME = "Res5ROIHeads"
+# Number of foreground classes
+_C.MODEL.ROI_HEADS.NUM_CLASSES = 80
+# Names of the input feature maps to be used by ROI heads
+# Currently all heads (box, mask, ...) use the same input feature map list
+# e.g., ["p2", "p3", "p4", "p5"] is commonly used for FPN
+_C.MODEL.ROI_HEADS.IN_FEATURES = ["res4"]
+# IOU overlap ratios [IOU_THRESHOLD]
+# Overlap threshold for an RoI to be considered background (if < IOU_THRESHOLD)
+# Overlap threshold for an RoI to be considered foreground (if >= IOU_THRESHOLD)
+_C.MODEL.ROI_HEADS.IOU_THRESHOLDS = [0.5]
+_C.MODEL.ROI_HEADS.IOU_LABELS = [0, 1]
+# RoI minibatch size *per image* (number of regions of interest [ROIs])
+# Total number of RoIs per training minibatch =
+# ROI_HEADS.BATCH_SIZE_PER_IMAGE * SOLVER.IMS_PER_BATCH
+# E.g., a common configuration is: 512 * 16 = 8192
+_C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
+# Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0)
+_C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25
+
+# Only used on test mode
+
+# Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to
+# balance obtaining high recall with not having too many low precision
+# detections that will slow down inference post processing steps (like NMS)
+# A default threshold of 0.0 increases AP by ~0.2-0.3 but significantly slows down
+# inference.
+_C.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05
+# Overlap threshold used for non-maximum suppression (suppress boxes with
+# IoU >= this threshold)
+_C.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.5
+# If True, augment proposals with ground-truth boxes before sampling proposals to
+# train ROI heads.
+_C.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT = True
+
+# ---------------------------------------------------------------------------- #
+# Box Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ROI_BOX_HEAD = CN()
+# C4 don't use head name option
+# Options for non-C4 models: FastRCNNConvFCHead,
+_C.MODEL.ROI_BOX_HEAD.NAME = ""
+# Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets
+# These are empirically chosen to approximately lead to unit variance targets
+_C.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10.0, 10.0, 5.0, 5.0)
+# The transition point from L1 to L2 loss. Set to 0.0 to make the loss simply L1.
+_C.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA = 0.0
+_C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14
+_C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0
+# Type of pooling operation applied to the incoming feature map for each RoI
+_C.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
+
+_C.MODEL.ROI_BOX_HEAD.NUM_FC = 0
+# Hidden layer dimension for FC layers in the RoI box head
+_C.MODEL.ROI_BOX_HEAD.FC_DIM = 1024
+_C.MODEL.ROI_BOX_HEAD.NUM_CONV = 0
+# Channel dimension for Conv layers in the RoI box head
+_C.MODEL.ROI_BOX_HEAD.CONV_DIM = 256
+# Normalization method for the convolution layers.
+# Options: "" (no norm), "GN", "SyncBN".
+_C.MODEL.ROI_BOX_HEAD.NORM = ""
+# Whether to use class agnostic for bbox regression
+_C.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG = False
+# If true, RoI heads use bounding boxes predicted by the box head rather than proposal boxes.
+_C.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES = False
+
+# ---------------------------------------------------------------------------- #
+# Cascaded Box Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ROI_BOX_CASCADE_HEAD = CN()
+# The number of cascade stages is implicitly defined by the length of the following two configs.
+_C.MODEL.ROI_BOX_CASCADE_HEAD.BBOX_REG_WEIGHTS = (
+ (10.0, 10.0, 5.0, 5.0),
+ (20.0, 20.0, 10.0, 10.0),
+ (30.0, 30.0, 15.0, 15.0),
+)
+_C.MODEL.ROI_BOX_CASCADE_HEAD.IOUS = (0.5, 0.6, 0.7)
+
+
+# ---------------------------------------------------------------------------- #
+# Mask Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ROI_MASK_HEAD = CN()
+_C.MODEL.ROI_MASK_HEAD.NAME = "MaskRCNNConvUpsampleHead"
+_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14
+_C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0
+_C.MODEL.ROI_MASK_HEAD.NUM_CONV = 0 # The number of convs in the mask head
+_C.MODEL.ROI_MASK_HEAD.CONV_DIM = 256
+# Normalization method for the convolution layers.
+# Options: "" (no norm), "GN", "SyncBN".
+_C.MODEL.ROI_MASK_HEAD.NORM = ""
+# Whether to use class agnostic for mask prediction
+_C.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK = False
+# Type of pooling operation applied to the incoming feature map for each RoI
+_C.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "ROIAlignV2"
+
+
+# ---------------------------------------------------------------------------- #
+# Keypoint Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.ROI_KEYPOINT_HEAD = CN()
+_C.MODEL.ROI_KEYPOINT_HEAD.NAME = "KRCNNConvDeconvUpsampleHead"
+_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14
+_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0
+_C.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS = tuple(512 for _ in range(8))
+_C.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 17 # 17 is the number of keypoints in COCO.
+
+# Images with too few (or no) keypoints are excluded from training.
+_C.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE = 1
+# Normalize by the total number of visible keypoints in the minibatch if True.
+# Otherwise, normalize by the total number of keypoints that could ever exist
+# in the minibatch.
+# The keypoint softmax loss is only calculated on visible keypoints.
+# Since the number of visible keypoints can vary significantly between
+# minibatches, this has the effect of up-weighting the importance of
+# minibatches with few visible keypoints. (Imagine the extreme case of
+# only one visible keypoint versus N: in the case of N, each one
+# contributes 1/N to the gradient compared to the single keypoint
+# determining the gradient direction). Instead, we can normalize the
+# loss by the total number of keypoints, if it were the case that all
+# keypoints were visible in a full minibatch. (Returning to the example,
+# this means that the one visible keypoint contributes as much as each
+# of the N keypoints.)
+_C.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS = True
+# Multi-task loss weight to use for keypoints
+# Recommended values:
+# - use 1.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is True
+# - use 4.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is False
+_C.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT = 1.0
+# Type of pooling operation applied to the incoming feature map for each RoI
+_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE = "ROIAlignV2"
+
+# ---------------------------------------------------------------------------- #
+# Semantic Segmentation Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.SEM_SEG_HEAD = CN()
+_C.MODEL.SEM_SEG_HEAD.NAME = "SemSegFPNHead"
+_C.MODEL.SEM_SEG_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"]
+# Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for
+# the correposnding pixel.
+_C.MODEL.SEM_SEG_HEAD.IGNORE_VALUE = 255
+# Number of classes in the semantic segmentation head
+_C.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 54
+# Number of channels in the 3x3 convs inside semantic-FPN heads.
+_C.MODEL.SEM_SEG_HEAD.CONVS_DIM = 128
+# Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride.
+_C.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
+# Normalization method for the convolution layers. Options: "" (no norm), "GN".
+_C.MODEL.SEM_SEG_HEAD.NORM = "GN"
+_C.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT = 1.0
+
+_C.MODEL.PANOPTIC_FPN = CN()
+# Scaling of all losses from instance detection / segmentation head.
+_C.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT = 1.0
+
+# options when combining instance & semantic segmentation outputs
+_C.MODEL.PANOPTIC_FPN.COMBINE = CN({"ENABLED": True})
+_C.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH = 0.5
+_C.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT = 4096
+_C.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = 0.5
+
+
+# ---------------------------------------------------------------------------- #
+# RetinaNet Head
+# ---------------------------------------------------------------------------- #
+_C.MODEL.RETINANET = CN()
+
+# This is the number of foreground classes.
+_C.MODEL.RETINANET.NUM_CLASSES = 80
+
+_C.MODEL.RETINANET.IN_FEATURES = ["p3", "p4", "p5", "p6", "p7"]
+
+# Convolutions to use in the cls and bbox tower
+# NOTE: this doesn't include the last conv for logits
+_C.MODEL.RETINANET.NUM_CONVS = 4
+
+# IoU overlap ratio [bg, fg] for labeling anchors.
+# Anchors with < bg are labeled negative (0)
+# Anchors with >= bg and < fg are ignored (-1)
+# Anchors with >= fg are labeled positive (1)
+_C.MODEL.RETINANET.IOU_THRESHOLDS = [0.4, 0.5]
+_C.MODEL.RETINANET.IOU_LABELS = [0, -1, 1]
+
+# Prior prob for rare case (i.e. foreground) at the beginning of training.
+# This is used to set the bias for the logits layer of the classifier subnet.
+# This improves training stability in the case of heavy class imbalance.
+_C.MODEL.RETINANET.PRIOR_PROB = 0.01
+
+# Inference cls score threshold, only anchors with score > INFERENCE_TH are
+# considered for inference (to improve speed)
+_C.MODEL.RETINANET.SCORE_THRESH_TEST = 0.05
+_C.MODEL.RETINANET.TOPK_CANDIDATES_TEST = 1000
+_C.MODEL.RETINANET.NMS_THRESH_TEST = 0.5
+
+# Weights on (dx, dy, dw, dh) for normalizing Retinanet anchor regression targets
+_C.MODEL.RETINANET.BBOX_REG_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
+
+# Loss parameters
+_C.MODEL.RETINANET.FOCAL_LOSS_GAMMA = 2.0
+_C.MODEL.RETINANET.FOCAL_LOSS_ALPHA = 0.25
+_C.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA = 0.1
+
+
+# ---------------------------------------------------------------------------- #
+# ResNe[X]t options (ResNets = {ResNet, ResNeXt}
+# Note that parts of a resnet may be used for both the backbone and the head
+# These options apply to both
+# ---------------------------------------------------------------------------- #
+_C.MODEL.RESNETS = CN()
+
+_C.MODEL.RESNETS.DEPTH = 50
+_C.MODEL.RESNETS.OUT_FEATURES = ["res4"] # res4 for C4 backbone, res2..5 for FPN backbone
+
+# Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt
+_C.MODEL.RESNETS.NUM_GROUPS = 1
+
+# Options: FrozenBN, GN, "SyncBN", "BN"
+_C.MODEL.RESNETS.NORM = "FrozenBN"
+
+# Baseline width of each group.
+# Scaling this parameters will scale the width of all bottleneck layers.
+_C.MODEL.RESNETS.WIDTH_PER_GROUP = 64
+
+# Place the stride 2 conv on the 1x1 filter
+# Use True only for the original MSRA ResNet; use False for C2 and Torch models
+_C.MODEL.RESNETS.STRIDE_IN_1X1 = True
+
+# Apply dilation in stage "res5"
+_C.MODEL.RESNETS.RES5_DILATION = 1
+
+# Output width of res2. Scaling this parameters will scale the width of all 1x1 convs in ResNet
+# For R18 and R34, this needs to be set to 64
+_C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256
+_C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64
+
+# Apply Deformable Convolution in stages
+# Specify if apply deform_conv on Res2, Res3, Res4, Res5
+_C.MODEL.RESNETS.DEFORM_ON_PER_STAGE = [False, False, False, False]
+# Use True to use modulated deform_conv (DeformableV2, https://arxiv.org/abs/1811.11168);
+# Use False for DeformableV1.
+_C.MODEL.RESNETS.DEFORM_MODULATED = False
+# Number of groups in deformable conv.
+_C.MODEL.RESNETS.DEFORM_NUM_GROUPS = 1
+
+
+# ---------------------------------------------------------------------------- #
+# Solver
+# ---------------------------------------------------------------------------- #
+_C.SOLVER = CN()
+
+# See detectron2/solver/build.py for LR scheduler options
+_C.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
+
+_C.SOLVER.MAX_ITER = 40000
+
+_C.SOLVER.BASE_LR = 0.001
+
+_C.SOLVER.MOMENTUM = 0.9
+
+_C.SOLVER.NESTEROV = False
+
+_C.SOLVER.WEIGHT_DECAY = 0.0001
+# The weight decay that's applied to parameters of normalization layers
+# (typically the affine transformation)
+_C.SOLVER.WEIGHT_DECAY_NORM = 0.0
+
+_C.SOLVER.GAMMA = 0.1
+# The iteration number to decrease learning rate by GAMMA.
+_C.SOLVER.STEPS = (30000,)
+
+_C.SOLVER.WARMUP_FACTOR = 1.0 / 1000
+_C.SOLVER.WARMUP_ITERS = 1000
+_C.SOLVER.WARMUP_METHOD = "linear"
+
+# Save a checkpoint after every this number of iterations
+_C.SOLVER.CHECKPOINT_PERIOD = 5000
+
+# Number of images per batch across all machines.
+# If we have 16 GPUs and IMS_PER_BATCH = 32,
+# each GPU will see 2 images per batch.
+_C.SOLVER.IMS_PER_BATCH = 16
+
+# Detectron v1 (and previous detection code) used a 2x higher LR and 0 WD for
+# biases. This is not useful (at least for recent models). You should avoid
+# changing these and they exist only to reproduce Detectron v1 training if
+# desired.
+_C.SOLVER.BIAS_LR_FACTOR = 1.0
+_C.SOLVER.WEIGHT_DECAY_BIAS = _C.SOLVER.WEIGHT_DECAY
+
+# Gradient clipping
+_C.SOLVER.CLIP_GRADIENTS = CN({"ENABLED": False})
+# Type of gradient clipping, currently 2 values are supported:
+# - "value": the absolute values of elements of each gradients are clipped
+# - "norm": the norm of the gradient for each parameter is clipped thus
+# affecting all elements in the parameter
+_C.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "value"
+# Maximum absolute value used for clipping gradients
+_C.SOLVER.CLIP_GRADIENTS.CLIP_VALUE = 1.0
+# Floating point number p for L-p norm to be used with the "norm"
+# gradient clipping type; for L-inf, please specify .inf
+_C.SOLVER.CLIP_GRADIENTS.NORM_TYPE = 2.0
+
+# ---------------------------------------------------------------------------- #
+# Specific test options
+# ---------------------------------------------------------------------------- #
+_C.TEST = CN()
+# For end-to-end tests to verify the expected accuracy.
+# Each item is [task, metric, value, tolerance]
+# e.g.: [['bbox', 'AP', 38.5, 0.2]]
+_C.TEST.EXPECTED_RESULTS = []
+# The period (in terms of steps) to evaluate the model during training.
+# Set to 0 to disable.
+_C.TEST.EVAL_PERIOD = 0
+# The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval
+# When empty it will use the defaults in COCO.
+# Otherwise it should have the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS.
+_C.TEST.KEYPOINT_OKS_SIGMAS = []
+# Maximum number of detections to return per image during inference (100 is
+# based on the limit established for the COCO dataset).
+_C.TEST.DETECTIONS_PER_IMAGE = 100
+
+_C.TEST.AUG = CN({"ENABLED": False})
+_C.TEST.AUG.MIN_SIZES = (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
+_C.TEST.AUG.MAX_SIZE = 4000
+_C.TEST.AUG.FLIP = True
+
+_C.TEST.PRECISE_BN = CN({"ENABLED": False})
+_C.TEST.PRECISE_BN.NUM_ITER = 200
+
+# ---------------------------------------------------------------------------- #
+# Misc options
+# ---------------------------------------------------------------------------- #
+# Directory where output files are written
+_C.OUTPUT_DIR = "./output"
+# Set seed to negative to fully randomize everything.
+# Set seed to positive to use a fixed seed. Note that a fixed seed increases
+# reproducibility but does not guarantee fully deterministic behavior.
+# Disabling all parallelism further increases reproducibility.
+_C.SEED = -1
+# Benchmark different cudnn algorithms.
+# If input images have very different sizes, this option will have large overhead
+# for about 10k iterations. It usually hurts total time, but can benefit for certain models.
+# If input images have the same or similar sizes, benchmark is often helpful.
+_C.CUDNN_BENCHMARK = False
+# The period (in terms of steps) for minibatch visualization at train time.
+# Set to 0 to disable.
+_C.VIS_PERIOD = 0
+
+# global config is for quick hack purposes.
+# You can set them in command line or config files,
+# and access it with:
+#
+# from detectron2.config import global_cfg
+# print(global_cfg.HACK)
+#
+# Do not commit any configs into it.
+_C.GLOBAL = CN()
+_C.GLOBAL.HACK = 1.0
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8f72e0f45d6d683771f0d815dfd0e3d0db52b9d
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/__init__.py
@@ -0,0 +1,18 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from . import transforms # isort:skip
+
+from .build import (
+ build_detection_test_loader,
+ build_detection_train_loader,
+ get_detection_dataset_dicts,
+ load_proposals_into_dataset,
+ print_instances_class_histogram,
+)
+from .catalog import DatasetCatalog, MetadataCatalog
+from .common import DatasetFromList, MapDataset
+from .dataset_mapper import DatasetMapper
+
+# ensure the builtin data are registered
+from . import datasets, samplers # isort:skip
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/build.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/build.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb7e85789d75daf4ee206449ce0d3254e948db16
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/build.py
@@ -0,0 +1,397 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import bisect
+import copy
+import itertools
+import logging
+import numpy as np
+import operator
+import pickle
+import torch.utils.data
+from fvcore.common.file_io import PathManager
+from tabulate import tabulate
+from termcolor import colored
+
+from detectron2.structures import BoxMode
+from detectron2.utils.comm import get_world_size
+from detectron2.utils.env import seed_all_rng
+from detectron2.utils.logger import log_first_n
+
+from . import samplers
+from .catalog import DatasetCatalog, MetadataCatalog
+from .common import AspectRatioGroupedDataset, DatasetFromList, MapDataset
+from .dataset_mapper import DatasetMapper
+from .detection_utils import check_metadata_consistency
+
+"""
+This file contains the default logic to build a dataloader for training or testing.
+"""
+
+__all__ = [
+ "build_detection_train_loader",
+ "build_detection_test_loader",
+ "get_detection_dataset_dicts",
+ "load_proposals_into_dataset",
+ "print_instances_class_histogram",
+]
+
+
+def filter_images_with_only_crowd_annotations(dataset_dicts):
+ """
+ Filter out images with none annotations or only crowd annotations
+ (i.e., images without non-crowd annotations).
+ A common training-time preprocessing on COCO dataset.
+
+ Args:
+ dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
+
+ Returns:
+ list[dict]: the same format, but filtered.
+ """
+ num_before = len(dataset_dicts)
+
+ def valid(anns):
+ for ann in anns:
+ if ann.get("iscrowd", 0) == 0:
+ return True
+ return False
+
+ dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
+ num_after = len(dataset_dicts)
+ logger = logging.getLogger(__name__)
+ logger.info(
+ "Removed {} images with no usable annotations. {} images left.".format(
+ num_before - num_after, num_after
+ )
+ )
+ return dataset_dicts
+
+
+def filter_images_with_few_keypoints(dataset_dicts, min_keypoints_per_image):
+ """
+ Filter out images with too few number of keypoints.
+
+ Args:
+ dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
+
+ Returns:
+ list[dict]: the same format as dataset_dicts, but filtered.
+ """
+ num_before = len(dataset_dicts)
+
+ def visible_keypoints_in_image(dic):
+ # Each keypoints field has the format [x1, y1, v1, ...], where v is visibility
+ annotations = dic["annotations"]
+ return sum(
+ (np.array(ann["keypoints"][2::3]) > 0).sum()
+ for ann in annotations
+ if "keypoints" in ann
+ )
+
+ dataset_dicts = [
+ x for x in dataset_dicts if visible_keypoints_in_image(x) >= min_keypoints_per_image
+ ]
+ num_after = len(dataset_dicts)
+ logger = logging.getLogger(__name__)
+ logger.info(
+ "Removed {} images with fewer than {} keypoints.".format(
+ num_before - num_after, min_keypoints_per_image
+ )
+ )
+ return dataset_dicts
+
+
+def load_proposals_into_dataset(dataset_dicts, proposal_file):
+ """
+ Load precomputed object proposals into the dataset.
+
+ The proposal file should be a pickled dict with the following keys:
+
+ - "ids": list[int] or list[str], the image ids
+ - "boxes": list[np.ndarray], each is an Nx4 array of boxes corresponding to the image id
+ - "objectness_logits": list[np.ndarray], each is an N sized array of objectness scores
+ corresponding to the boxes.
+ - "bbox_mode": the BoxMode of the boxes array. Defaults to ``BoxMode.XYXY_ABS``.
+
+ Args:
+ dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
+ proposal_file (str): file path of pre-computed proposals, in pkl format.
+
+ Returns:
+ list[dict]: the same format as dataset_dicts, but added proposal field.
+ """
+ logger = logging.getLogger(__name__)
+ logger.info("Loading proposals from: {}".format(proposal_file))
+
+ with PathManager.open(proposal_file, "rb") as f:
+ proposals = pickle.load(f, encoding="latin1")
+
+ # Rename the key names in D1 proposal files
+ rename_keys = {"indexes": "ids", "scores": "objectness_logits"}
+ for key in rename_keys:
+ if key in proposals:
+ proposals[rename_keys[key]] = proposals.pop(key)
+
+ # Fetch the indexes of all proposals that are in the dataset
+ # Convert image_id to str since they could be int.
+ img_ids = set({str(record["image_id"]) for record in dataset_dicts})
+ id_to_index = {str(id): i for i, id in enumerate(proposals["ids"]) if str(id) in img_ids}
+
+ # Assuming default bbox_mode of precomputed proposals are 'XYXY_ABS'
+ bbox_mode = BoxMode(proposals["bbox_mode"]) if "bbox_mode" in proposals else BoxMode.XYXY_ABS
+
+ for record in dataset_dicts:
+ # Get the index of the proposal
+ i = id_to_index[str(record["image_id"])]
+
+ boxes = proposals["boxes"][i]
+ objectness_logits = proposals["objectness_logits"][i]
+ # Sort the proposals in descending order of the scores
+ inds = objectness_logits.argsort()[::-1]
+ record["proposal_boxes"] = boxes[inds]
+ record["proposal_objectness_logits"] = objectness_logits[inds]
+ record["proposal_bbox_mode"] = bbox_mode
+
+ return dataset_dicts
+
+
+def _quantize(x, bin_edges):
+ bin_edges = copy.copy(bin_edges)
+ bin_edges = sorted(bin_edges)
+ quantized = list(map(lambda y: bisect.bisect_right(bin_edges, y), x))
+ return quantized
+
+
+def print_instances_class_histogram(dataset_dicts, class_names):
+ """
+ Args:
+ dataset_dicts (list[dict]): list of dataset dicts.
+ class_names (list[str]): list of class names (zero-indexed).
+ """
+ num_classes = len(class_names)
+ hist_bins = np.arange(num_classes + 1)
+ histogram = np.zeros((num_classes,), dtype=np.int)
+ for entry in dataset_dicts:
+ annos = entry["annotations"]
+ classes = [x["category_id"] for x in annos if not x.get("iscrowd", 0)]
+ histogram += np.histogram(classes, bins=hist_bins)[0]
+
+ N_COLS = min(6, len(class_names) * 2)
+
+ def short_name(x):
+ # make long class names shorter. useful for lvis
+ if len(x) > 13:
+ return x[:11] + ".."
+ return x
+
+ data = list(
+ itertools.chain(*[[short_name(class_names[i]), int(v)] for i, v in enumerate(histogram)])
+ )
+ total_num_instances = sum(data[1::2])
+ data.extend([None] * (N_COLS - (len(data) % N_COLS)))
+ if num_classes > 1:
+ data.extend(["total", total_num_instances])
+ data = itertools.zip_longest(*[data[i::N_COLS] for i in range(N_COLS)])
+ table = tabulate(
+ data,
+ headers=["category", "#instances"] * (N_COLS // 2),
+ tablefmt="pipe",
+ numalign="left",
+ stralign="center",
+ )
+ log_first_n(
+ logging.INFO,
+ "Distribution of instances among all {} categories:\n".format(num_classes)
+ + colored(table, "cyan"),
+ key="message",
+ )
+
+
+def get_detection_dataset_dicts(
+ dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
+):
+ """
+ Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
+
+ Args:
+ dataset_names (list[str]): a list of dataset names
+ filter_empty (bool): whether to filter out images without instance annotations
+ min_keypoints (int): filter out images with fewer keypoints than
+ `min_keypoints`. Set to 0 to do nothing.
+ proposal_files (list[str]): if given, a list of object proposal files
+ that match each dataset in `dataset_names`.
+ """
+ assert len(dataset_names)
+ dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
+ for dataset_name, dicts in zip(dataset_names, dataset_dicts):
+ assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
+
+ if proposal_files is not None:
+ assert len(dataset_names) == len(proposal_files)
+ # load precomputed proposals from proposal files
+ dataset_dicts = [
+ load_proposals_into_dataset(dataset_i_dicts, proposal_file)
+ for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
+ ]
+
+ dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
+
+ has_instances = "annotations" in dataset_dicts[0]
+ # Keep images without instance-level GT if the dataset has semantic labels.
+ if filter_empty and has_instances and "sem_seg_file_name" not in dataset_dicts[0]:
+ dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
+
+ if min_keypoints > 0 and has_instances:
+ dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
+
+ if has_instances:
+ try:
+ class_names = MetadataCatalog.get(dataset_names[0]).thing_classes
+ check_metadata_consistency("thing_classes", dataset_names)
+ print_instances_class_histogram(dataset_dicts, class_names)
+ except AttributeError: # class names are not available for this dataset
+ pass
+ return dataset_dicts
+
+
+def build_detection_train_loader(cfg, mapper=None):
+ """
+ A data loader is created by the following steps:
+
+ 1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
+ 2. Coordinate a random shuffle order shared among all processes (all GPUs)
+ 3. Each process spawn another few workers to process the dicts. Each worker will:
+ * Map each metadata dict into another format to be consumed by the model.
+ * Batch them by simply putting dicts into a list.
+
+ The batched ``list[mapped_dict]`` is what this dataloader will yield.
+
+ Args:
+ cfg (CfgNode): the config
+ mapper (callable): a callable which takes a sample (dict) from dataset and
+ returns the format to be consumed by the model.
+ By default it will be `DatasetMapper(cfg, True)`.
+
+ Returns:
+ an infinite iterator of training data
+ """
+ num_workers = get_world_size()
+ images_per_batch = cfg.SOLVER.IMS_PER_BATCH
+ assert (
+ images_per_batch % num_workers == 0
+ ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
+ images_per_batch, num_workers
+ )
+ assert (
+ images_per_batch >= num_workers
+ ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
+ images_per_batch, num_workers
+ )
+ images_per_worker = images_per_batch // num_workers
+
+ dataset_dicts = get_detection_dataset_dicts(
+ cfg.DATASETS.TRAIN,
+ filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
+ min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
+ if cfg.MODEL.KEYPOINT_ON
+ else 0,
+ proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
+ )
+ dataset = DatasetFromList(dataset_dicts, copy=False)
+
+ if mapper is None:
+ mapper = DatasetMapper(cfg, True)
+ dataset = MapDataset(dataset, mapper)
+
+ sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
+ logger = logging.getLogger(__name__)
+ logger.info("Using training sampler {}".format(sampler_name))
+ if sampler_name == "TrainingSampler":
+ sampler = samplers.TrainingSampler(len(dataset))
+ elif sampler_name == "RepeatFactorTrainingSampler":
+ sampler = samplers.RepeatFactorTrainingSampler(
+ dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
+ )
+ else:
+ raise ValueError("Unknown training sampler: {}".format(sampler_name))
+
+ if cfg.DATALOADER.ASPECT_RATIO_GROUPING:
+ data_loader = torch.utils.data.DataLoader(
+ dataset,
+ sampler=sampler,
+ num_workers=cfg.DATALOADER.NUM_WORKERS,
+ batch_sampler=None,
+ collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
+ worker_init_fn=worker_init_reset_seed,
+ ) # yield individual mapped dict
+ data_loader = AspectRatioGroupedDataset(data_loader, images_per_worker)
+ else:
+ batch_sampler = torch.utils.data.sampler.BatchSampler(
+ sampler, images_per_worker, drop_last=True
+ )
+ # drop_last so the batch always have the same size
+ data_loader = torch.utils.data.DataLoader(
+ dataset,
+ num_workers=cfg.DATALOADER.NUM_WORKERS,
+ batch_sampler=batch_sampler,
+ collate_fn=trivial_batch_collator,
+ worker_init_fn=worker_init_reset_seed,
+ )
+
+ return data_loader
+
+
+def build_detection_test_loader(cfg, dataset_name, mapper=None):
+ """
+ Similar to `build_detection_train_loader`.
+ But this function uses the given `dataset_name` argument (instead of the names in cfg),
+ and uses batch size 1.
+
+ Args:
+ cfg: a detectron2 CfgNode
+ dataset_name (str): a name of the dataset that's available in the DatasetCatalog
+ mapper (callable): a callable which takes a sample (dict) from dataset
+ and returns the format to be consumed by the model.
+ By default it will be `DatasetMapper(cfg, False)`.
+
+ Returns:
+ DataLoader: a torch DataLoader, that loads the given detection
+ dataset, with test-time transformation and batching.
+ """
+ dataset_dicts = get_detection_dataset_dicts(
+ [dataset_name],
+ filter_empty=False,
+ proposal_files=[
+ cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
+ ]
+ if cfg.MODEL.LOAD_PROPOSALS
+ else None,
+ )
+
+ dataset = DatasetFromList(dataset_dicts)
+ if mapper is None:
+ mapper = DatasetMapper(cfg, False)
+ dataset = MapDataset(dataset, mapper)
+
+ sampler = samplers.InferenceSampler(len(dataset))
+ # Always use 1 image per worker during inference since this is the
+ # standard when reporting inference time in papers.
+ batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False)
+
+ data_loader = torch.utils.data.DataLoader(
+ dataset,
+ num_workers=cfg.DATALOADER.NUM_WORKERS,
+ batch_sampler=batch_sampler,
+ collate_fn=trivial_batch_collator,
+ )
+ return data_loader
+
+
+def trivial_batch_collator(batch):
+ """
+ A batch collator that does nothing.
+ """
+ return batch
+
+
+def worker_init_reset_seed(worker_id):
+ seed_all_rng(np.random.randint(2 ** 31) + worker_id)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/catalog.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/catalog.py
new file mode 100644
index 0000000000000000000000000000000000000000..57f18c8705363fdcc79182f0abd0b28d6b2dde8b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/catalog.py
@@ -0,0 +1,221 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import logging
+import types
+from typing import List
+
+from detectron2.utils.logger import log_first_n
+
+__all__ = ["DatasetCatalog", "MetadataCatalog"]
+
+
+class DatasetCatalog(object):
+ """
+ A catalog that stores information about the data and how to obtain them.
+
+ It contains a mapping from strings
+ (which are names that identify a dataset, e.g. "coco_2014_train")
+ to a function which parses the dataset and returns the samples in the
+ format of `list[dict]`.
+
+ The returned dicts should be in Detectron2 Dataset format (See DATASETS.md for details)
+ if used with the data loader functionalities in `data/build.py,data/detection_transform.py`.
+
+ The purpose of having this catalog is to make it easy to choose
+ different data, by just using the strings in the config.
+ """
+
+ _REGISTERED = {}
+
+ @staticmethod
+ def register(name, func):
+ """
+ Args:
+ name (str): the name that identifies a dataset, e.g. "coco_2014_train".
+ func (callable): a callable which takes no arguments and returns a list of dicts.
+ """
+ assert callable(func), "You must register a function with `DatasetCatalog.register`!"
+ assert name not in DatasetCatalog._REGISTERED, "Dataset '{}' is already registered!".format(
+ name
+ )
+ DatasetCatalog._REGISTERED[name] = func
+
+ @staticmethod
+ def get(name):
+ """
+ Call the registered function and return its results.
+
+ Args:
+ name (str): the name that identifies a dataset, e.g. "coco_2014_train".
+
+ Returns:
+ list[dict]: dataset annotations.0
+ """
+ try:
+ f = DatasetCatalog._REGISTERED[name]
+ except KeyError:
+ raise KeyError(
+ "Dataset '{}' is not registered! Available data are: {}".format(
+ name, ", ".join(DatasetCatalog._REGISTERED.keys())
+ )
+ )
+ return f()
+
+ @staticmethod
+ def list() -> List[str]:
+ """
+ List all registered data.
+
+ Returns:
+ list[str]
+ """
+ return list(DatasetCatalog._REGISTERED.keys())
+
+ @staticmethod
+ def clear():
+ """
+ Remove all registered dataset.
+ """
+ DatasetCatalog._REGISTERED.clear()
+
+
+class Metadata(types.SimpleNamespace):
+ """
+ A class that supports simple attribute setter/getter.
+ It is intended for storing metadata of a dataset and make it accessible globally.
+
+ Examples:
+
+ .. code-block:: python
+
+ # somewhere when you load the data:
+ MetadataCatalog.get("mydataset").thing_classes = ["person", "dog"]
+
+ # somewhere when you print statistics or visualize:
+ classes = MetadataCatalog.get("mydataset").thing_classes
+ """
+
+ # the name of the dataset
+ # set default to N/A so that `self.name` in the errors will not trigger getattr again
+ name: str = "N/A"
+
+ _RENAMED = {
+ "class_names": "thing_classes",
+ "dataset_id_to_contiguous_id": "thing_dataset_id_to_contiguous_id",
+ "stuff_class_names": "stuff_classes",
+ }
+
+ def __getattr__(self, key):
+ if key in self._RENAMED:
+ log_first_n(
+ logging.WARNING,
+ "Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
+ n=10,
+ )
+ return getattr(self, self._RENAMED[key])
+
+ raise AttributeError(
+ "Attribute '{}' does not exist in the metadata of '{}'. Available keys are {}.".format(
+ key, self.name, str(self.__dict__.keys())
+ )
+ )
+
+ def __setattr__(self, key, val):
+ if key in self._RENAMED:
+ log_first_n(
+ logging.WARNING,
+ "Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
+ n=10,
+ )
+ setattr(self, self._RENAMED[key], val)
+
+ # Ensure that metadata of the same name stays consistent
+ try:
+ oldval = getattr(self, key)
+ assert oldval == val, (
+ "Attribute '{}' in the metadata of '{}' cannot be set "
+ "to a different value!\n{} != {}".format(key, self.name, oldval, val)
+ )
+ except AttributeError:
+ super().__setattr__(key, val)
+
+ def as_dict(self):
+ """
+ Returns all the metadata as a dict.
+ Note that modifications to the returned dict will not reflect on the Metadata object.
+ """
+ return copy.copy(self.__dict__)
+
+ def set(self, **kwargs):
+ """
+ Set multiple metadata with kwargs.
+ """
+ for k, v in kwargs.items():
+ setattr(self, k, v)
+ return self
+
+ def get(self, key, default=None):
+ """
+ Access an attribute and return its value if exists.
+ Otherwise return default.
+ """
+ try:
+ return getattr(self, key)
+ except AttributeError:
+ return default
+
+
+class MetadataCatalog:
+ """
+ MetadataCatalog provides access to "Metadata" of a given dataset.
+
+ The metadata associated with a certain name is a singleton: once created,
+ the metadata will stay alive and will be returned by future calls to `get(name)`.
+
+ It's like global variables, so don't abuse it.
+ It's meant for storing knowledge that's constant and shared across the execution
+ of the program, e.g.: the class names in COCO.
+ """
+
+ _NAME_TO_META = {}
+
+ @staticmethod
+ def get(name):
+ """
+ Args:
+ name (str): name of a dataset (e.g. coco_2014_train).
+
+ Returns:
+ Metadata: The :class:`Metadata` instance associated with this name,
+ or create an empty one if none is available.
+ """
+ assert len(name)
+ if name in MetadataCatalog._NAME_TO_META:
+ ret = MetadataCatalog._NAME_TO_META[name]
+ # TODO this is for the BC breaking change in D15247032.
+ # Remove this in the future.
+ if hasattr(ret, "dataset_name"):
+ logger = logging.getLogger()
+ logger.warning(
+ """
+The 'dataset_name' key in metadata is no longer used for
+sharing metadata among splits after D15247032! Add
+metadata to each split (now called dataset) separately!
+ """
+ )
+ parent_meta = MetadataCatalog.get(ret.dataset_name).as_dict()
+ ret.set(**parent_meta)
+ return ret
+ else:
+ m = MetadataCatalog._NAME_TO_META[name] = Metadata(name=name)
+ return m
+
+ @staticmethod
+ def list():
+ """
+ List all registered metadata.
+
+ Returns:
+ list[str]: keys (names of data) of all registered metadata
+ """
+ return list(MetadataCatalog._NAME_TO_META.keys())
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/common.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..a42c8b21b86338a3f034d01c3484dd32b1b845a9
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/common.py
@@ -0,0 +1,149 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import logging
+import numpy as np
+import pickle
+import random
+import torch.utils.data as data
+
+from detectron2.utils.serialize import PicklableWrapper
+
+__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset"]
+
+
+class MapDataset(data.Dataset):
+ """
+ Map a function over the elements in a dataset.
+
+ Args:
+ dataset: a dataset where map function is applied.
+ map_func: a callable which maps the element in dataset. map_func is
+ responsible for error handling, when error happens, it needs to
+ return None so the MapDataset will randomly use other
+ elements from the dataset.
+ """
+
+ def __init__(self, dataset, map_func):
+ self._dataset = dataset
+ self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
+
+ self._rng = random.Random(42)
+ self._fallback_candidates = set(range(len(dataset)))
+
+ def __len__(self):
+ return len(self._dataset)
+
+ def __getitem__(self, idx):
+ retry_count = 0
+ cur_idx = int(idx)
+
+ while True:
+ data = self._map_func(self._dataset[cur_idx])
+ if data is not None:
+ self._fallback_candidates.add(cur_idx)
+ return data
+
+ # _map_func fails for this idx, use a random new index from the pool
+ retry_count += 1
+ self._fallback_candidates.discard(cur_idx)
+ cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
+
+ if retry_count >= 3:
+ logger = logging.getLogger(__name__)
+ logger.warning(
+ "Failed to apply `_map_func` for idx: {}, retry count: {}".format(
+ idx, retry_count
+ )
+ )
+
+
+class DatasetFromList(data.Dataset):
+ """
+ Wrap a list to a torch Dataset. It produces elements of the list as data.
+ """
+
+ def __init__(self, lst: list, copy: bool = True, serialize: bool = True):
+ """
+ Args:
+ lst (list): a list which contains elements to produce.
+ copy (bool): whether to deepcopy the element when producing it,
+ so that the result can be modified in place without affecting the
+ source in the list.
+ serialize (bool): whether to hold memory using serialized objects, when
+ enabled, data loader workers can use shared RAM from master
+ process instead of making a copy.
+ """
+ self._lst = lst
+ self._copy = copy
+ self._serialize = serialize
+
+ def _serialize(data):
+ buffer = pickle.dumps(data, protocol=-1)
+ return np.frombuffer(buffer, dtype=np.uint8)
+
+ if self._serialize:
+ logger = logging.getLogger(__name__)
+ logger.info(
+ "Serializing {} elements to byte tensors and concatenating them all ...".format(
+ len(self._lst)
+ )
+ )
+ self._lst = [_serialize(x) for x in self._lst]
+ self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
+ self._addr = np.cumsum(self._addr)
+ self._lst = np.concatenate(self._lst)
+ logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024 ** 2))
+
+ def __len__(self):
+ if self._serialize:
+ return len(self._addr)
+ else:
+ return len(self._lst)
+
+ def __getitem__(self, idx):
+ if self._serialize:
+ start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
+ end_addr = self._addr[idx].item()
+ bytes = memoryview(self._lst[start_addr:end_addr])
+ return pickle.loads(bytes)
+ elif self._copy:
+ return copy.deepcopy(self._lst[idx])
+ else:
+ return self._lst[idx]
+
+
+class AspectRatioGroupedDataset(data.IterableDataset):
+ """
+ Batch data that have similar aspect ratio together.
+ In this implementation, images whose aspect ratio < (or >) 1 will
+ be batched together.
+ This improves training speed because the images then need less padding
+ to form a batch.
+
+ It assumes the underlying dataset produces dicts with "width" and "height" keys.
+ It will then produce a list of original dicts with length = batch_size,
+ all with similar aspect ratios.
+ """
+
+ def __init__(self, dataset, batch_size):
+ """
+ Args:
+ dataset: an iterable. Each element must be a dict with keys
+ "width" and "height", which will be used to batch data.
+ batch_size (int):
+ """
+ self.dataset = dataset
+ self.batch_size = batch_size
+ self._buckets = [[] for _ in range(2)]
+ # Hard-coded two aspect ratio groups: w > h and w < h.
+ # Can add support for more aspect ratio groups, but doesn't seem useful
+
+ def __iter__(self):
+ for d in self.dataset:
+ w, h = d["width"], d["height"]
+ bucket_id = 0 if w > h else 1
+ bucket = self._buckets[bucket_id]
+ bucket.append(d)
+ if len(bucket) == self.batch_size:
+ yield bucket[:]
+ del bucket[:]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/dataset_mapper.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/dataset_mapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..db73b378a6c2938a3beb700010a13172e6cc549f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/dataset_mapper.py
@@ -0,0 +1,149 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import logging
+import numpy as np
+import torch
+from fvcore.common.file_io import PathManager
+from PIL import Image
+
+from . import detection_utils as utils
+from . import transforms as T
+
+"""
+This file contains the default mapping that's applied to "dataset dicts".
+"""
+
+__all__ = ["DatasetMapper"]
+
+
+class DatasetMapper:
+ """
+ A callable which takes a dataset dict in Detectron2 Dataset format,
+ and map it into a format used by the model.
+
+ This is the default callable to be used to map your dataset dict into training data.
+ You may need to follow it to implement your own one for customized logic,
+ such as a different way to read or transform images.
+ See :doc:`/tutorials/data_loading` for details.
+
+ The callable currently does the following:
+
+ 1. Read the image from "file_name"
+ 2. Applies cropping/geometric transforms to the image and annotations
+ 3. Prepare data and annotations to Tensor and :class:`Instances`
+ """
+
+ def __init__(self, cfg, is_train=True):
+ if cfg.INPUT.CROP.ENABLED and is_train:
+ self.crop_gen = T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)
+ logging.getLogger(__name__).info("CropGen used in training: " + str(self.crop_gen))
+ else:
+ self.crop_gen = None
+
+ self.tfm_gens = utils.build_transform_gen(cfg, is_train)
+
+ # fmt: off
+ self.img_format = cfg.INPUT.FORMAT
+ self.mask_on = cfg.MODEL.MASK_ON
+ self.mask_format = cfg.INPUT.MASK_FORMAT
+ self.keypoint_on = cfg.MODEL.KEYPOINT_ON
+ self.load_proposals = cfg.MODEL.LOAD_PROPOSALS
+ # fmt: on
+ if self.keypoint_on and is_train:
+ # Flip only makes sense in training
+ self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
+ else:
+ self.keypoint_hflip_indices = None
+
+ if self.load_proposals:
+ self.min_box_side_len = cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE
+ self.proposal_topk = (
+ cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN
+ if is_train
+ else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST
+ )
+ self.is_train = is_train
+
+ def __call__(self, dataset_dict):
+ """
+ Args:
+ dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
+
+ Returns:
+ dict: a format that builtin models in detectron2 accept
+ """
+ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
+ # USER: Write your own image loading if it's not from a file
+ image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
+ utils.check_image_size(dataset_dict, image)
+
+ if "annotations" not in dataset_dict:
+ image, transforms = T.apply_transform_gens(
+ ([self.crop_gen] if self.crop_gen else []) + self.tfm_gens, image
+ )
+ else:
+ # Crop around an instance if there are instances in the image.
+ # USER: Remove if you don't use cropping
+ if self.crop_gen:
+ crop_tfm = utils.gen_crop_transform_with_instance(
+ self.crop_gen.get_crop_size(image.shape[:2]),
+ image.shape[:2],
+ np.random.choice(dataset_dict["annotations"]),
+ )
+ image = crop_tfm.apply_image(image)
+ image, transforms = T.apply_transform_gens(self.tfm_gens, image)
+ if self.crop_gen:
+ transforms = crop_tfm + transforms
+
+ image_shape = image.shape[:2] # h, w
+
+ # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
+ # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
+ # Therefore it's important to use torch.Tensor.
+ dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
+
+ # USER: Remove if you don't use pre-computed proposals.
+ if self.load_proposals:
+ utils.transform_proposals(
+ dataset_dict, image_shape, transforms, self.min_box_side_len, self.proposal_topk
+ )
+
+ if not self.is_train:
+ # USER: Modify this if you want to keep them for some reason.
+ dataset_dict.pop("annotations", None)
+ dataset_dict.pop("sem_seg_file_name", None)
+ return dataset_dict
+
+ if "annotations" in dataset_dict:
+ # USER: Modify this if you want to keep them for some reason.
+ for anno in dataset_dict["annotations"]:
+ if not self.mask_on:
+ anno.pop("segmentation", None)
+ if not self.keypoint_on:
+ anno.pop("keypoints", None)
+
+ # USER: Implement additional transformations if you have other types of data
+ annos = [
+ utils.transform_instance_annotations(
+ obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
+ )
+ for obj in dataset_dict.pop("annotations")
+ if obj.get("iscrowd", 0) == 0
+ ]
+ instances = utils.annotations_to_instances(
+ annos, image_shape, mask_format=self.mask_format
+ )
+ # Create a tight bounding box from masks, useful when image is cropped
+ if self.crop_gen and instances.has("gt_masks"):
+ instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
+ dataset_dict["instances"] = utils.filter_empty_instances(instances)
+
+ # USER: Remove if you don't do semantic/panoptic segmentation.
+ if "sem_seg_file_name" in dataset_dict:
+ with PathManager.open(dataset_dict.pop("sem_seg_file_name"), "rb") as f:
+ sem_seg_gt = Image.open(f)
+ sem_seg_gt = np.asarray(sem_seg_gt, dtype="uint8")
+ sem_seg_gt = transforms.apply_segmentation(sem_seg_gt)
+ sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
+ dataset_dict["sem_seg"] = sem_seg_gt
+ return dataset_dict
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/README.md b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9fb3e4f7afec17137c95c78be6ef06d520ec8032
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/README.md
@@ -0,0 +1,9 @@
+
+
+### Common Datasets
+
+The dataset implemented here do not need to load the data into the final format.
+It should provide the minimal data structure needed to use the dataset, so it can be very efficient.
+
+For example, for an image dataset, just provide the file names and labels, but don't read the images.
+Let the downstream decide how to read.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c3f556bd201890fcca901d26efb5f9d8c3304f5
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .cityscapes import load_cityscapes_instances
+from .coco import load_coco_json, load_sem_seg
+from .lvis import load_lvis_json, register_lvis_instances, get_lvis_instances_meta
+from .register_coco import register_coco_instances, register_coco_panoptic_separated
+from . import builtin # ensure the builtin data are registered
+
+
+__all__ = [k for k in globals().keys() if "builtin" not in k and not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin.py
new file mode 100644
index 0000000000000000000000000000000000000000..21ac2228c56d59b38c9288fd720aab5fdc63ac0b
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin.py
@@ -0,0 +1,220 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+
+"""
+This file registers pre-defined data at hard-coded paths, and their metadata.
+
+We hard-code metadata for common data. This will enable:
+1. Consistency check when loading the data
+2. Use models on these standard data directly and run demos,
+ without having to download the dataset annotations
+
+We hard-code some paths to the dataset that's assumed to
+exist in "./data/".
+
+Users SHOULD NOT use this file to create new dataset / metadata for new dataset.
+To add new dataset, refer to the tutorial "docs/DATASETS.md".
+"""
+
+import os
+
+from detectron2.data import DatasetCatalog, MetadataCatalog
+
+from .builtin_meta import _get_builtin_metadata
+from .cityscapes import load_cityscapes_instances, load_cityscapes_semantic
+from .lvis import get_lvis_instances_meta, register_lvis_instances
+from .pascal_voc import register_pascal_voc
+from .register_coco import register_coco_instances, register_coco_panoptic_separated
+
+# ==== Predefined data and splits for COCO ==========
+
+_PREDEFINED_SPLITS_COCO = {}
+_PREDEFINED_SPLITS_COCO["coco"] = {
+ "coco_2014_train": ("coco/train2014", "coco/annotations/instances_train2014.json"),
+ "coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"),
+ "coco_2014_minival": ("coco/val2014", "coco/annotations/instances_minival2014.json"),
+ "coco_2014_minival_100": ("coco/val2014", "coco/annotations/instances_minival2014_100.json"),
+ "coco_2014_valminusminival": (
+ "coco/val2014",
+ "coco/annotations/instances_valminusminival2014.json",
+ ),
+ "coco_2017_train": ("coco/train2017", "coco/annotations/instances_train2017.json"),
+ "coco_2017_val": ("coco/val2017", "coco/annotations/instances_val2017.json"),
+ "coco_2017_test": ("coco/test2017", "coco/annotations/image_info_test2017.json"),
+ "coco_2017_test-dev": ("coco/test2017", "coco/annotations/image_info_test-dev2017.json"),
+ "coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json"),
+}
+
+_PREDEFINED_SPLITS_COCO["coco_person"] = {
+ "keypoints_coco_2014_train": (
+ "coco/train2014",
+ "coco/annotations/person_keypoints_train2014.json",
+ ),
+ "keypoints_coco_2014_val": ("coco/val2014", "coco/annotations/person_keypoints_val2014.json"),
+ "keypoints_coco_2014_minival": (
+ "coco/val2014",
+ "coco/annotations/person_keypoints_minival2014.json",
+ ),
+ "keypoints_coco_2014_valminusminival": (
+ "coco/val2014",
+ "coco/annotations/person_keypoints_valminusminival2014.json",
+ ),
+ "keypoints_coco_2014_minival_100": (
+ "coco/val2014",
+ "coco/annotations/person_keypoints_minival2014_100.json",
+ ),
+ "keypoints_coco_2017_train": (
+ "coco/train2017",
+ "coco/annotations/person_keypoints_train2017.json",
+ ),
+ "keypoints_coco_2017_val": ("coco/val2017", "coco/annotations/person_keypoints_val2017.json"),
+ "keypoints_coco_2017_val_100": (
+ "coco/val2017",
+ "coco/annotations/person_keypoints_val2017_100.json",
+ ),
+}
+
+
+_PREDEFINED_SPLITS_COCO_PANOPTIC = {
+ "coco_2017_train_panoptic": (
+ # This is the original panoptic annotation directory
+ "coco/panoptic_train2017",
+ "coco/annotations/panoptic_train2017.json",
+ # This directory contains semantic annotations that are
+ # converted from panoptic annotations.
+ # It is used by PanopticFPN.
+ # You can use the script at detectron2/data/prepare_panoptic_fpn.py
+ # to create these directories.
+ "coco/panoptic_stuff_train2017",
+ ),
+ "coco_2017_val_panoptic": (
+ "coco/panoptic_val2017",
+ "coco/annotations/panoptic_val2017.json",
+ "coco/panoptic_stuff_val2017",
+ ),
+ "coco_2017_val_100_panoptic": (
+ "coco/panoptic_val2017_100",
+ "coco/annotations/panoptic_val2017_100.json",
+ "coco/panoptic_stuff_val2017_100",
+ ),
+}
+
+
+def register_all_coco(root):
+ for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items():
+ for key, (image_root, json_file) in splits_per_dataset.items():
+ # Assume pre-defined data live in `./data`.
+ register_coco_instances(
+ key,
+ _get_builtin_metadata(dataset_name),
+ os.path.join(root, json_file) if "://" not in json_file else json_file,
+ os.path.join(root, image_root),
+ )
+
+ for (
+ prefix,
+ (panoptic_root, panoptic_json, semantic_root),
+ ) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items():
+ prefix_instances = prefix[: -len("_panoptic")]
+ instances_meta = MetadataCatalog.get(prefix_instances)
+ image_root, instances_json = instances_meta.image_root, instances_meta.json_file
+ register_coco_panoptic_separated(
+ prefix,
+ _get_builtin_metadata("coco_panoptic_separated"),
+ image_root,
+ os.path.join(root, panoptic_root),
+ os.path.join(root, panoptic_json),
+ os.path.join(root, semantic_root),
+ instances_json,
+ )
+
+
+# ==== Predefined data and splits for LVIS ==========
+
+
+_PREDEFINED_SPLITS_LVIS = {
+ "lvis_v0.5": {
+ "lvis_v0.5_train": ("coco/train2017", "lvis/lvis_v0.5_train.json"),
+ "lvis_v0.5_val": ("coco/val2017", "lvis/lvis_v0.5_val.json"),
+ "lvis_v0.5_val_rand_100": ("coco/val2017", "lvis/lvis_v0.5_val_rand_100.json"),
+ "lvis_v0.5_test": ("coco/test2017", "lvis/lvis_v0.5_image_info_test.json"),
+ },
+ "lvis_v0.5_cocofied": {
+ "lvis_v0.5_train_cocofied": ("coco/train2017", "lvis/lvis_v0.5_train_cocofied.json"),
+ "lvis_v0.5_val_cocofied": ("coco/val2017", "lvis/lvis_v0.5_val_cocofied.json"),
+ },
+}
+
+
+def register_all_lvis(root):
+ for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items():
+ for key, (image_root, json_file) in splits_per_dataset.items():
+ # Assume pre-defined data live in `./data`.
+ register_lvis_instances(
+ key,
+ get_lvis_instances_meta(dataset_name),
+ os.path.join(root, json_file) if "://" not in json_file else json_file,
+ os.path.join(root, image_root),
+ )
+
+
+# ==== Predefined splits for raw cityscapes images ===========
+
+
+_RAW_CITYSCAPES_SPLITS = {
+ "cityscapes_fine_{task}_train": ("cityscapes/leftImg8bit/train", "cityscapes/gtFine/train"),
+ "cityscapes_fine_{task}_val": ("cityscapes/leftImg8bit/val", "cityscapes/gtFine/val"),
+ "cityscapes_fine_{task}_test": ("cityscapes/leftImg8bit/test", "cityscapes/gtFine/test"),
+}
+
+
+def register_all_cityscapes(root):
+ for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items():
+ meta = _get_builtin_metadata("cityscapes")
+ image_dir = os.path.join(root, image_dir)
+ gt_dir = os.path.join(root, gt_dir)
+
+ inst_key = key.format(task="instance_seg")
+ DatasetCatalog.register(
+ inst_key,
+ lambda x=image_dir, y=gt_dir: load_cityscapes_instances(
+ x, y, from_json=True, to_polygons=True
+ ),
+ )
+ MetadataCatalog.get(inst_key).set(
+ image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta
+ )
+
+ sem_key = key.format(task="sem_seg")
+ DatasetCatalog.register(
+ sem_key, lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y)
+ )
+ MetadataCatalog.get(sem_key).set(
+ image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_sem_seg", **meta
+ )
+
+
+# ==== Predefined splits for PASCAL VOC ===========
+def register_all_pascal_voc(root):
+ SPLITS = [
+ ("voc_2007_trainval", "VOC2007", "trainval"),
+ ("voc_2007_train", "VOC2007", "train"),
+ ("voc_2007_val", "VOC2007", "val"),
+ ("voc_2007_test", "VOC2007", "test"),
+ ("voc_2012_trainval", "VOC2012", "trainval"),
+ ("voc_2012_train", "VOC2012", "train"),
+ ("voc_2012_val", "VOC2012", "val"),
+ ]
+ for name, dirname, split in SPLITS:
+ year = 2007 if "2007" in name else 2012
+ register_pascal_voc(name, os.path.join(root, dirname), split, year)
+ MetadataCatalog.get(name).evaluator_type = "pascal_voc"
+
+
+# Register them all under "./data"
+_root = os.getenv("DETECTRON2_DATASETS", "data")
+register_all_coco(_root)
+register_all_lvis(_root)
+register_all_cityscapes(_root)
+register_all_pascal_voc(_root)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin_meta.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin_meta.py
new file mode 100644
index 0000000000000000000000000000000000000000..74c79863a9d1ef5df9b5ce64f97d6be8e4e37d59
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/builtin_meta.py
@@ -0,0 +1,267 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+
+# All coco categories, together with their nice-looking visualization colors
+# It's from https://github.com/cocodataset/panopticapi/blob/master/panoptic_coco_categories.json
+COCO_CATEGORIES = [
+ {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"},
+ {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"},
+ {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"},
+ {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"},
+ {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"},
+ {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"},
+ {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"},
+ {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"},
+ {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"},
+ {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"},
+ {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"},
+ {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"},
+ {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"},
+ {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"},
+ {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"},
+ {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"},
+ {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"},
+ {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"},
+ {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"},
+ {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"},
+ {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"},
+ {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"},
+ {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"},
+ {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"},
+ {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"},
+ {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"},
+ {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"},
+ {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"},
+ {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"},
+ {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"},
+ {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"},
+ {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"},
+ {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"},
+ {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"},
+ {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"},
+ {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"},
+ {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"},
+ {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"},
+ {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"},
+ {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"},
+ {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"},
+ {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"},
+ {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"},
+ {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"},
+ {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"},
+ {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"},
+ {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"},
+ {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"},
+ {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"},
+ {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"},
+ {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"},
+ {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"},
+ {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"},
+ {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"},
+ {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"},
+ {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"},
+ {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"},
+ {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"},
+ {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"},
+ {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"},
+ {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"},
+ {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"},
+ {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"},
+ {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"},
+ {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"},
+ {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"},
+ {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"},
+ {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"},
+ {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"},
+ {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"},
+ {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"},
+ {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"},
+ {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"},
+ {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"},
+ {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"},
+ {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"},
+ {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"},
+ {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"},
+ {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"},
+ {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"},
+ {"color": [255, 255, 128], "isthing": 0, "id": 92, "name": "banner"},
+ {"color": [147, 211, 203], "isthing": 0, "id": 93, "name": "blanket"},
+ {"color": [150, 100, 100], "isthing": 0, "id": 95, "name": "bridge"},
+ {"color": [168, 171, 172], "isthing": 0, "id": 100, "name": "cardboard"},
+ {"color": [146, 112, 198], "isthing": 0, "id": 107, "name": "counter"},
+ {"color": [210, 170, 100], "isthing": 0, "id": 109, "name": "curtain"},
+ {"color": [92, 136, 89], "isthing": 0, "id": 112, "name": "door-stuff"},
+ {"color": [218, 88, 184], "isthing": 0, "id": 118, "name": "floor-wood"},
+ {"color": [241, 129, 0], "isthing": 0, "id": 119, "name": "flower"},
+ {"color": [217, 17, 255], "isthing": 0, "id": 122, "name": "fruit"},
+ {"color": [124, 74, 181], "isthing": 0, "id": 125, "name": "gravel"},
+ {"color": [70, 70, 70], "isthing": 0, "id": 128, "name": "house"},
+ {"color": [255, 228, 255], "isthing": 0, "id": 130, "name": "light"},
+ {"color": [154, 208, 0], "isthing": 0, "id": 133, "name": "mirror-stuff"},
+ {"color": [193, 0, 92], "isthing": 0, "id": 138, "name": "net"},
+ {"color": [76, 91, 113], "isthing": 0, "id": 141, "name": "pillow"},
+ {"color": [255, 180, 195], "isthing": 0, "id": 144, "name": "platform"},
+ {"color": [106, 154, 176], "isthing": 0, "id": 145, "name": "playingfield"},
+ {"color": [230, 150, 140], "isthing": 0, "id": 147, "name": "railroad"},
+ {"color": [60, 143, 255], "isthing": 0, "id": 148, "name": "river"},
+ {"color": [128, 64, 128], "isthing": 0, "id": 149, "name": "road"},
+ {"color": [92, 82, 55], "isthing": 0, "id": 151, "name": "roof"},
+ {"color": [254, 212, 124], "isthing": 0, "id": 154, "name": "sand"},
+ {"color": [73, 77, 174], "isthing": 0, "id": 155, "name": "sea"},
+ {"color": [255, 160, 98], "isthing": 0, "id": 156, "name": "shelf"},
+ {"color": [255, 255, 255], "isthing": 0, "id": 159, "name": "snow"},
+ {"color": [104, 84, 109], "isthing": 0, "id": 161, "name": "stairs"},
+ {"color": [169, 164, 131], "isthing": 0, "id": 166, "name": "tent"},
+ {"color": [225, 199, 255], "isthing": 0, "id": 168, "name": "towel"},
+ {"color": [137, 54, 74], "isthing": 0, "id": 171, "name": "wall-brick"},
+ {"color": [135, 158, 223], "isthing": 0, "id": 175, "name": "wall-stone"},
+ {"color": [7, 246, 231], "isthing": 0, "id": 176, "name": "wall-tile"},
+ {"color": [107, 255, 200], "isthing": 0, "id": 177, "name": "wall-wood"},
+ {"color": [58, 41, 149], "isthing": 0, "id": 178, "name": "water-other"},
+ {"color": [183, 121, 142], "isthing": 0, "id": 180, "name": "window-blind"},
+ {"color": [255, 73, 97], "isthing": 0, "id": 181, "name": "window-other"},
+ {"color": [107, 142, 35], "isthing": 0, "id": 184, "name": "tree-merged"},
+ {"color": [190, 153, 153], "isthing": 0, "id": 185, "name": "fence-merged"},
+ {"color": [146, 139, 141], "isthing": 0, "id": 186, "name": "ceiling-merged"},
+ {"color": [70, 130, 180], "isthing": 0, "id": 187, "name": "sky-other-merged"},
+ {"color": [134, 199, 156], "isthing": 0, "id": 188, "name": "cabinet-merged"},
+ {"color": [209, 226, 140], "isthing": 0, "id": 189, "name": "table-merged"},
+ {"color": [96, 36, 108], "isthing": 0, "id": 190, "name": "floor-other-merged"},
+ {"color": [96, 96, 96], "isthing": 0, "id": 191, "name": "pavement-merged"},
+ {"color": [64, 170, 64], "isthing": 0, "id": 192, "name": "mountain-merged"},
+ {"color": [152, 251, 152], "isthing": 0, "id": 193, "name": "grass-merged"},
+ {"color": [208, 229, 228], "isthing": 0, "id": 194, "name": "dirt-merged"},
+ {"color": [206, 186, 171], "isthing": 0, "id": 195, "name": "paper-merged"},
+ {"color": [152, 161, 64], "isthing": 0, "id": 196, "name": "food-other-merged"},
+ {"color": [116, 112, 0], "isthing": 0, "id": 197, "name": "building-other-merged"},
+ {"color": [0, 114, 143], "isthing": 0, "id": 198, "name": "rock-merged"},
+ {"color": [102, 102, 156], "isthing": 0, "id": 199, "name": "wall-other-merged"},
+ {"color": [250, 141, 255], "isthing": 0, "id": 200, "name": "rug-merged"},
+]
+
+# fmt: off
+COCO_PERSON_KEYPOINT_NAMES = (
+ "nose",
+ "left_eye", "right_eye",
+ "left_ear", "right_ear",
+ "left_shoulder", "right_shoulder",
+ "left_elbow", "right_elbow",
+ "left_wrist", "right_wrist",
+ "left_hip", "right_hip",
+ "left_knee", "right_knee",
+ "left_ankle", "right_ankle",
+)
+# fmt: on
+
+# Pairs of keypoints that should be exchanged under horizontal flipping
+COCO_PERSON_KEYPOINT_FLIP_MAP = (
+ ("left_eye", "right_eye"),
+ ("left_ear", "right_ear"),
+ ("left_shoulder", "right_shoulder"),
+ ("left_elbow", "right_elbow"),
+ ("left_wrist", "right_wrist"),
+ ("left_hip", "right_hip"),
+ ("left_knee", "right_knee"),
+ ("left_ankle", "right_ankle"),
+)
+
+# rules for pairs of keypoints to draw a line between, and the line color to use.
+KEYPOINT_CONNECTION_RULES = [
+ # face
+ ("left_ear", "left_eye", (102, 204, 255)),
+ ("right_ear", "right_eye", (51, 153, 255)),
+ ("left_eye", "nose", (102, 0, 204)),
+ ("nose", "right_eye", (51, 102, 255)),
+ # upper-body
+ ("left_shoulder", "right_shoulder", (255, 128, 0)),
+ ("left_shoulder", "left_elbow", (153, 255, 204)),
+ ("right_shoulder", "right_elbow", (128, 229, 255)),
+ ("left_elbow", "left_wrist", (153, 255, 153)),
+ ("right_elbow", "right_wrist", (102, 255, 224)),
+ # lower-body
+ ("left_hip", "right_hip", (255, 102, 0)),
+ ("left_hip", "left_knee", (255, 255, 77)),
+ ("right_hip", "right_knee", (153, 255, 204)),
+ ("left_knee", "left_ankle", (191, 255, 128)),
+ ("right_knee", "right_ankle", (255, 195, 77)),
+]
+
+
+def _get_coco_instances_meta():
+ thing_ids = [k["id"] for k in COCO_CATEGORIES if k["isthing"] == 1]
+ thing_colors = [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 1]
+ assert len(thing_ids) == 80, len(thing_ids)
+ # Mapping from the incontiguous COCO category id to an id in [0, 79]
+ thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
+ thing_classes = [k["name"] for k in COCO_CATEGORIES if k["isthing"] == 1]
+ ret = {
+ "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
+ "thing_classes": thing_classes,
+ "thing_colors": thing_colors,
+ }
+ return ret
+
+
+def _get_coco_panoptic_separated_meta():
+ """
+ Returns metadata for "separated" version of the panoptic segmentation dataset.
+ """
+ stuff_ids = [k["id"] for k in COCO_CATEGORIES if k["isthing"] == 0]
+ assert len(stuff_ids) == 53, len(stuff_ids)
+
+ # For semantic segmentation, this mapping maps from contiguous stuff id
+ # (in [0, 53], used in models) to ids in the dataset (used for processing results)
+ # The id 0 is mapped to an extra category "thing".
+ stuff_dataset_id_to_contiguous_id = {k: i + 1 for i, k in enumerate(stuff_ids)}
+ # When converting COCO panoptic annotations to semantic annotations
+ # We label the "thing" category to 0
+ stuff_dataset_id_to_contiguous_id[0] = 0
+
+ # 54 names for COCO stuff categories (including "things")
+ stuff_classes = ["things"] + [
+ k["name"].replace("-other", "").replace("-merged", "")
+ for k in COCO_CATEGORIES
+ if k["isthing"] == 0
+ ]
+
+ # NOTE: I randomly picked a color for things
+ stuff_colors = [[82, 18, 128]] + [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 0]
+ ret = {
+ "stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id,
+ "stuff_classes": stuff_classes,
+ "stuff_colors": stuff_colors,
+ }
+ ret.update(_get_coco_instances_meta())
+ return ret
+
+
+def _get_builtin_metadata(dataset_name):
+ if dataset_name == "coco":
+ return _get_coco_instances_meta()
+ if dataset_name == "coco_panoptic_separated":
+ return _get_coco_panoptic_separated_meta()
+ elif dataset_name == "coco_person":
+ return {
+ "thing_classes": ["person"],
+ "keypoint_names": COCO_PERSON_KEYPOINT_NAMES,
+ "keypoint_flip_map": COCO_PERSON_KEYPOINT_FLIP_MAP,
+ "keypoint_connection_rules": KEYPOINT_CONNECTION_RULES,
+ }
+ elif dataset_name == "cityscapes":
+ # fmt: off
+ CITYSCAPES_THING_CLASSES = [
+ "person", "rider", "car", "truck",
+ "bus", "train", "motorcycle", "bicycle",
+ ]
+ CITYSCAPES_STUFF_CLASSES = [
+ "road", "sidewalk", "building", "wall", "fence", "pole", "traffic light",
+ "traffic sign", "vegetation", "terrain", "sky", "person", "rider", "car",
+ "truck", "bus", "train", "motorcycle", "bicycle", "license plate",
+ ]
+ # fmt: on
+ return {
+ "thing_classes": CITYSCAPES_THING_CLASSES,
+ "stuff_classes": CITYSCAPES_STUFF_CLASSES,
+ }
+ raise KeyError("No built-in metadata for dataset {}".format(dataset_name))
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/cityscapes.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/cityscapes.py
new file mode 100644
index 0000000000000000000000000000000000000000..062a555b959582eca525087ffc9859d298e926b8
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/cityscapes.py
@@ -0,0 +1,329 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import functools
+import json
+import logging
+import multiprocessing as mp
+import numpy as np
+import os
+from itertools import chain
+import pycocotools.mask as mask_util
+from fvcore.common.file_io import PathManager
+from PIL import Image
+
+from detectron2.structures import BoxMode
+from detectron2.utils.comm import get_world_size
+from detectron2.utils.logger import setup_logger
+
+try:
+ import cv2 # noqa
+except ImportError:
+ # OpenCV is an optional dependency at the moment
+ pass
+
+
+logger = logging.getLogger(__name__)
+
+
+def get_cityscapes_files(image_dir, gt_dir):
+ files = []
+ # scan through the directory
+ cities = PathManager.ls(image_dir)
+ logger.info(f"{len(cities)} cities found in '{image_dir}'.")
+ for city in cities:
+ city_img_dir = os.path.join(image_dir, city)
+ city_gt_dir = os.path.join(gt_dir, city)
+ for basename in PathManager.ls(city_img_dir):
+ image_file = os.path.join(city_img_dir, basename)
+
+ suffix = "leftImg8bit.png"
+ assert basename.endswith(suffix)
+ basename = basename[: -len(suffix)]
+
+ instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png")
+ label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png")
+ json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json")
+
+ files.append((image_file, instance_file, label_file, json_file))
+ assert len(files), "No images found in {}".format(image_dir)
+ for f in files[0]:
+ assert PathManager.isfile(f), f
+ return files
+
+
+def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True):
+ """
+ Args:
+ image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
+ gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".
+ from_json (bool): whether to read annotations from the raw json file or the png files.
+ to_polygons (bool): whether to represent the segmentation as polygons
+ (COCO's format) instead of masks (cityscapes's format).
+
+ Returns:
+ list[dict]: a list of dicts in Detectron2 standard format. (See
+ `Using Custom Datasets `_ )
+ """
+ if from_json:
+ assert to_polygons, (
+ "Cityscapes's json annotations are in polygon format. "
+ "Converting to mask format is not supported now."
+ )
+ files = get_cityscapes_files(image_dir, gt_dir)
+
+ logger.info("Preprocessing cityscapes annotations ...")
+ # This is still not fast: all workers will execute duplicate works and will
+ # take up to 10m on a 8GPU server.
+ pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4))
+
+ ret = pool.map(
+ functools.partial(cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons),
+ files,
+ )
+ logger.info("Loaded {} images from {}".format(len(ret), image_dir))
+
+ # Map cityscape ids to contiguous ids
+ from cityscapesscripts.helpers.labels import labels
+
+ labels = [l for l in labels if l.hasInstances and not l.ignoreInEval]
+ dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)}
+ for dict_per_image in ret:
+ for anno in dict_per_image["annotations"]:
+ anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]]
+ return ret
+
+
+def load_cityscapes_semantic(image_dir, gt_dir):
+ """
+ Args:
+ image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
+ gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".
+
+ Returns:
+ list[dict]: a list of dict, each has "file_name" and
+ "sem_seg_file_name".
+ """
+ ret = []
+ # gt_dir is small and contain many small files. make sense to fetch to local first
+ gt_dir = PathManager.get_local_path(gt_dir)
+ for image_file, _, label_file, json_file in get_cityscapes_files(image_dir, gt_dir):
+ label_file = label_file.replace("labelIds", "labelTrainIds")
+
+ with PathManager.open(json_file, "r") as f:
+ jsonobj = json.load(f)
+ ret.append(
+ {
+ "file_name": image_file,
+ "sem_seg_file_name": label_file,
+ "height": jsonobj["imgHeight"],
+ "width": jsonobj["imgWidth"],
+ }
+ )
+ assert len(ret), f"No images found in {image_dir}!"
+ assert PathManager.isfile(
+ ret[0]["sem_seg_file_name"]
+ ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa
+ return ret
+
+
+def cityscapes_files_to_dict(files, from_json, to_polygons):
+ """
+ Parse cityscapes annotation files to a instance segmentation dataset dict.
+
+ Args:
+ files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file)
+ from_json (bool): whether to read annotations from the raw json file or the png files.
+ to_polygons (bool): whether to represent the segmentation as polygons
+ (COCO's format) instead of masks (cityscapes's format).
+
+ Returns:
+ A dict in Detectron2 Dataset format.
+ """
+ from cityscapesscripts.helpers.labels import id2label, name2label
+
+ image_file, instance_id_file, _, json_file = files
+
+ annos = []
+
+ if from_json:
+ from shapely.geometry import MultiPolygon, Polygon
+
+ with PathManager.open(json_file, "r") as f:
+ jsonobj = json.load(f)
+ ret = {
+ "file_name": image_file,
+ "image_id": os.path.basename(image_file),
+ "height": jsonobj["imgHeight"],
+ "width": jsonobj["imgWidth"],
+ }
+
+ # `polygons_union` contains the union of all valid polygons.
+ polygons_union = Polygon()
+
+ # CityscapesScripts draw the polygons in sequential order
+ # and each polygon *overwrites* existing ones. See
+ # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa
+ # We use reverse order, and each polygon *avoids* early ones.
+ # This will resolve the ploygon overlaps in the same way as CityscapesScripts.
+ for obj in jsonobj["objects"][::-1]:
+ if "deleted" in obj: # cityscapes data format specific
+ continue
+ label_name = obj["label"]
+
+ try:
+ label = name2label[label_name]
+ except KeyError:
+ if label_name.endswith("group"): # crowd area
+ label = name2label[label_name[: -len("group")]]
+ else:
+ raise
+ if label.id < 0: # cityscapes data format
+ continue
+
+ # Cityscapes's raw annotations uses integer coordinates
+ # Therefore +0.5 here
+ poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5
+ # CityscapesScript uses PIL.ImageDraw.polygon to rasterize
+ # polygons for evaluation. This function operates in integer space
+ # and draws each pixel whose center falls into the polygon.
+ # Therefore it draws a polygon which is 0.5 "fatter" in expectation.
+ # We therefore dilate the input polygon by 0.5 as our input.
+ poly = Polygon(poly_coord).buffer(0.5, resolution=4)
+
+ if not label.hasInstances or label.ignoreInEval:
+ # even if we won't store the polygon it still contributes to overlaps resolution
+ polygons_union = polygons_union.union(poly)
+ continue
+
+ # Take non-overlapping part of the polygon
+ poly_wo_overlaps = poly.difference(polygons_union)
+ if poly_wo_overlaps.is_empty:
+ continue
+ polygons_union = polygons_union.union(poly)
+
+ anno = {}
+ anno["iscrowd"] = label_name.endswith("group")
+ anno["category_id"] = label.id
+
+ if isinstance(poly_wo_overlaps, Polygon):
+ poly_list = [poly_wo_overlaps]
+ elif isinstance(poly_wo_overlaps, MultiPolygon):
+ poly_list = poly_wo_overlaps.geoms
+ else:
+ raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps))
+
+ poly_coord = []
+ for poly_el in poly_list:
+ # COCO API can work only with exterior boundaries now, hence we store only them.
+ # TODO: store both exterior and interior boundaries once other parts of the
+ # codebase support holes in polygons.
+ poly_coord.append(list(chain(*poly_el.exterior.coords)))
+ anno["segmentation"] = poly_coord
+ (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds
+
+ anno["bbox"] = (xmin, ymin, xmax, ymax)
+ anno["bbox_mode"] = BoxMode.XYXY_ABS
+
+ annos.append(anno)
+ else:
+ # See also the official annotation parsing scripts at
+ # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa
+ with PathManager.open(instance_id_file, "rb") as f:
+ inst_image = np.asarray(Image.open(f), order="F")
+ # ids < 24 are stuff labels (filtering them first is about 5% faster)
+ flattened_ids = np.unique(inst_image[inst_image >= 24])
+
+ ret = {
+ "file_name": image_file,
+ "image_id": os.path.basename(image_file),
+ "height": inst_image.shape[0],
+ "width": inst_image.shape[1],
+ }
+
+ for instance_id in flattened_ids:
+ # For non-crowd annotations, instance_id // 1000 is the label_id
+ # Crowd annotations have <1000 instance ids
+ label_id = instance_id // 1000 if instance_id >= 1000 else instance_id
+ label = id2label[label_id]
+ if not label.hasInstances or label.ignoreInEval:
+ continue
+
+ anno = {}
+ anno["iscrowd"] = instance_id < 1000
+ anno["category_id"] = label.id
+
+ mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F")
+
+ inds = np.nonzero(mask)
+ ymin, ymax = inds[0].min(), inds[0].max()
+ xmin, xmax = inds[1].min(), inds[1].max()
+ anno["bbox"] = (xmin, ymin, xmax, ymax)
+ if xmax <= xmin or ymax <= ymin:
+ continue
+ anno["bbox_mode"] = BoxMode.XYXY_ABS
+ if to_polygons:
+ # This conversion comes from D4809743 and D5171122,
+ # when Mask-RCNN was first developed.
+ contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[
+ -2
+ ]
+ polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3]
+ # opencv's can produce invalid polygons
+ if len(polygons) == 0:
+ continue
+ anno["segmentation"] = polygons
+ else:
+ anno["segmentation"] = mask_util.encode(mask[:, :, None])[0]
+ annos.append(anno)
+ ret["annotations"] = annos
+ return ret
+
+
+if __name__ == "__main__":
+ """
+ Test the cityscapes dataset loader.
+
+ Usage:
+ python -m detectron2.data.data.cityscapes \
+ cityscapes/leftImg8bit/train cityscapes/gtFine/train
+ """
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("image_dir")
+ parser.add_argument("gt_dir")
+ parser.add_argument("--type", choices=["instance", "semantic"], default="instance")
+ args = parser.parse_args()
+ from detectron2.data.catalog import Metadata
+ from detectron2.utils.visualizer import Visualizer
+ from cityscapesscripts.helpers.labels import labels
+
+ logger = setup_logger(name=__name__)
+
+ dirname = "cityscapes-data-vis"
+ os.makedirs(dirname, exist_ok=True)
+
+ if args.type == "instance":
+ dicts = load_cityscapes_instances(
+ args.image_dir, args.gt_dir, from_json=True, to_polygons=True
+ )
+ logger.info("Done loading {} samples.".format(len(dicts)))
+
+ thing_classes = [k.name for k in labels if k.hasInstances and not k.ignoreInEval]
+ meta = Metadata().set(thing_classes=thing_classes)
+
+ else:
+ dicts = load_cityscapes_semantic(args.image_dir, args.gt_dir)
+ logger.info("Done loading {} samples.".format(len(dicts)))
+
+ stuff_names = [k.name for k in labels if k.trainId != 255]
+ stuff_colors = [k.color for k in labels if k.trainId != 255]
+ meta = Metadata().set(stuff_names=stuff_names, stuff_colors=stuff_colors)
+
+ for d in dicts:
+ img = np.array(Image.open(PathManager.open(d["file_name"], "rb")))
+ visualizer = Visualizer(img, metadata=meta)
+ vis = visualizer.draw_dataset_dict(d)
+ # cv2.imshow("a", vis.get_image()[:, :, ::-1])
+ # cv2.waitKey()
+ fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
+ vis.save(fpath)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/coco.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/coco.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6f099e778e34cf89d267e13424d4f69240b7878
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/coco.py
@@ -0,0 +1,466 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import contextlib
+import datetime
+import io
+import json
+import logging
+import numpy as np
+import os
+import pycocotools.mask as mask_util
+from fvcore.common.file_io import PathManager, file_lock
+from fvcore.common.timer import Timer
+from PIL import Image
+
+from detectron2.structures import Boxes, BoxMode, PolygonMasks
+
+from .. import DatasetCatalog, MetadataCatalog
+
+"""
+This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format".
+"""
+
+
+logger = logging.getLogger(__name__)
+
+__all__ = ["load_coco_json", "load_sem_seg", "convert_to_coco_json"]
+
+
+def load_coco_json(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
+ """
+ Load a json file with COCO's instances annotation format.
+ Currently supports instance detection, instance segmentation,
+ and person keypoints annotations.
+
+ Args:
+ json_file (str): full path to the json file in COCO instances annotation format.
+ image_root (str or path-like): the directory where the images in this json file exists.
+ dataset_name (str): the name of the dataset (e.g., coco_2017_train).
+ If provided, this function will also put "thing_classes" into
+ the metadata associated with this dataset.
+ extra_annotation_keys (list[str]): list of per-annotation keys that should also be
+ loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
+ "category_id", "segmentation"). The values for these keys will be returned as-is.
+ For example, the densepose annotations are loaded in this way.
+
+ Returns:
+ list[dict]: a list of dicts in Detectron2 standard dataset dicts format. (See
+ `Using Custom Datasets `_ )
+
+ Notes:
+ 1. This function does not read the image files.
+ The results do not have the "image" field.
+ """
+ from pycocotools.coco import COCO
+
+ timer = Timer()
+ json_file = PathManager.get_local_path(json_file)
+ with contextlib.redirect_stdout(io.StringIO()):
+ coco_api = COCO(json_file)
+ if timer.seconds() > 1:
+ logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
+
+ id_map = None
+ if dataset_name is not None:
+ meta = MetadataCatalog.get(dataset_name)
+ cat_ids = sorted(coco_api.getCatIds())
+ cats = coco_api.loadCats(cat_ids)
+ # The categories in a custom json file may not be sorted.
+ thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
+ meta.thing_classes = thing_classes
+
+ # In COCO, certain category ids are artificially removed,
+ # and by convention they are always ignored.
+ # We deal with COCO's id issue and translate
+ # the category ids to contiguous ids in [0, 80).
+
+ # It works by looking at the "categories" field in the json, therefore
+ # if users' own json also have incontiguous ids, we'll
+ # apply this mapping as well but print a warning.
+ if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
+ if "coco" not in dataset_name:
+ logger.warning(
+ """
+Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
+"""
+ )
+ id_map = {v: i for i, v in enumerate(cat_ids)}
+ meta.thing_dataset_id_to_contiguous_id = id_map
+
+ # sort indices for reproducible results
+ img_ids = sorted(coco_api.imgs.keys())
+ # imgs is a list of dicts, each looks something like:
+ # {'license': 4,
+ # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
+ # 'file_name': 'COCO_val2014_000000001268.jpg',
+ # 'height': 427,
+ # 'width': 640,
+ # 'date_captured': '2013-11-17 05:57:24',
+ # 'id': 1268}
+ imgs = coco_api.loadImgs(img_ids)
+ # anns is a list[list[dict]], where each dict is an annotation
+ # record for an object. The inner list enumerates the objects in an image
+ # and the outer list enumerates over images. Example of anns[0]:
+ # [{'segmentation': [[192.81,
+ # 247.09,
+ # ...
+ # 219.03,
+ # 249.06]],
+ # 'area': 1035.749,
+ # 'iscrowd': 0,
+ # 'image_id': 1268,
+ # 'bbox': [192.81, 224.8, 74.73, 33.43],
+ # 'category_id': 16,
+ # 'id': 42986},
+ # ...]
+ anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
+
+ if "minival" not in json_file:
+ # The popular valminusminival & minival annotations for COCO2014 contain this bug.
+ # However the ratio of buggy annotations there is tiny and does not affect accuracy.
+ # Therefore we explicitly white-list them.
+ ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
+ assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
+ json_file
+ )
+
+ imgs_anns = list(zip(imgs, anns))
+
+ logger.info("Loaded {} images in COCO format from {}".format(len(imgs_anns), json_file))
+
+ dataset_dicts = []
+
+ ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + (extra_annotation_keys or [])
+
+ num_instances_without_valid_segmentation = 0
+
+ for (img_dict, anno_dict_list) in imgs_anns:
+ record = {}
+ record["file_name"] = os.path.join(image_root, img_dict["file_name"])
+ record["height"] = img_dict["height"]
+ record["width"] = img_dict["width"]
+ image_id = record["image_id"] = img_dict["id"]
+
+ objs = []
+ for anno in anno_dict_list:
+ # Check that the image_id in this annotation is the same as
+ # the image_id we're looking at.
+ # This fails only when the data parsing logic or the annotation file is buggy.
+
+ # The original COCO valminusminival2014 & minival2014 annotation files
+ # actually contains bugs that, together with certain ways of using COCO API,
+ # can trigger this assertion.
+ assert anno["image_id"] == image_id
+
+ assert anno.get("ignore", 0) == 0, '"ignore" in COCO json file is not supported.'
+
+ obj = {key: anno[key] for key in ann_keys if key in anno}
+
+ segm = anno.get("segmentation", None)
+ if segm: # either list[list[float]] or dict(RLE)
+ if not isinstance(segm, dict):
+ # filter out invalid polygons (< 3 points)
+ segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
+ if len(segm) == 0:
+ num_instances_without_valid_segmentation += 1
+ continue # ignore this instance
+ obj["segmentation"] = segm
+
+ keypts = anno.get("keypoints", None)
+ if keypts: # list[int]
+ for idx, v in enumerate(keypts):
+ if idx % 3 != 2:
+ # COCO's segmentation coordinates are floating points in [0, H or W],
+ # but keypoint coordinates are integers in [0, H-1 or W-1]
+ # Therefore we assume the coordinates are "pixel indices" and
+ # add 0.5 to convert to floating point coordinates.
+ keypts[idx] = v + 0.5
+ obj["keypoints"] = keypts
+
+ obj["bbox_mode"] = BoxMode.XYWH_ABS
+ if id_map:
+ obj["category_id"] = id_map[obj["category_id"]]
+ objs.append(obj)
+ record["annotations"] = objs
+ dataset_dicts.append(record)
+
+ if num_instances_without_valid_segmentation > 0:
+ logger.warning(
+ "Filtered out {} instances without valid segmentation. "
+ "There might be issues in your dataset generation process.".format(
+ num_instances_without_valid_segmentation
+ )
+ )
+ return dataset_dicts
+
+
+def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"):
+ """
+ Load semantic segmentation data. All files under "gt_root" with "gt_ext" extension are
+ treated as ground truth annotations and all files under "image_root" with "image_ext" extension
+ as input images. Ground truth and input images are matched using file paths relative to
+ "gt_root" and "image_root" respectively without taking into account file extensions.
+ This works for COCO as well as some other data.
+
+ Args:
+ gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation
+ annotations are stored as images with integer values in pixels that represent
+ corresponding semantic labels.
+ image_root (str): the directory where the input images are.
+ gt_ext (str): file extension for ground truth annotations.
+ image_ext (str): file extension for input images.
+
+ Returns:
+ list[dict]:
+ a list of dicts in detectron2 standard format without instance-level
+ annotation.
+
+ Notes:
+ 1. This function does not read the image and ground truth files.
+ The results do not have the "image" and "sem_seg" fields.
+ """
+
+ # We match input images with ground truth based on their relative filepaths (without file
+ # extensions) starting from 'image_root' and 'gt_root' respectively.
+ def file2id(folder_path, file_path):
+ # extract relative path starting from `folder_path`
+ image_id = os.path.normpath(os.path.relpath(file_path, start=folder_path))
+ # remove file extension
+ image_id = os.path.splitext(image_id)[0]
+ return image_id
+
+ input_files = sorted(
+ (os.path.join(image_root, f) for f in PathManager.ls(image_root) if f.endswith(image_ext)),
+ key=lambda file_path: file2id(image_root, file_path),
+ )
+ gt_files = sorted(
+ (os.path.join(gt_root, f) for f in PathManager.ls(gt_root) if f.endswith(gt_ext)),
+ key=lambda file_path: file2id(gt_root, file_path),
+ )
+
+ assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root)
+
+ # Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images
+ if len(input_files) != len(gt_files):
+ logger.warn(
+ "Directory {} and {} has {} and {} files, respectively.".format(
+ image_root, gt_root, len(input_files), len(gt_files)
+ )
+ )
+ input_basenames = [os.path.basename(f)[: -len(image_ext)] for f in input_files]
+ gt_basenames = [os.path.basename(f)[: -len(gt_ext)] for f in gt_files]
+ intersect = list(set(input_basenames) & set(gt_basenames))
+ # sort, otherwise each worker may obtain a list[dict] in different order
+ intersect = sorted(intersect)
+ logger.warn("Will use their intersection of {} files.".format(len(intersect)))
+ input_files = [os.path.join(image_root, f + image_ext) for f in intersect]
+ gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect]
+
+ logger.info(
+ "Loaded {} images with semantic segmentation from {}".format(len(input_files), image_root)
+ )
+
+ dataset_dicts = []
+ for (img_path, gt_path) in zip(input_files, gt_files):
+ record = {}
+ record["file_name"] = img_path
+ record["sem_seg_file_name"] = gt_path
+ dataset_dicts.append(record)
+
+ return dataset_dicts
+
+
+def convert_to_coco_dict(dataset_name):
+ """
+ Convert an instance detection/segmentation or keypoint detection dataset
+ in detectron2's standard format into COCO json format.
+
+ Generic dataset description can be found here:
+ https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset
+
+ COCO data format description can be found here:
+ http://cocodataset.org/#format-data
+
+ Args:
+ dataset_name (str):
+ name of the source dataset
+ Must be registered in DatastCatalog and in detectron2's standard format.
+ Must have corresponding metadata "thing_classes"
+ Returns:
+ coco_dict: serializable dict in COCO json format
+ """
+
+ dataset_dicts = DatasetCatalog.get(dataset_name)
+ metadata = MetadataCatalog.get(dataset_name)
+
+ # unmap the category mapping ids for COCO
+ if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
+ reverse_id_mapping = {v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()}
+ reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id] # noqa
+ else:
+ reverse_id_mapper = lambda contiguous_id: contiguous_id # noqa
+
+ categories = [
+ {"id": reverse_id_mapper(id), "name": name}
+ for id, name in enumerate(metadata.thing_classes)
+ ]
+
+ logger.info("Converting dataset dicts into COCO format")
+ coco_images = []
+ coco_annotations = []
+
+ for image_id, image_dict in enumerate(dataset_dicts):
+ coco_image = {
+ "id": image_dict.get("image_id", image_id),
+ "width": image_dict["width"],
+ "height": image_dict["height"],
+ "file_name": image_dict["file_name"],
+ }
+ coco_images.append(coco_image)
+
+ anns_per_image = image_dict["annotations"]
+ for annotation in anns_per_image:
+ # create a new dict with only COCO fields
+ coco_annotation = {}
+
+ # COCO requirement: XYWH box format
+ bbox = annotation["bbox"]
+ bbox_mode = annotation["bbox_mode"]
+ bbox = BoxMode.convert(bbox, bbox_mode, BoxMode.XYWH_ABS)
+
+ # COCO requirement: instance area
+ if "segmentation" in annotation:
+ # Computing areas for instances by counting the pixels
+ segmentation = annotation["segmentation"]
+ # TODO: check segmentation type: RLE, BinaryMask or Polygon
+ if isinstance(segmentation, list):
+ polygons = PolygonMasks([segmentation])
+ area = polygons.area()[0].item()
+ elif isinstance(segmentation, dict): # RLE
+ area = mask_util.area(segmentation).item()
+ else:
+ raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
+ else:
+ # Computing areas using bounding boxes
+ bbox_xy = BoxMode.convert(bbox, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
+ area = Boxes([bbox_xy]).area()[0].item()
+
+ if "keypoints" in annotation:
+ keypoints = annotation["keypoints"] # list[int]
+ for idx, v in enumerate(keypoints):
+ if idx % 3 != 2:
+ # COCO's segmentation coordinates are floating points in [0, H or W],
+ # but keypoint coordinates are integers in [0, H-1 or W-1]
+ # For COCO format consistency we substract 0.5
+ # https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
+ keypoints[idx] = v - 0.5
+ if "num_keypoints" in annotation:
+ num_keypoints = annotation["num_keypoints"]
+ else:
+ num_keypoints = sum(kp > 0 for kp in keypoints[2::3])
+
+ # COCO requirement:
+ # linking annotations to images
+ # "id" field must start with 1
+ coco_annotation["id"] = len(coco_annotations) + 1
+ coco_annotation["image_id"] = coco_image["id"]
+ coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
+ coco_annotation["area"] = float(area)
+ coco_annotation["iscrowd"] = annotation.get("iscrowd", 0)
+ coco_annotation["category_id"] = reverse_id_mapper(annotation["category_id"])
+
+ # Add optional fields
+ if "keypoints" in annotation:
+ coco_annotation["keypoints"] = keypoints
+ coco_annotation["num_keypoints"] = num_keypoints
+
+ if "segmentation" in annotation:
+ coco_annotation["segmentation"] = annotation["segmentation"]
+ if isinstance(coco_annotation["segmentation"], dict): # RLE
+ coco_annotation["segmentation"]["counts"] = coco_annotation["segmentation"][
+ "counts"
+ ].decode("ascii")
+
+ coco_annotations.append(coco_annotation)
+
+ logger.info(
+ "Conversion finished, "
+ f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
+ )
+
+ info = {
+ "date_created": str(datetime.datetime.now()),
+ "description": "Automatically generated COCO json file for Detectron2.",
+ }
+ coco_dict = {
+ "info": info,
+ "images": coco_images,
+ "annotations": coco_annotations,
+ "categories": categories,
+ "licenses": None,
+ }
+ return coco_dict
+
+
+def convert_to_coco_json(dataset_name, output_file, allow_cached=True):
+ """
+ Converts dataset into COCO format and saves it to a json file.
+ dataset_name must be registered in DatasetCatalog and in detectron2's standard format.
+
+ Args:
+ dataset_name:
+ reference from the config file to the catalogs
+ must be registered in DatasetCatalog and in detectron2's standard format
+ output_file: path of json file that will be saved to
+ allow_cached: if json file is already present then skip conversion
+ """
+
+ # TODO: The dataset or the conversion script *may* change,
+ # a checksum would be useful for validating the cached data
+
+ PathManager.mkdirs(os.path.dirname(output_file))
+ with file_lock(output_file):
+ if PathManager.exists(output_file) and allow_cached:
+ logger.warning(
+ f"Using previously cached COCO format annotations at '{output_file}'. "
+ "You need to clear the cache file if your dataset has been modified."
+ )
+ else:
+ logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)")
+ coco_dict = convert_to_coco_dict(dataset_name)
+
+ logger.info(f"Caching COCO format annotations at '{output_file}' ...")
+ with PathManager.open(output_file, "w") as f:
+ json.dump(coco_dict, f)
+
+
+if __name__ == "__main__":
+ """
+ Test the COCO json dataset loader.
+
+ Usage:
+ python -m detectron2.data.data.coco \
+ path/to/json path/to/image_root dataset_name
+
+ "dataset_name" can be "coco_2014_minival_100", or other
+ pre-registered ones
+ """
+ from detectron2.utils.logger import setup_logger
+ from detectron2.utils.visualizer import Visualizer
+ import detectron2.data.datasets # noqa # add pre-defined metadata
+ import sys
+
+ logger = setup_logger(name=__name__)
+ assert sys.argv[3] in DatasetCatalog.list()
+ meta = MetadataCatalog.get(sys.argv[3])
+
+ dicts = load_coco_json(sys.argv[1], sys.argv[2], sys.argv[3])
+ logger.info("Done loading {} samples.".format(len(dicts)))
+
+ dirname = "coco-data-vis"
+ os.makedirs(dirname, exist_ok=True)
+ for d in dicts:
+ img = np.array(Image.open(d["file_name"]))
+ visualizer = Visualizer(img, metadata=meta)
+ vis = visualizer.draw_dataset_dict(d)
+ fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
+ vis.save(fpath)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b95be350a775af78aa6412f560a29e825ba61a1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis.py
@@ -0,0 +1,209 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import logging
+import os
+from fvcore.common.file_io import PathManager
+from fvcore.common.timer import Timer
+
+from detectron2.data import DatasetCatalog, MetadataCatalog
+from detectron2.structures import BoxMode
+
+from .builtin_meta import _get_coco_instances_meta
+from .lvis_v0_5_categories import LVIS_CATEGORIES
+
+"""
+This file contains functions to parse LVIS-format annotations into dicts in the
+"Detectron2 format".
+"""
+
+logger = logging.getLogger(__name__)
+
+__all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"]
+
+
+def register_lvis_instances(name, metadata, json_file, image_root):
+ """
+ Register a dataset in LVIS's json annotation format for instance detection and segmentation.
+
+ Args:
+ name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train".
+ metadata (dict): extra metadata associated with this dataset. It can be an empty dict.
+ json_file (str): path to the json instance annotation file.
+ image_root (str or path-like): directory which contains all the images.
+ """
+ DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name))
+ MetadataCatalog.get(name).set(
+ json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata
+ )
+
+
+def load_lvis_json(json_file, image_root, dataset_name=None):
+ """
+ Load a json file in LVIS's annotation format.
+
+ Args:
+ json_file (str): full path to the LVIS json annotation file.
+ image_root (str): the directory where the images in this json file exists.
+ dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train").
+ If provided, this function will put "thing_classes" into the metadata
+ associated with this dataset.
+
+ Returns:
+ list[dict]: a list of dicts in Detectron2 standard format. (See
+ `Using Custom Datasets `_ )
+
+ Notes:
+ 1. This function does not read the image files.
+ The results do not have the "image" field.
+ """
+ from lvis import LVIS
+
+ json_file = PathManager.get_local_path(json_file)
+
+ timer = Timer()
+ lvis_api = LVIS(json_file)
+ if timer.seconds() > 1:
+ logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
+
+ if dataset_name is not None:
+ meta = get_lvis_instances_meta(dataset_name)
+ MetadataCatalog.get(dataset_name).set(**meta)
+
+ # sort indices for reproducible results
+ img_ids = sorted(lvis_api.imgs.keys())
+ # imgs is a list of dicts, each looks something like:
+ # {'license': 4,
+ # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
+ # 'file_name': 'COCO_val2014_000000001268.jpg',
+ # 'height': 427,
+ # 'width': 640,
+ # 'date_captured': '2013-11-17 05:57:24',
+ # 'id': 1268}
+ imgs = lvis_api.load_imgs(img_ids)
+ # anns is a list[list[dict]], where each dict is an annotation
+ # record for an object. The inner list enumerates the objects in an image
+ # and the outer list enumerates over images. Example of anns[0]:
+ # [{'segmentation': [[192.81,
+ # 247.09,
+ # ...
+ # 219.03,
+ # 249.06]],
+ # 'area': 1035.749,
+ # 'image_id': 1268,
+ # 'bbox': [192.81, 224.8, 74.73, 33.43],
+ # 'category_id': 16,
+ # 'id': 42986},
+ # ...]
+ anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
+
+ # Sanity check that each annotation has a unique id
+ ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
+ assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique".format(
+ json_file
+ )
+
+ imgs_anns = list(zip(imgs, anns))
+
+ logger.info("Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file))
+
+ dataset_dicts = []
+
+ for (img_dict, anno_dict_list) in imgs_anns:
+ record = {}
+ file_name = img_dict["file_name"]
+ if img_dict["file_name"].startswith("COCO"):
+ # Convert form the COCO 2014 file naming convention of
+ # COCO_[train/val/test]2014_000000000000.jpg to the 2017 naming convention of
+ # 000000000000.jpg (LVIS v1 will fix this naming issue)
+ file_name = file_name[-16:]
+ record["file_name"] = os.path.join(image_root, file_name)
+ record["height"] = img_dict["height"]
+ record["width"] = img_dict["width"]
+ record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
+ record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
+ image_id = record["image_id"] = img_dict["id"]
+
+ objs = []
+ for anno in anno_dict_list:
+ # Check that the image_id in this annotation is the same as
+ # the image_id we're looking at.
+ # This fails only when the data parsing logic or the annotation file is buggy.
+ assert anno["image_id"] == image_id
+ obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
+ obj["category_id"] = anno["category_id"] - 1 # Convert 1-indexed to 0-indexed
+ segm = anno["segmentation"] # list[list[float]]
+ # filter out invalid polygons (< 3 points)
+ valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
+ assert len(segm) == len(
+ valid_segm
+ ), "Annotation contains an invalid polygon with < 3 points"
+ assert len(segm) > 0
+ obj["segmentation"] = segm
+ objs.append(obj)
+ record["annotations"] = objs
+ dataset_dicts.append(record)
+
+ return dataset_dicts
+
+
+def get_lvis_instances_meta(dataset_name):
+ """
+ Load LVIS metadata.
+
+ Args:
+ dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5").
+
+ Returns:
+ dict: LVIS metadata with keys: thing_classes
+ """
+ if "cocofied" in dataset_name:
+ return _get_coco_instances_meta()
+ if "v0.5" in dataset_name:
+ return _get_lvis_instances_meta_v0_5()
+ # There will be a v1 in the future
+ # elif dataset_name == "lvis_v1":
+ # return get_lvis_instances_meta_v1()
+ raise ValueError("No built-in metadata for dataset {}".format(dataset_name))
+
+
+def _get_lvis_instances_meta_v0_5():
+ assert len(LVIS_CATEGORIES) == 1230
+ cat_ids = [k["id"] for k in LVIS_CATEGORIES]
+ assert min(cat_ids) == 1 and max(cat_ids) == len(
+ cat_ids
+ ), "Category ids are not in [1, #categories], as expected"
+ # Ensure that the category list is sorted by id
+ lvis_categories = sorted(LVIS_CATEGORIES, key=lambda x: x["id"])
+ thing_classes = [k["synonyms"][0] for k in lvis_categories]
+ meta = {"thing_classes": thing_classes}
+ return meta
+
+
+if __name__ == "__main__":
+ """
+ Test the LVIS json dataset loader.
+
+ Usage:
+ python -m detectron2.data.data.lvis \
+ path/to/json path/to/image_root dataset_name vis_limit
+ """
+ import sys
+ import numpy as np
+ from detectron2.utils.logger import setup_logger
+ from PIL import Image
+ import detectron2.data.datasets # noqa # add pre-defined metadata
+ from detectron2.utils.visualizer import Visualizer
+
+ logger = setup_logger(name=__name__)
+ meta = MetadataCatalog.get(sys.argv[3])
+
+ dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3])
+ logger.info("Done loading {} samples.".format(len(dicts)))
+
+ dirname = "lvis-data-vis"
+ os.makedirs(dirname, exist_ok=True)
+ for d in dicts[: int(sys.argv[4])]:
+ img = np.array(Image.open(d["file_name"]))
+ visualizer = Visualizer(img, metadata=meta)
+ vis = visualizer.draw_dataset_dict(d)
+ fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
+ vis.save(fpath)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis_v0_5_categories.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis_v0_5_categories.py
new file mode 100644
index 0000000000000000000000000000000000000000..8205e605f85dab3674c6f1600d7675eef86b160f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/lvis_v0_5_categories.py
@@ -0,0 +1,13 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+# Autogen with
+# with open("lvis_v0.5_val.json", "r") as f:
+# a = json.load(f)
+# c = a["categories"]
+# for x in c:
+# del x["image_count"]
+# del x["instance_count"]
+# LVIS_CATEGORIES = repr(c) + " # noqa"
+
+# fmt: off
+LVIS_CATEGORIES = [{'frequency': 'r', 'id': 1, 'synset': 'acorn.n.01', 'synonyms': ['acorn'], 'def': 'nut from an oak tree', 'name': 'acorn'}, {'frequency': 'c', 'id': 2, 'synset': 'aerosol.n.02', 'synonyms': ['aerosol_can', 'spray_can'], 'def': 'a dispenser that holds a substance under pressure', 'name': 'aerosol_can'}, {'frequency': 'f', 'id': 3, 'synset': 'air_conditioner.n.01', 'synonyms': ['air_conditioner'], 'def': 'a machine that keeps air cool and dry', 'name': 'air_conditioner'}, {'frequency': 'f', 'id': 4, 'synset': 'airplane.n.01', 'synonyms': ['airplane', 'aeroplane'], 'def': 'an aircraft that has a fixed wing and is powered by propellers or jets', 'name': 'airplane'}, {'frequency': 'c', 'id': 5, 'synset': 'alarm_clock.n.01', 'synonyms': ['alarm_clock'], 'def': 'a clock that wakes a sleeper at some preset time', 'name': 'alarm_clock'}, {'frequency': 'c', 'id': 6, 'synset': 'alcohol.n.01', 'synonyms': ['alcohol', 'alcoholic_beverage'], 'def': 'a liquor or brew containing alcohol as the active agent', 'name': 'alcohol'}, {'frequency': 'r', 'id': 7, 'synset': 'alligator.n.02', 'synonyms': ['alligator', 'gator'], 'def': 'amphibious reptiles related to crocodiles but with shorter broader snouts', 'name': 'alligator'}, {'frequency': 'c', 'id': 8, 'synset': 'almond.n.02', 'synonyms': ['almond'], 'def': 'oval-shaped edible seed of the almond tree', 'name': 'almond'}, {'frequency': 'c', 'id': 9, 'synset': 'ambulance.n.01', 'synonyms': ['ambulance'], 'def': 'a vehicle that takes people to and from hospitals', 'name': 'ambulance'}, {'frequency': 'r', 'id': 10, 'synset': 'amplifier.n.01', 'synonyms': ['amplifier'], 'def': 'electronic equipment that increases strength of signals', 'name': 'amplifier'}, {'frequency': 'c', 'id': 11, 'synset': 'anklet.n.03', 'synonyms': ['anklet', 'ankle_bracelet'], 'def': 'an ornament worn around the ankle', 'name': 'anklet'}, {'frequency': 'f', 'id': 12, 'synset': 'antenna.n.01', 'synonyms': ['antenna', 'aerial', 'transmitting_aerial'], 'def': 'an electrical device that sends or receives radio or television signals', 'name': 'antenna'}, {'frequency': 'f', 'id': 13, 'synset': 'apple.n.01', 'synonyms': ['apple'], 'def': 'fruit with red or yellow or green skin and sweet to tart crisp whitish flesh', 'name': 'apple'}, {'frequency': 'r', 'id': 14, 'synset': 'apple_juice.n.01', 'synonyms': ['apple_juice'], 'def': 'the juice of apples', 'name': 'apple_juice'}, {'frequency': 'r', 'id': 15, 'synset': 'applesauce.n.01', 'synonyms': ['applesauce'], 'def': 'puree of stewed apples usually sweetened and spiced', 'name': 'applesauce'}, {'frequency': 'r', 'id': 16, 'synset': 'apricot.n.02', 'synonyms': ['apricot'], 'def': 'downy yellow to rosy-colored fruit resembling a small peach', 'name': 'apricot'}, {'frequency': 'f', 'id': 17, 'synset': 'apron.n.01', 'synonyms': ['apron'], 'def': 'a garment of cloth that is tied about the waist and worn to protect clothing', 'name': 'apron'}, {'frequency': 'c', 'id': 18, 'synset': 'aquarium.n.01', 'synonyms': ['aquarium', 'fish_tank'], 'def': 'a tank/pool/bowl filled with water for keeping live fish and underwater animals', 'name': 'aquarium'}, {'frequency': 'c', 'id': 19, 'synset': 'armband.n.02', 'synonyms': ['armband'], 'def': 'a band worn around the upper arm', 'name': 'armband'}, {'frequency': 'f', 'id': 20, 'synset': 'armchair.n.01', 'synonyms': ['armchair'], 'def': 'chair with a support on each side for arms', 'name': 'armchair'}, {'frequency': 'r', 'id': 21, 'synset': 'armoire.n.01', 'synonyms': ['armoire'], 'def': 'a large wardrobe or cabinet', 'name': 'armoire'}, {'frequency': 'r', 'id': 22, 'synset': 'armor.n.01', 'synonyms': ['armor', 'armour'], 'def': 'protective covering made of metal and used in combat', 'name': 'armor'}, {'frequency': 'c', 'id': 23, 'synset': 'artichoke.n.02', 'synonyms': ['artichoke'], 'def': 'a thistlelike flower head with edible fleshy leaves and heart', 'name': 'artichoke'}, {'frequency': 'f', 'id': 24, 'synset': 'ashcan.n.01', 'synonyms': ['trash_can', 'garbage_can', 'wastebin', 'dustbin', 'trash_barrel', 'trash_bin'], 'def': 'a bin that holds rubbish until it is collected', 'name': 'trash_can'}, {'frequency': 'c', 'id': 25, 'synset': 'ashtray.n.01', 'synonyms': ['ashtray'], 'def': "a receptacle for the ash from smokers' cigars or cigarettes", 'name': 'ashtray'}, {'frequency': 'c', 'id': 26, 'synset': 'asparagus.n.02', 'synonyms': ['asparagus'], 'def': 'edible young shoots of the asparagus plant', 'name': 'asparagus'}, {'frequency': 'c', 'id': 27, 'synset': 'atomizer.n.01', 'synonyms': ['atomizer', 'atomiser', 'spray', 'sprayer', 'nebulizer', 'nebuliser'], 'def': 'a dispenser that turns a liquid (such as perfume) into a fine mist', 'name': 'atomizer'}, {'frequency': 'c', 'id': 28, 'synset': 'avocado.n.01', 'synonyms': ['avocado'], 'def': 'a pear-shaped fruit with green or blackish skin and rich yellowish pulp enclosing a single large seed', 'name': 'avocado'}, {'frequency': 'c', 'id': 29, 'synset': 'award.n.02', 'synonyms': ['award', 'accolade'], 'def': 'a tangible symbol signifying approval or distinction', 'name': 'award'}, {'frequency': 'f', 'id': 30, 'synset': 'awning.n.01', 'synonyms': ['awning'], 'def': 'a canopy made of canvas to shelter people or things from rain or sun', 'name': 'awning'}, {'frequency': 'r', 'id': 31, 'synset': 'ax.n.01', 'synonyms': ['ax', 'axe'], 'def': 'an edge tool with a heavy bladed head mounted across a handle', 'name': 'ax'}, {'frequency': 'f', 'id': 32, 'synset': 'baby_buggy.n.01', 'synonyms': ['baby_buggy', 'baby_carriage', 'perambulator', 'pram', 'stroller'], 'def': 'a small vehicle with four wheels in which a baby or child is pushed around', 'name': 'baby_buggy'}, {'frequency': 'c', 'id': 33, 'synset': 'backboard.n.01', 'synonyms': ['basketball_backboard'], 'def': 'a raised vertical board with basket attached; used to play basketball', 'name': 'basketball_backboard'}, {'frequency': 'f', 'id': 34, 'synset': 'backpack.n.01', 'synonyms': ['backpack', 'knapsack', 'packsack', 'rucksack', 'haversack'], 'def': 'a bag carried by a strap on your back or shoulder', 'name': 'backpack'}, {'frequency': 'f', 'id': 35, 'synset': 'bag.n.04', 'synonyms': ['handbag', 'purse', 'pocketbook'], 'def': 'a container used for carrying money and small personal items or accessories', 'name': 'handbag'}, {'frequency': 'f', 'id': 36, 'synset': 'bag.n.06', 'synonyms': ['suitcase', 'baggage', 'luggage'], 'def': 'cases used to carry belongings when traveling', 'name': 'suitcase'}, {'frequency': 'c', 'id': 37, 'synset': 'bagel.n.01', 'synonyms': ['bagel', 'beigel'], 'def': 'glazed yeast-raised doughnut-shaped roll with hard crust', 'name': 'bagel'}, {'frequency': 'r', 'id': 38, 'synset': 'bagpipe.n.01', 'synonyms': ['bagpipe'], 'def': 'a tubular wind instrument; the player blows air into a bag and squeezes it out', 'name': 'bagpipe'}, {'frequency': 'r', 'id': 39, 'synset': 'baguet.n.01', 'synonyms': ['baguet', 'baguette'], 'def': 'narrow French stick loaf', 'name': 'baguet'}, {'frequency': 'r', 'id': 40, 'synset': 'bait.n.02', 'synonyms': ['bait', 'lure'], 'def': 'something used to lure fish or other animals into danger so they can be trapped or killed', 'name': 'bait'}, {'frequency': 'f', 'id': 41, 'synset': 'ball.n.06', 'synonyms': ['ball'], 'def': 'a spherical object used as a plaything', 'name': 'ball'}, {'frequency': 'r', 'id': 42, 'synset': 'ballet_skirt.n.01', 'synonyms': ['ballet_skirt', 'tutu'], 'def': 'very short skirt worn by ballerinas', 'name': 'ballet_skirt'}, {'frequency': 'f', 'id': 43, 'synset': 'balloon.n.01', 'synonyms': ['balloon'], 'def': 'large tough nonrigid bag filled with gas or heated air', 'name': 'balloon'}, {'frequency': 'c', 'id': 44, 'synset': 'bamboo.n.02', 'synonyms': ['bamboo'], 'def': 'woody tropical grass having hollow woody stems', 'name': 'bamboo'}, {'frequency': 'f', 'id': 45, 'synset': 'banana.n.02', 'synonyms': ['banana'], 'def': 'elongated crescent-shaped yellow fruit with soft sweet flesh', 'name': 'banana'}, {'frequency': 'r', 'id': 46, 'synset': 'band_aid.n.01', 'synonyms': ['Band_Aid'], 'def': 'trade name for an adhesive bandage to cover small cuts or blisters', 'name': 'Band_Aid'}, {'frequency': 'c', 'id': 47, 'synset': 'bandage.n.01', 'synonyms': ['bandage'], 'def': 'a piece of soft material that covers and protects an injured part of the body', 'name': 'bandage'}, {'frequency': 'c', 'id': 48, 'synset': 'bandanna.n.01', 'synonyms': ['bandanna', 'bandana'], 'def': 'large and brightly colored handkerchief; often used as a neckerchief', 'name': 'bandanna'}, {'frequency': 'r', 'id': 49, 'synset': 'banjo.n.01', 'synonyms': ['banjo'], 'def': 'a stringed instrument of the guitar family with a long neck and circular body', 'name': 'banjo'}, {'frequency': 'f', 'id': 50, 'synset': 'banner.n.01', 'synonyms': ['banner', 'streamer'], 'def': 'long strip of cloth or paper used for decoration or advertising', 'name': 'banner'}, {'frequency': 'r', 'id': 51, 'synset': 'barbell.n.01', 'synonyms': ['barbell'], 'def': 'a bar to which heavy discs are attached at each end; used in weightlifting', 'name': 'barbell'}, {'frequency': 'r', 'id': 52, 'synset': 'barge.n.01', 'synonyms': ['barge'], 'def': 'a flatbottom boat for carrying heavy loads (especially on canals)', 'name': 'barge'}, {'frequency': 'f', 'id': 53, 'synset': 'barrel.n.02', 'synonyms': ['barrel', 'cask'], 'def': 'a cylindrical container that holds liquids', 'name': 'barrel'}, {'frequency': 'c', 'id': 54, 'synset': 'barrette.n.01', 'synonyms': ['barrette'], 'def': "a pin for holding women's hair in place", 'name': 'barrette'}, {'frequency': 'c', 'id': 55, 'synset': 'barrow.n.03', 'synonyms': ['barrow', 'garden_cart', 'lawn_cart', 'wheelbarrow'], 'def': 'a cart for carrying small loads; has handles and one or more wheels', 'name': 'barrow'}, {'frequency': 'f', 'id': 56, 'synset': 'base.n.03', 'synonyms': ['baseball_base'], 'def': 'a place that the runner must touch before scoring', 'name': 'baseball_base'}, {'frequency': 'f', 'id': 57, 'synset': 'baseball.n.02', 'synonyms': ['baseball'], 'def': 'a ball used in playing baseball', 'name': 'baseball'}, {'frequency': 'f', 'id': 58, 'synset': 'baseball_bat.n.01', 'synonyms': ['baseball_bat'], 'def': 'an implement used in baseball by the batter', 'name': 'baseball_bat'}, {'frequency': 'f', 'id': 59, 'synset': 'baseball_cap.n.01', 'synonyms': ['baseball_cap', 'jockey_cap', 'golf_cap'], 'def': 'a cap with a bill', 'name': 'baseball_cap'}, {'frequency': 'f', 'id': 60, 'synset': 'baseball_glove.n.01', 'synonyms': ['baseball_glove', 'baseball_mitt'], 'def': 'the handwear used by fielders in playing baseball', 'name': 'baseball_glove'}, {'frequency': 'f', 'id': 61, 'synset': 'basket.n.01', 'synonyms': ['basket', 'handbasket'], 'def': 'a container that is usually woven and has handles', 'name': 'basket'}, {'frequency': 'c', 'id': 62, 'synset': 'basket.n.03', 'synonyms': ['basketball_hoop'], 'def': 'metal hoop supporting a net through which players try to throw the basketball', 'name': 'basketball_hoop'}, {'frequency': 'c', 'id': 63, 'synset': 'basketball.n.02', 'synonyms': ['basketball'], 'def': 'an inflated ball used in playing basketball', 'name': 'basketball'}, {'frequency': 'r', 'id': 64, 'synset': 'bass_horn.n.01', 'synonyms': ['bass_horn', 'sousaphone', 'tuba'], 'def': 'the lowest brass wind instrument', 'name': 'bass_horn'}, {'frequency': 'r', 'id': 65, 'synset': 'bat.n.01', 'synonyms': ['bat_(animal)'], 'def': 'nocturnal mouselike mammal with forelimbs modified to form membranous wings', 'name': 'bat_(animal)'}, {'frequency': 'f', 'id': 66, 'synset': 'bath_mat.n.01', 'synonyms': ['bath_mat'], 'def': 'a heavy towel or mat to stand on while drying yourself after a bath', 'name': 'bath_mat'}, {'frequency': 'f', 'id': 67, 'synset': 'bath_towel.n.01', 'synonyms': ['bath_towel'], 'def': 'a large towel; to dry yourself after a bath', 'name': 'bath_towel'}, {'frequency': 'c', 'id': 68, 'synset': 'bathrobe.n.01', 'synonyms': ['bathrobe'], 'def': 'a loose-fitting robe of towelling; worn after a bath or swim', 'name': 'bathrobe'}, {'frequency': 'f', 'id': 69, 'synset': 'bathtub.n.01', 'synonyms': ['bathtub', 'bathing_tub'], 'def': 'a large open container that you fill with water and use to wash the body', 'name': 'bathtub'}, {'frequency': 'r', 'id': 70, 'synset': 'batter.n.02', 'synonyms': ['batter_(food)'], 'def': 'a liquid or semiliquid mixture, as of flour, eggs, and milk, used in cooking', 'name': 'batter_(food)'}, {'frequency': 'c', 'id': 71, 'synset': 'battery.n.02', 'synonyms': ['battery'], 'def': 'a portable device that produces electricity', 'name': 'battery'}, {'frequency': 'r', 'id': 72, 'synset': 'beach_ball.n.01', 'synonyms': ['beachball'], 'def': 'large and light ball; for play at the seaside', 'name': 'beachball'}, {'frequency': 'c', 'id': 73, 'synset': 'bead.n.01', 'synonyms': ['bead'], 'def': 'a small ball with a hole through the middle used for ornamentation, jewellery, etc.', 'name': 'bead'}, {'frequency': 'r', 'id': 74, 'synset': 'beaker.n.01', 'synonyms': ['beaker'], 'def': 'a flatbottomed jar made of glass or plastic; used for chemistry', 'name': 'beaker'}, {'frequency': 'c', 'id': 75, 'synset': 'bean_curd.n.01', 'synonyms': ['bean_curd', 'tofu'], 'def': 'cheeselike food made of curdled soybean milk', 'name': 'bean_curd'}, {'frequency': 'c', 'id': 76, 'synset': 'beanbag.n.01', 'synonyms': ['beanbag'], 'def': 'a bag filled with dried beans or similar items; used in games or to sit on', 'name': 'beanbag'}, {'frequency': 'f', 'id': 77, 'synset': 'beanie.n.01', 'synonyms': ['beanie', 'beany'], 'def': 'a small skullcap; formerly worn by schoolboys and college freshmen', 'name': 'beanie'}, {'frequency': 'f', 'id': 78, 'synset': 'bear.n.01', 'synonyms': ['bear'], 'def': 'large carnivorous or omnivorous mammals with shaggy coats and claws', 'name': 'bear'}, {'frequency': 'f', 'id': 79, 'synset': 'bed.n.01', 'synonyms': ['bed'], 'def': 'a piece of furniture that provides a place to sleep', 'name': 'bed'}, {'frequency': 'c', 'id': 80, 'synset': 'bedspread.n.01', 'synonyms': ['bedspread', 'bedcover', 'bed_covering', 'counterpane', 'spread'], 'def': 'decorative cover for a bed', 'name': 'bedspread'}, {'frequency': 'f', 'id': 81, 'synset': 'beef.n.01', 'synonyms': ['cow'], 'def': 'cattle that are reared for their meat', 'name': 'cow'}, {'frequency': 'c', 'id': 82, 'synset': 'beef.n.02', 'synonyms': ['beef_(food)', 'boeuf_(food)'], 'def': 'meat from an adult domestic bovine', 'name': 'beef_(food)'}, {'frequency': 'r', 'id': 83, 'synset': 'beeper.n.01', 'synonyms': ['beeper', 'pager'], 'def': 'an device that beeps when the person carrying it is being paged', 'name': 'beeper'}, {'frequency': 'f', 'id': 84, 'synset': 'beer_bottle.n.01', 'synonyms': ['beer_bottle'], 'def': 'a bottle that holds beer', 'name': 'beer_bottle'}, {'frequency': 'c', 'id': 85, 'synset': 'beer_can.n.01', 'synonyms': ['beer_can'], 'def': 'a can that holds beer', 'name': 'beer_can'}, {'frequency': 'r', 'id': 86, 'synset': 'beetle.n.01', 'synonyms': ['beetle'], 'def': 'insect with hard wing covers', 'name': 'beetle'}, {'frequency': 'f', 'id': 87, 'synset': 'bell.n.01', 'synonyms': ['bell'], 'def': 'a hollow device made of metal that makes a ringing sound when struck', 'name': 'bell'}, {'frequency': 'f', 'id': 88, 'synset': 'bell_pepper.n.02', 'synonyms': ['bell_pepper', 'capsicum'], 'def': 'large bell-shaped sweet pepper in green or red or yellow or orange or black varieties', 'name': 'bell_pepper'}, {'frequency': 'f', 'id': 89, 'synset': 'belt.n.02', 'synonyms': ['belt'], 'def': 'a band to tie or buckle around the body (usually at the waist)', 'name': 'belt'}, {'frequency': 'f', 'id': 90, 'synset': 'belt_buckle.n.01', 'synonyms': ['belt_buckle'], 'def': 'the buckle used to fasten a belt', 'name': 'belt_buckle'}, {'frequency': 'f', 'id': 91, 'synset': 'bench.n.01', 'synonyms': ['bench'], 'def': 'a long seat for more than one person', 'name': 'bench'}, {'frequency': 'c', 'id': 92, 'synset': 'beret.n.01', 'synonyms': ['beret'], 'def': 'a cap with no brim or bill; made of soft cloth', 'name': 'beret'}, {'frequency': 'c', 'id': 93, 'synset': 'bib.n.02', 'synonyms': ['bib'], 'def': 'a napkin tied under the chin of a child while eating', 'name': 'bib'}, {'frequency': 'r', 'id': 94, 'synset': 'bible.n.01', 'synonyms': ['Bible'], 'def': 'the sacred writings of the Christian religions', 'name': 'Bible'}, {'frequency': 'f', 'id': 95, 'synset': 'bicycle.n.01', 'synonyms': ['bicycle', 'bike_(bicycle)'], 'def': 'a wheeled vehicle that has two wheels and is moved by foot pedals', 'name': 'bicycle'}, {'frequency': 'f', 'id': 96, 'synset': 'bill.n.09', 'synonyms': ['visor', 'vizor'], 'def': 'a brim that projects to the front to shade the eyes', 'name': 'visor'}, {'frequency': 'c', 'id': 97, 'synset': 'binder.n.03', 'synonyms': ['binder', 'ring-binder'], 'def': 'holds loose papers or magazines', 'name': 'binder'}, {'frequency': 'c', 'id': 98, 'synset': 'binoculars.n.01', 'synonyms': ['binoculars', 'field_glasses', 'opera_glasses'], 'def': 'an optical instrument designed for simultaneous use by both eyes', 'name': 'binoculars'}, {'frequency': 'f', 'id': 99, 'synset': 'bird.n.01', 'synonyms': ['bird'], 'def': 'animal characterized by feathers and wings', 'name': 'bird'}, {'frequency': 'r', 'id': 100, 'synset': 'bird_feeder.n.01', 'synonyms': ['birdfeeder'], 'def': 'an outdoor device that supplies food for wild birds', 'name': 'birdfeeder'}, {'frequency': 'r', 'id': 101, 'synset': 'birdbath.n.01', 'synonyms': ['birdbath'], 'def': 'an ornamental basin (usually in a garden) for birds to bathe in', 'name': 'birdbath'}, {'frequency': 'c', 'id': 102, 'synset': 'birdcage.n.01', 'synonyms': ['birdcage'], 'def': 'a cage in which a bird can be kept', 'name': 'birdcage'}, {'frequency': 'c', 'id': 103, 'synset': 'birdhouse.n.01', 'synonyms': ['birdhouse'], 'def': 'a shelter for birds', 'name': 'birdhouse'}, {'frequency': 'f', 'id': 104, 'synset': 'birthday_cake.n.01', 'synonyms': ['birthday_cake'], 'def': 'decorated cake served at a birthday party', 'name': 'birthday_cake'}, {'frequency': 'r', 'id': 105, 'synset': 'birthday_card.n.01', 'synonyms': ['birthday_card'], 'def': 'a card expressing a birthday greeting', 'name': 'birthday_card'}, {'frequency': 'r', 'id': 106, 'synset': 'biscuit.n.01', 'synonyms': ['biscuit_(bread)'], 'def': 'small round bread leavened with baking-powder or soda', 'name': 'biscuit_(bread)'}, {'frequency': 'r', 'id': 107, 'synset': 'black_flag.n.01', 'synonyms': ['pirate_flag'], 'def': 'a flag usually bearing a white skull and crossbones on a black background', 'name': 'pirate_flag'}, {'frequency': 'c', 'id': 108, 'synset': 'black_sheep.n.02', 'synonyms': ['black_sheep'], 'def': 'sheep with a black coat', 'name': 'black_sheep'}, {'frequency': 'c', 'id': 109, 'synset': 'blackboard.n.01', 'synonyms': ['blackboard', 'chalkboard'], 'def': 'sheet of slate; for writing with chalk', 'name': 'blackboard'}, {'frequency': 'f', 'id': 110, 'synset': 'blanket.n.01', 'synonyms': ['blanket'], 'def': 'bedding that keeps a person warm in bed', 'name': 'blanket'}, {'frequency': 'c', 'id': 111, 'synset': 'blazer.n.01', 'synonyms': ['blazer', 'sport_jacket', 'sport_coat', 'sports_jacket', 'sports_coat'], 'def': 'lightweight jacket; often striped in the colors of a club or school', 'name': 'blazer'}, {'frequency': 'f', 'id': 112, 'synset': 'blender.n.01', 'synonyms': ['blender', 'liquidizer', 'liquidiser'], 'def': 'an electrically powered mixer that mix or chop or liquefy foods', 'name': 'blender'}, {'frequency': 'r', 'id': 113, 'synset': 'blimp.n.02', 'synonyms': ['blimp'], 'def': 'a small nonrigid airship used for observation or as a barrage balloon', 'name': 'blimp'}, {'frequency': 'c', 'id': 114, 'synset': 'blinker.n.01', 'synonyms': ['blinker', 'flasher'], 'def': 'a light that flashes on and off; used as a signal or to send messages', 'name': 'blinker'}, {'frequency': 'c', 'id': 115, 'synset': 'blueberry.n.02', 'synonyms': ['blueberry'], 'def': 'sweet edible dark-blue berries of blueberry plants', 'name': 'blueberry'}, {'frequency': 'r', 'id': 116, 'synset': 'boar.n.02', 'synonyms': ['boar'], 'def': 'an uncastrated male hog', 'name': 'boar'}, {'frequency': 'r', 'id': 117, 'synset': 'board.n.09', 'synonyms': ['gameboard'], 'def': 'a flat portable surface (usually rectangular) designed for board games', 'name': 'gameboard'}, {'frequency': 'f', 'id': 118, 'synset': 'boat.n.01', 'synonyms': ['boat', 'ship_(boat)'], 'def': 'a vessel for travel on water', 'name': 'boat'}, {'frequency': 'c', 'id': 119, 'synset': 'bobbin.n.01', 'synonyms': ['bobbin', 'spool', 'reel'], 'def': 'a thing around which thread/tape/film or other flexible materials can be wound', 'name': 'bobbin'}, {'frequency': 'r', 'id': 120, 'synset': 'bobby_pin.n.01', 'synonyms': ['bobby_pin', 'hairgrip'], 'def': 'a flat wire hairpin used to hold bobbed hair in place', 'name': 'bobby_pin'}, {'frequency': 'c', 'id': 121, 'synset': 'boiled_egg.n.01', 'synonyms': ['boiled_egg', 'coddled_egg'], 'def': 'egg cooked briefly in the shell in gently boiling water', 'name': 'boiled_egg'}, {'frequency': 'r', 'id': 122, 'synset': 'bolo_tie.n.01', 'synonyms': ['bolo_tie', 'bolo', 'bola_tie', 'bola'], 'def': 'a cord fastened around the neck with an ornamental clasp and worn as a necktie', 'name': 'bolo_tie'}, {'frequency': 'c', 'id': 123, 'synset': 'bolt.n.03', 'synonyms': ['deadbolt'], 'def': 'the part of a lock that is engaged or withdrawn with a key', 'name': 'deadbolt'}, {'frequency': 'f', 'id': 124, 'synset': 'bolt.n.06', 'synonyms': ['bolt'], 'def': 'a screw that screws into a nut to form a fastener', 'name': 'bolt'}, {'frequency': 'r', 'id': 125, 'synset': 'bonnet.n.01', 'synonyms': ['bonnet'], 'def': 'a hat tied under the chin', 'name': 'bonnet'}, {'frequency': 'f', 'id': 126, 'synset': 'book.n.01', 'synonyms': ['book'], 'def': 'a written work or composition that has been published', 'name': 'book'}, {'frequency': 'r', 'id': 127, 'synset': 'book_bag.n.01', 'synonyms': ['book_bag'], 'def': 'a bag in which students carry their books', 'name': 'book_bag'}, {'frequency': 'c', 'id': 128, 'synset': 'bookcase.n.01', 'synonyms': ['bookcase'], 'def': 'a piece of furniture with shelves for storing books', 'name': 'bookcase'}, {'frequency': 'c', 'id': 129, 'synset': 'booklet.n.01', 'synonyms': ['booklet', 'brochure', 'leaflet', 'pamphlet'], 'def': 'a small book usually having a paper cover', 'name': 'booklet'}, {'frequency': 'r', 'id': 130, 'synset': 'bookmark.n.01', 'synonyms': ['bookmark', 'bookmarker'], 'def': 'a marker (a piece of paper or ribbon) placed between the pages of a book', 'name': 'bookmark'}, {'frequency': 'r', 'id': 131, 'synset': 'boom.n.04', 'synonyms': ['boom_microphone', 'microphone_boom'], 'def': 'a pole carrying an overhead microphone projected over a film or tv set', 'name': 'boom_microphone'}, {'frequency': 'f', 'id': 132, 'synset': 'boot.n.01', 'synonyms': ['boot'], 'def': 'footwear that covers the whole foot and lower leg', 'name': 'boot'}, {'frequency': 'f', 'id': 133, 'synset': 'bottle.n.01', 'synonyms': ['bottle'], 'def': 'a glass or plastic vessel used for storing drinks or other liquids', 'name': 'bottle'}, {'frequency': 'c', 'id': 134, 'synset': 'bottle_opener.n.01', 'synonyms': ['bottle_opener'], 'def': 'an opener for removing caps or corks from bottles', 'name': 'bottle_opener'}, {'frequency': 'c', 'id': 135, 'synset': 'bouquet.n.01', 'synonyms': ['bouquet'], 'def': 'an arrangement of flowers that is usually given as a present', 'name': 'bouquet'}, {'frequency': 'r', 'id': 136, 'synset': 'bow.n.04', 'synonyms': ['bow_(weapon)'], 'def': 'a weapon for shooting arrows', 'name': 'bow_(weapon)'}, {'frequency': 'f', 'id': 137, 'synset': 'bow.n.08', 'synonyms': ['bow_(decorative_ribbons)'], 'def': 'a decorative interlacing of ribbons', 'name': 'bow_(decorative_ribbons)'}, {'frequency': 'f', 'id': 138, 'synset': 'bow_tie.n.01', 'synonyms': ['bow-tie', 'bowtie'], 'def': "a man's tie that ties in a bow", 'name': 'bow-tie'}, {'frequency': 'f', 'id': 139, 'synset': 'bowl.n.03', 'synonyms': ['bowl'], 'def': 'a dish that is round and open at the top for serving foods', 'name': 'bowl'}, {'frequency': 'r', 'id': 140, 'synset': 'bowl.n.08', 'synonyms': ['pipe_bowl'], 'def': 'a small round container that is open at the top for holding tobacco', 'name': 'pipe_bowl'}, {'frequency': 'c', 'id': 141, 'synset': 'bowler_hat.n.01', 'synonyms': ['bowler_hat', 'bowler', 'derby_hat', 'derby', 'plug_hat'], 'def': 'a felt hat that is round and hard with a narrow brim', 'name': 'bowler_hat'}, {'frequency': 'r', 'id': 142, 'synset': 'bowling_ball.n.01', 'synonyms': ['bowling_ball'], 'def': 'a large ball with finger holes used in the sport of bowling', 'name': 'bowling_ball'}, {'frequency': 'r', 'id': 143, 'synset': 'bowling_pin.n.01', 'synonyms': ['bowling_pin'], 'def': 'a club-shaped wooden object used in bowling', 'name': 'bowling_pin'}, {'frequency': 'r', 'id': 144, 'synset': 'boxing_glove.n.01', 'synonyms': ['boxing_glove'], 'def': 'large glove coverings the fists of a fighter worn for the sport of boxing', 'name': 'boxing_glove'}, {'frequency': 'c', 'id': 145, 'synset': 'brace.n.06', 'synonyms': ['suspenders'], 'def': 'elastic straps that hold trousers up (usually used in the plural)', 'name': 'suspenders'}, {'frequency': 'f', 'id': 146, 'synset': 'bracelet.n.02', 'synonyms': ['bracelet', 'bangle'], 'def': 'jewelry worn around the wrist for decoration', 'name': 'bracelet'}, {'frequency': 'r', 'id': 147, 'synset': 'brass.n.07', 'synonyms': ['brass_plaque'], 'def': 'a memorial made of brass', 'name': 'brass_plaque'}, {'frequency': 'c', 'id': 148, 'synset': 'brassiere.n.01', 'synonyms': ['brassiere', 'bra', 'bandeau'], 'def': 'an undergarment worn by women to support their breasts', 'name': 'brassiere'}, {'frequency': 'c', 'id': 149, 'synset': 'bread-bin.n.01', 'synonyms': ['bread-bin', 'breadbox'], 'def': 'a container used to keep bread or cake in', 'name': 'bread-bin'}, {'frequency': 'r', 'id': 150, 'synset': 'breechcloth.n.01', 'synonyms': ['breechcloth', 'breechclout', 'loincloth'], 'def': 'a garment that provides covering for the loins', 'name': 'breechcloth'}, {'frequency': 'c', 'id': 151, 'synset': 'bridal_gown.n.01', 'synonyms': ['bridal_gown', 'wedding_gown', 'wedding_dress'], 'def': 'a gown worn by the bride at a wedding', 'name': 'bridal_gown'}, {'frequency': 'c', 'id': 152, 'synset': 'briefcase.n.01', 'synonyms': ['briefcase'], 'def': 'a case with a handle; for carrying papers or files or books', 'name': 'briefcase'}, {'frequency': 'c', 'id': 153, 'synset': 'bristle_brush.n.01', 'synonyms': ['bristle_brush'], 'def': 'a brush that is made with the short stiff hairs of an animal or plant', 'name': 'bristle_brush'}, {'frequency': 'f', 'id': 154, 'synset': 'broccoli.n.01', 'synonyms': ['broccoli'], 'def': 'plant with dense clusters of tight green flower buds', 'name': 'broccoli'}, {'frequency': 'r', 'id': 155, 'synset': 'brooch.n.01', 'synonyms': ['broach'], 'def': 'a decorative pin worn by women', 'name': 'broach'}, {'frequency': 'c', 'id': 156, 'synset': 'broom.n.01', 'synonyms': ['broom'], 'def': 'bundle of straws or twigs attached to a long handle; used for cleaning', 'name': 'broom'}, {'frequency': 'c', 'id': 157, 'synset': 'brownie.n.03', 'synonyms': ['brownie'], 'def': 'square or bar of very rich chocolate cake usually with nuts', 'name': 'brownie'}, {'frequency': 'c', 'id': 158, 'synset': 'brussels_sprouts.n.01', 'synonyms': ['brussels_sprouts'], 'def': 'the small edible cabbage-like buds growing along a stalk', 'name': 'brussels_sprouts'}, {'frequency': 'r', 'id': 159, 'synset': 'bubble_gum.n.01', 'synonyms': ['bubble_gum'], 'def': 'a kind of chewing gum that can be blown into bubbles', 'name': 'bubble_gum'}, {'frequency': 'f', 'id': 160, 'synset': 'bucket.n.01', 'synonyms': ['bucket', 'pail'], 'def': 'a roughly cylindrical vessel that is open at the top', 'name': 'bucket'}, {'frequency': 'r', 'id': 161, 'synset': 'buggy.n.01', 'synonyms': ['horse_buggy'], 'def': 'a small lightweight carriage; drawn by a single horse', 'name': 'horse_buggy'}, {'frequency': 'c', 'id': 162, 'synset': 'bull.n.11', 'synonyms': ['bull'], 'def': 'mature male cow', 'name': 'bull'}, {'frequency': 'r', 'id': 163, 'synset': 'bulldog.n.01', 'synonyms': ['bulldog'], 'def': 'a thickset short-haired dog with a large head and strong undershot lower jaw', 'name': 'bulldog'}, {'frequency': 'r', 'id': 164, 'synset': 'bulldozer.n.01', 'synonyms': ['bulldozer', 'dozer'], 'def': 'large powerful tractor; a large blade in front flattens areas of ground', 'name': 'bulldozer'}, {'frequency': 'c', 'id': 165, 'synset': 'bullet_train.n.01', 'synonyms': ['bullet_train'], 'def': 'a high-speed passenger train', 'name': 'bullet_train'}, {'frequency': 'c', 'id': 166, 'synset': 'bulletin_board.n.02', 'synonyms': ['bulletin_board', 'notice_board'], 'def': 'a board that hangs on a wall; displays announcements', 'name': 'bulletin_board'}, {'frequency': 'r', 'id': 167, 'synset': 'bulletproof_vest.n.01', 'synonyms': ['bulletproof_vest'], 'def': 'a vest capable of resisting the impact of a bullet', 'name': 'bulletproof_vest'}, {'frequency': 'c', 'id': 168, 'synset': 'bullhorn.n.01', 'synonyms': ['bullhorn', 'megaphone'], 'def': 'a portable loudspeaker with built-in microphone and amplifier', 'name': 'bullhorn'}, {'frequency': 'r', 'id': 169, 'synset': 'bully_beef.n.01', 'synonyms': ['corned_beef', 'corn_beef'], 'def': 'beef cured or pickled in brine', 'name': 'corned_beef'}, {'frequency': 'f', 'id': 170, 'synset': 'bun.n.01', 'synonyms': ['bun', 'roll'], 'def': 'small rounded bread either plain or sweet', 'name': 'bun'}, {'frequency': 'c', 'id': 171, 'synset': 'bunk_bed.n.01', 'synonyms': ['bunk_bed'], 'def': 'beds built one above the other', 'name': 'bunk_bed'}, {'frequency': 'f', 'id': 172, 'synset': 'buoy.n.01', 'synonyms': ['buoy'], 'def': 'a float attached by rope to the seabed to mark channels in a harbor or underwater hazards', 'name': 'buoy'}, {'frequency': 'r', 'id': 173, 'synset': 'burrito.n.01', 'synonyms': ['burrito'], 'def': 'a flour tortilla folded around a filling', 'name': 'burrito'}, {'frequency': 'f', 'id': 174, 'synset': 'bus.n.01', 'synonyms': ['bus_(vehicle)', 'autobus', 'charabanc', 'double-decker', 'motorbus', 'motorcoach'], 'def': 'a vehicle carrying many passengers; used for public transport', 'name': 'bus_(vehicle)'}, {'frequency': 'c', 'id': 175, 'synset': 'business_card.n.01', 'synonyms': ['business_card'], 'def': "a card on which are printed the person's name and business affiliation", 'name': 'business_card'}, {'frequency': 'c', 'id': 176, 'synset': 'butcher_knife.n.01', 'synonyms': ['butcher_knife'], 'def': 'a large sharp knife for cutting or trimming meat', 'name': 'butcher_knife'}, {'frequency': 'c', 'id': 177, 'synset': 'butter.n.01', 'synonyms': ['butter'], 'def': 'an edible emulsion of fat globules made by churning milk or cream; for cooking and table use', 'name': 'butter'}, {'frequency': 'c', 'id': 178, 'synset': 'butterfly.n.01', 'synonyms': ['butterfly'], 'def': 'insect typically having a slender body with knobbed antennae and broad colorful wings', 'name': 'butterfly'}, {'frequency': 'f', 'id': 179, 'synset': 'button.n.01', 'synonyms': ['button'], 'def': 'a round fastener sewn to shirts and coats etc to fit through buttonholes', 'name': 'button'}, {'frequency': 'f', 'id': 180, 'synset': 'cab.n.03', 'synonyms': ['cab_(taxi)', 'taxi', 'taxicab'], 'def': 'a car that takes passengers where they want to go in exchange for money', 'name': 'cab_(taxi)'}, {'frequency': 'r', 'id': 181, 'synset': 'cabana.n.01', 'synonyms': ['cabana'], 'def': 'a small tent used as a dressing room beside the sea or a swimming pool', 'name': 'cabana'}, {'frequency': 'r', 'id': 182, 'synset': 'cabin_car.n.01', 'synonyms': ['cabin_car', 'caboose'], 'def': 'a car on a freight train for use of the train crew; usually the last car on the train', 'name': 'cabin_car'}, {'frequency': 'f', 'id': 183, 'synset': 'cabinet.n.01', 'synonyms': ['cabinet'], 'def': 'a piece of furniture resembling a cupboard with doors and shelves and drawers', 'name': 'cabinet'}, {'frequency': 'r', 'id': 184, 'synset': 'cabinet.n.03', 'synonyms': ['locker', 'storage_locker'], 'def': 'a storage compartment for clothes and valuables; usually it has a lock', 'name': 'locker'}, {'frequency': 'f', 'id': 185, 'synset': 'cake.n.03', 'synonyms': ['cake'], 'def': 'baked goods made from or based on a mixture of flour, sugar, eggs, and fat', 'name': 'cake'}, {'frequency': 'c', 'id': 186, 'synset': 'calculator.n.02', 'synonyms': ['calculator'], 'def': 'a small machine that is used for mathematical calculations', 'name': 'calculator'}, {'frequency': 'f', 'id': 187, 'synset': 'calendar.n.02', 'synonyms': ['calendar'], 'def': 'a list or register of events (appointments/social events/court cases, etc)', 'name': 'calendar'}, {'frequency': 'c', 'id': 188, 'synset': 'calf.n.01', 'synonyms': ['calf'], 'def': 'young of domestic cattle', 'name': 'calf'}, {'frequency': 'c', 'id': 189, 'synset': 'camcorder.n.01', 'synonyms': ['camcorder'], 'def': 'a portable television camera and videocassette recorder', 'name': 'camcorder'}, {'frequency': 'c', 'id': 190, 'synset': 'camel.n.01', 'synonyms': ['camel'], 'def': 'cud-chewing mammal used as a draft or saddle animal in desert regions', 'name': 'camel'}, {'frequency': 'f', 'id': 191, 'synset': 'camera.n.01', 'synonyms': ['camera'], 'def': 'equipment for taking photographs', 'name': 'camera'}, {'frequency': 'c', 'id': 192, 'synset': 'camera_lens.n.01', 'synonyms': ['camera_lens'], 'def': 'a lens that focuses the image in a camera', 'name': 'camera_lens'}, {'frequency': 'c', 'id': 193, 'synset': 'camper.n.02', 'synonyms': ['camper_(vehicle)', 'camping_bus', 'motor_home'], 'def': 'a recreational vehicle equipped for camping out while traveling', 'name': 'camper_(vehicle)'}, {'frequency': 'f', 'id': 194, 'synset': 'can.n.01', 'synonyms': ['can', 'tin_can'], 'def': 'airtight sealed metal container for food or drink or paint etc.', 'name': 'can'}, {'frequency': 'c', 'id': 195, 'synset': 'can_opener.n.01', 'synonyms': ['can_opener', 'tin_opener'], 'def': 'a device for cutting cans open', 'name': 'can_opener'}, {'frequency': 'r', 'id': 196, 'synset': 'candelabrum.n.01', 'synonyms': ['candelabrum', 'candelabra'], 'def': 'branched candlestick; ornamental; has several lights', 'name': 'candelabrum'}, {'frequency': 'f', 'id': 197, 'synset': 'candle.n.01', 'synonyms': ['candle', 'candlestick'], 'def': 'stick of wax with a wick in the middle', 'name': 'candle'}, {'frequency': 'f', 'id': 198, 'synset': 'candlestick.n.01', 'synonyms': ['candle_holder'], 'def': 'a holder with sockets for candles', 'name': 'candle_holder'}, {'frequency': 'r', 'id': 199, 'synset': 'candy_bar.n.01', 'synonyms': ['candy_bar'], 'def': 'a candy shaped as a bar', 'name': 'candy_bar'}, {'frequency': 'c', 'id': 200, 'synset': 'candy_cane.n.01', 'synonyms': ['candy_cane'], 'def': 'a hard candy in the shape of a rod (usually with stripes)', 'name': 'candy_cane'}, {'frequency': 'c', 'id': 201, 'synset': 'cane.n.01', 'synonyms': ['walking_cane'], 'def': 'a stick that people can lean on to help them walk', 'name': 'walking_cane'}, {'frequency': 'c', 'id': 202, 'synset': 'canister.n.02', 'synonyms': ['canister', 'cannister'], 'def': 'metal container for storing dry foods such as tea or flour', 'name': 'canister'}, {'frequency': 'r', 'id': 203, 'synset': 'cannon.n.02', 'synonyms': ['cannon'], 'def': 'heavy gun fired from a tank', 'name': 'cannon'}, {'frequency': 'c', 'id': 204, 'synset': 'canoe.n.01', 'synonyms': ['canoe'], 'def': 'small and light boat; pointed at both ends; propelled with a paddle', 'name': 'canoe'}, {'frequency': 'r', 'id': 205, 'synset': 'cantaloup.n.02', 'synonyms': ['cantaloup', 'cantaloupe'], 'def': 'the fruit of a cantaloup vine; small to medium-sized melon with yellowish flesh', 'name': 'cantaloup'}, {'frequency': 'r', 'id': 206, 'synset': 'canteen.n.01', 'synonyms': ['canteen'], 'def': 'a flask for carrying water; used by soldiers or travelers', 'name': 'canteen'}, {'frequency': 'c', 'id': 207, 'synset': 'cap.n.01', 'synonyms': ['cap_(headwear)'], 'def': 'a tight-fitting headwear', 'name': 'cap_(headwear)'}, {'frequency': 'f', 'id': 208, 'synset': 'cap.n.02', 'synonyms': ['bottle_cap', 'cap_(container_lid)'], 'def': 'a top (as for a bottle)', 'name': 'bottle_cap'}, {'frequency': 'r', 'id': 209, 'synset': 'cape.n.02', 'synonyms': ['cape'], 'def': 'a sleeveless garment like a cloak but shorter', 'name': 'cape'}, {'frequency': 'c', 'id': 210, 'synset': 'cappuccino.n.01', 'synonyms': ['cappuccino', 'coffee_cappuccino'], 'def': 'equal parts of espresso and steamed milk', 'name': 'cappuccino'}, {'frequency': 'f', 'id': 211, 'synset': 'car.n.01', 'synonyms': ['car_(automobile)', 'auto_(automobile)', 'automobile'], 'def': 'a motor vehicle with four wheels', 'name': 'car_(automobile)'}, {'frequency': 'f', 'id': 212, 'synset': 'car.n.02', 'synonyms': ['railcar_(part_of_a_train)', 'railway_car_(part_of_a_train)', 'railroad_car_(part_of_a_train)'], 'def': 'a wheeled vehicle adapted to the rails of railroad', 'name': 'railcar_(part_of_a_train)'}, {'frequency': 'r', 'id': 213, 'synset': 'car.n.04', 'synonyms': ['elevator_car'], 'def': 'where passengers ride up and down', 'name': 'elevator_car'}, {'frequency': 'r', 'id': 214, 'synset': 'car_battery.n.01', 'synonyms': ['car_battery', 'automobile_battery'], 'def': 'a battery in a motor vehicle', 'name': 'car_battery'}, {'frequency': 'c', 'id': 215, 'synset': 'card.n.02', 'synonyms': ['identity_card'], 'def': 'a card certifying the identity of the bearer', 'name': 'identity_card'}, {'frequency': 'c', 'id': 216, 'synset': 'card.n.03', 'synonyms': ['card'], 'def': 'a rectangular piece of paper used to send messages (e.g. greetings or pictures)', 'name': 'card'}, {'frequency': 'r', 'id': 217, 'synset': 'cardigan.n.01', 'synonyms': ['cardigan'], 'def': 'knitted jacket that is fastened up the front with buttons or a zipper', 'name': 'cardigan'}, {'frequency': 'r', 'id': 218, 'synset': 'cargo_ship.n.01', 'synonyms': ['cargo_ship', 'cargo_vessel'], 'def': 'a ship designed to carry cargo', 'name': 'cargo_ship'}, {'frequency': 'r', 'id': 219, 'synset': 'carnation.n.01', 'synonyms': ['carnation'], 'def': 'plant with pink to purple-red spice-scented usually double flowers', 'name': 'carnation'}, {'frequency': 'c', 'id': 220, 'synset': 'carriage.n.02', 'synonyms': ['horse_carriage'], 'def': 'a vehicle with wheels drawn by one or more horses', 'name': 'horse_carriage'}, {'frequency': 'f', 'id': 221, 'synset': 'carrot.n.01', 'synonyms': ['carrot'], 'def': 'deep orange edible root of the cultivated carrot plant', 'name': 'carrot'}, {'frequency': 'c', 'id': 222, 'synset': 'carryall.n.01', 'synonyms': ['tote_bag'], 'def': 'a capacious bag or basket', 'name': 'tote_bag'}, {'frequency': 'c', 'id': 223, 'synset': 'cart.n.01', 'synonyms': ['cart'], 'def': 'a heavy open wagon usually having two wheels and drawn by an animal', 'name': 'cart'}, {'frequency': 'c', 'id': 224, 'synset': 'carton.n.02', 'synonyms': ['carton'], 'def': 'a box made of cardboard; opens by flaps on top', 'name': 'carton'}, {'frequency': 'c', 'id': 225, 'synset': 'cash_register.n.01', 'synonyms': ['cash_register', 'register_(for_cash_transactions)'], 'def': 'a cashbox with an adding machine to register transactions', 'name': 'cash_register'}, {'frequency': 'r', 'id': 226, 'synset': 'casserole.n.01', 'synonyms': ['casserole'], 'def': 'food cooked and served in a casserole', 'name': 'casserole'}, {'frequency': 'r', 'id': 227, 'synset': 'cassette.n.01', 'synonyms': ['cassette'], 'def': 'a container that holds a magnetic tape used for recording or playing sound or video', 'name': 'cassette'}, {'frequency': 'c', 'id': 228, 'synset': 'cast.n.05', 'synonyms': ['cast', 'plaster_cast', 'plaster_bandage'], 'def': 'bandage consisting of a firm covering that immobilizes broken bones while they heal', 'name': 'cast'}, {'frequency': 'f', 'id': 229, 'synset': 'cat.n.01', 'synonyms': ['cat'], 'def': 'a domestic house cat', 'name': 'cat'}, {'frequency': 'c', 'id': 230, 'synset': 'cauliflower.n.02', 'synonyms': ['cauliflower'], 'def': 'edible compact head of white undeveloped flowers', 'name': 'cauliflower'}, {'frequency': 'r', 'id': 231, 'synset': 'caviar.n.01', 'synonyms': ['caviar', 'caviare'], 'def': "salted roe of sturgeon or other large fish; usually served as an hors d'oeuvre", 'name': 'caviar'}, {'frequency': 'c', 'id': 232, 'synset': 'cayenne.n.02', 'synonyms': ['cayenne_(spice)', 'cayenne_pepper_(spice)', 'red_pepper_(spice)'], 'def': 'ground pods and seeds of pungent red peppers of the genus Capsicum', 'name': 'cayenne_(spice)'}, {'frequency': 'c', 'id': 233, 'synset': 'cd_player.n.01', 'synonyms': ['CD_player'], 'def': 'electronic equipment for playing compact discs (CDs)', 'name': 'CD_player'}, {'frequency': 'c', 'id': 234, 'synset': 'celery.n.01', 'synonyms': ['celery'], 'def': 'widely cultivated herb with aromatic leaf stalks that are eaten raw or cooked', 'name': 'celery'}, {'frequency': 'f', 'id': 235, 'synset': 'cellular_telephone.n.01', 'synonyms': ['cellular_telephone', 'cellular_phone', 'cellphone', 'mobile_phone', 'smart_phone'], 'def': 'a hand-held mobile telephone', 'name': 'cellular_telephone'}, {'frequency': 'r', 'id': 236, 'synset': 'chain_mail.n.01', 'synonyms': ['chain_mail', 'ring_mail', 'chain_armor', 'chain_armour', 'ring_armor', 'ring_armour'], 'def': '(Middle Ages) flexible armor made of interlinked metal rings', 'name': 'chain_mail'}, {'frequency': 'f', 'id': 237, 'synset': 'chair.n.01', 'synonyms': ['chair'], 'def': 'a seat for one person, with a support for the back', 'name': 'chair'}, {'frequency': 'r', 'id': 238, 'synset': 'chaise_longue.n.01', 'synonyms': ['chaise_longue', 'chaise', 'daybed'], 'def': 'a long chair; for reclining', 'name': 'chaise_longue'}, {'frequency': 'r', 'id': 239, 'synset': 'champagne.n.01', 'synonyms': ['champagne'], 'def': 'a white sparkling wine produced in Champagne or resembling that produced there', 'name': 'champagne'}, {'frequency': 'f', 'id': 240, 'synset': 'chandelier.n.01', 'synonyms': ['chandelier'], 'def': 'branched lighting fixture; often ornate; hangs from the ceiling', 'name': 'chandelier'}, {'frequency': 'r', 'id': 241, 'synset': 'chap.n.04', 'synonyms': ['chap'], 'def': 'leather leggings without a seat; worn over trousers by cowboys to protect their legs', 'name': 'chap'}, {'frequency': 'r', 'id': 242, 'synset': 'checkbook.n.01', 'synonyms': ['checkbook', 'chequebook'], 'def': 'a book issued to holders of checking accounts', 'name': 'checkbook'}, {'frequency': 'r', 'id': 243, 'synset': 'checkerboard.n.01', 'synonyms': ['checkerboard'], 'def': 'a board having 64 squares of two alternating colors', 'name': 'checkerboard'}, {'frequency': 'c', 'id': 244, 'synset': 'cherry.n.03', 'synonyms': ['cherry'], 'def': 'a red fruit with a single hard stone', 'name': 'cherry'}, {'frequency': 'r', 'id': 245, 'synset': 'chessboard.n.01', 'synonyms': ['chessboard'], 'def': 'a checkerboard used to play chess', 'name': 'chessboard'}, {'frequency': 'r', 'id': 246, 'synset': 'chest_of_drawers.n.01', 'synonyms': ['chest_of_drawers_(furniture)', 'bureau_(furniture)', 'chest_(furniture)'], 'def': 'furniture with drawers for keeping clothes', 'name': 'chest_of_drawers_(furniture)'}, {'frequency': 'c', 'id': 247, 'synset': 'chicken.n.02', 'synonyms': ['chicken_(animal)'], 'def': 'a domestic fowl bred for flesh or eggs', 'name': 'chicken_(animal)'}, {'frequency': 'c', 'id': 248, 'synset': 'chicken_wire.n.01', 'synonyms': ['chicken_wire'], 'def': 'a galvanized wire network with a hexagonal mesh; used to build fences', 'name': 'chicken_wire'}, {'frequency': 'r', 'id': 249, 'synset': 'chickpea.n.01', 'synonyms': ['chickpea', 'garbanzo'], 'def': 'the seed of the chickpea plant; usually dried', 'name': 'chickpea'}, {'frequency': 'r', 'id': 250, 'synset': 'chihuahua.n.03', 'synonyms': ['Chihuahua'], 'def': 'an old breed of tiny short-haired dog with protruding eyes from Mexico', 'name': 'Chihuahua'}, {'frequency': 'r', 'id': 251, 'synset': 'chili.n.02', 'synonyms': ['chili_(vegetable)', 'chili_pepper_(vegetable)', 'chilli_(vegetable)', 'chilly_(vegetable)', 'chile_(vegetable)'], 'def': 'very hot and finely tapering pepper of special pungency', 'name': 'chili_(vegetable)'}, {'frequency': 'r', 'id': 252, 'synset': 'chime.n.01', 'synonyms': ['chime', 'gong'], 'def': 'an instrument consisting of a set of bells that are struck with a hammer', 'name': 'chime'}, {'frequency': 'r', 'id': 253, 'synset': 'chinaware.n.01', 'synonyms': ['chinaware'], 'def': 'dishware made of high quality porcelain', 'name': 'chinaware'}, {'frequency': 'c', 'id': 254, 'synset': 'chip.n.04', 'synonyms': ['crisp_(potato_chip)', 'potato_chip'], 'def': 'a thin crisp slice of potato fried in deep fat', 'name': 'crisp_(potato_chip)'}, {'frequency': 'r', 'id': 255, 'synset': 'chip.n.06', 'synonyms': ['poker_chip'], 'def': 'a small disk-shaped counter used to represent money when gambling', 'name': 'poker_chip'}, {'frequency': 'c', 'id': 256, 'synset': 'chocolate_bar.n.01', 'synonyms': ['chocolate_bar'], 'def': 'a bar of chocolate candy', 'name': 'chocolate_bar'}, {'frequency': 'c', 'id': 257, 'synset': 'chocolate_cake.n.01', 'synonyms': ['chocolate_cake'], 'def': 'cake containing chocolate', 'name': 'chocolate_cake'}, {'frequency': 'r', 'id': 258, 'synset': 'chocolate_milk.n.01', 'synonyms': ['chocolate_milk'], 'def': 'milk flavored with chocolate syrup', 'name': 'chocolate_milk'}, {'frequency': 'r', 'id': 259, 'synset': 'chocolate_mousse.n.01', 'synonyms': ['chocolate_mousse'], 'def': 'dessert mousse made with chocolate', 'name': 'chocolate_mousse'}, {'frequency': 'f', 'id': 260, 'synset': 'choker.n.03', 'synonyms': ['choker', 'collar', 'neckband'], 'def': 'necklace that fits tightly around the neck', 'name': 'choker'}, {'frequency': 'f', 'id': 261, 'synset': 'chopping_board.n.01', 'synonyms': ['chopping_board', 'cutting_board', 'chopping_block'], 'def': 'a wooden board where meats or vegetables can be cut', 'name': 'chopping_board'}, {'frequency': 'c', 'id': 262, 'synset': 'chopstick.n.01', 'synonyms': ['chopstick'], 'def': 'one of a pair of slender sticks used as oriental tableware to eat food with', 'name': 'chopstick'}, {'frequency': 'f', 'id': 263, 'synset': 'christmas_tree.n.05', 'synonyms': ['Christmas_tree'], 'def': 'an ornamented evergreen used as a Christmas decoration', 'name': 'Christmas_tree'}, {'frequency': 'c', 'id': 264, 'synset': 'chute.n.02', 'synonyms': ['slide'], 'def': 'sloping channel through which things can descend', 'name': 'slide'}, {'frequency': 'r', 'id': 265, 'synset': 'cider.n.01', 'synonyms': ['cider', 'cyder'], 'def': 'a beverage made from juice pressed from apples', 'name': 'cider'}, {'frequency': 'r', 'id': 266, 'synset': 'cigar_box.n.01', 'synonyms': ['cigar_box'], 'def': 'a box for holding cigars', 'name': 'cigar_box'}, {'frequency': 'c', 'id': 267, 'synset': 'cigarette.n.01', 'synonyms': ['cigarette'], 'def': 'finely ground tobacco wrapped in paper; for smoking', 'name': 'cigarette'}, {'frequency': 'c', 'id': 268, 'synset': 'cigarette_case.n.01', 'synonyms': ['cigarette_case', 'cigarette_pack'], 'def': 'a small flat case for holding cigarettes', 'name': 'cigarette_case'}, {'frequency': 'f', 'id': 269, 'synset': 'cistern.n.02', 'synonyms': ['cistern', 'water_tank'], 'def': 'a tank that holds the water used to flush a toilet', 'name': 'cistern'}, {'frequency': 'r', 'id': 270, 'synset': 'clarinet.n.01', 'synonyms': ['clarinet'], 'def': 'a single-reed instrument with a straight tube', 'name': 'clarinet'}, {'frequency': 'r', 'id': 271, 'synset': 'clasp.n.01', 'synonyms': ['clasp'], 'def': 'a fastener (as a buckle or hook) that is used to hold two things together', 'name': 'clasp'}, {'frequency': 'c', 'id': 272, 'synset': 'cleansing_agent.n.01', 'synonyms': ['cleansing_agent', 'cleanser', 'cleaner'], 'def': 'a preparation used in cleaning something', 'name': 'cleansing_agent'}, {'frequency': 'r', 'id': 273, 'synset': 'clementine.n.01', 'synonyms': ['clementine'], 'def': 'a variety of mandarin orange', 'name': 'clementine'}, {'frequency': 'c', 'id': 274, 'synset': 'clip.n.03', 'synonyms': ['clip'], 'def': 'any of various small fasteners used to hold loose articles together', 'name': 'clip'}, {'frequency': 'c', 'id': 275, 'synset': 'clipboard.n.01', 'synonyms': ['clipboard'], 'def': 'a small writing board with a clip at the top for holding papers', 'name': 'clipboard'}, {'frequency': 'f', 'id': 276, 'synset': 'clock.n.01', 'synonyms': ['clock', 'timepiece', 'timekeeper'], 'def': 'a timepiece that shows the time of day', 'name': 'clock'}, {'frequency': 'f', 'id': 277, 'synset': 'clock_tower.n.01', 'synonyms': ['clock_tower'], 'def': 'a tower with a large clock visible high up on an outside face', 'name': 'clock_tower'}, {'frequency': 'c', 'id': 278, 'synset': 'clothes_hamper.n.01', 'synonyms': ['clothes_hamper', 'laundry_basket', 'clothes_basket'], 'def': 'a hamper that holds dirty clothes to be washed or wet clothes to be dried', 'name': 'clothes_hamper'}, {'frequency': 'c', 'id': 279, 'synset': 'clothespin.n.01', 'synonyms': ['clothespin', 'clothes_peg'], 'def': 'wood or plastic fastener; for holding clothes on a clothesline', 'name': 'clothespin'}, {'frequency': 'r', 'id': 280, 'synset': 'clutch_bag.n.01', 'synonyms': ['clutch_bag'], 'def': "a woman's strapless purse that is carried in the hand", 'name': 'clutch_bag'}, {'frequency': 'f', 'id': 281, 'synset': 'coaster.n.03', 'synonyms': ['coaster'], 'def': 'a covering (plate or mat) that protects the surface of a table', 'name': 'coaster'}, {'frequency': 'f', 'id': 282, 'synset': 'coat.n.01', 'synonyms': ['coat'], 'def': 'an outer garment that has sleeves and covers the body from shoulder down', 'name': 'coat'}, {'frequency': 'c', 'id': 283, 'synset': 'coat_hanger.n.01', 'synonyms': ['coat_hanger', 'clothes_hanger', 'dress_hanger'], 'def': "a hanger that is shaped like a person's shoulders", 'name': 'coat_hanger'}, {'frequency': 'r', 'id': 284, 'synset': 'coatrack.n.01', 'synonyms': ['coatrack', 'hatrack'], 'def': 'a rack with hooks for temporarily holding coats and hats', 'name': 'coatrack'}, {'frequency': 'c', 'id': 285, 'synset': 'cock.n.04', 'synonyms': ['cock', 'rooster'], 'def': 'adult male chicken', 'name': 'cock'}, {'frequency': 'c', 'id': 286, 'synset': 'coconut.n.02', 'synonyms': ['coconut', 'cocoanut'], 'def': 'large hard-shelled brown oval nut with a fibrous husk', 'name': 'coconut'}, {'frequency': 'r', 'id': 287, 'synset': 'coffee_filter.n.01', 'synonyms': ['coffee_filter'], 'def': 'filter (usually of paper) that passes the coffee and retains the coffee grounds', 'name': 'coffee_filter'}, {'frequency': 'f', 'id': 288, 'synset': 'coffee_maker.n.01', 'synonyms': ['coffee_maker', 'coffee_machine'], 'def': 'a kitchen appliance for brewing coffee automatically', 'name': 'coffee_maker'}, {'frequency': 'f', 'id': 289, 'synset': 'coffee_table.n.01', 'synonyms': ['coffee_table', 'cocktail_table'], 'def': 'low table where magazines can be placed and coffee or cocktails are served', 'name': 'coffee_table'}, {'frequency': 'c', 'id': 290, 'synset': 'coffeepot.n.01', 'synonyms': ['coffeepot'], 'def': 'tall pot in which coffee is brewed', 'name': 'coffeepot'}, {'frequency': 'r', 'id': 291, 'synset': 'coil.n.05', 'synonyms': ['coil'], 'def': 'tubing that is wound in a spiral', 'name': 'coil'}, {'frequency': 'c', 'id': 292, 'synset': 'coin.n.01', 'synonyms': ['coin'], 'def': 'a flat metal piece (usually a disc) used as money', 'name': 'coin'}, {'frequency': 'r', 'id': 293, 'synset': 'colander.n.01', 'synonyms': ['colander', 'cullender'], 'def': 'bowl-shaped strainer; used to wash or drain foods', 'name': 'colander'}, {'frequency': 'c', 'id': 294, 'synset': 'coleslaw.n.01', 'synonyms': ['coleslaw', 'slaw'], 'def': 'basically shredded cabbage', 'name': 'coleslaw'}, {'frequency': 'r', 'id': 295, 'synset': 'coloring_material.n.01', 'synonyms': ['coloring_material', 'colouring_material'], 'def': 'any material used for its color', 'name': 'coloring_material'}, {'frequency': 'r', 'id': 296, 'synset': 'combination_lock.n.01', 'synonyms': ['combination_lock'], 'def': 'lock that can be opened only by turning dials in a special sequence', 'name': 'combination_lock'}, {'frequency': 'c', 'id': 297, 'synset': 'comforter.n.04', 'synonyms': ['pacifier', 'teething_ring'], 'def': 'device used for an infant to suck or bite on', 'name': 'pacifier'}, {'frequency': 'r', 'id': 298, 'synset': 'comic_book.n.01', 'synonyms': ['comic_book'], 'def': 'a magazine devoted to comic strips', 'name': 'comic_book'}, {'frequency': 'f', 'id': 299, 'synset': 'computer_keyboard.n.01', 'synonyms': ['computer_keyboard', 'keyboard_(computer)'], 'def': 'a keyboard that is a data input device for computers', 'name': 'computer_keyboard'}, {'frequency': 'r', 'id': 300, 'synset': 'concrete_mixer.n.01', 'synonyms': ['concrete_mixer', 'cement_mixer'], 'def': 'a machine with a large revolving drum in which cement/concrete is mixed', 'name': 'concrete_mixer'}, {'frequency': 'f', 'id': 301, 'synset': 'cone.n.01', 'synonyms': ['cone', 'traffic_cone'], 'def': 'a cone-shaped object used to direct traffic', 'name': 'cone'}, {'frequency': 'f', 'id': 302, 'synset': 'control.n.09', 'synonyms': ['control', 'controller'], 'def': 'a mechanism that controls the operation of a machine', 'name': 'control'}, {'frequency': 'r', 'id': 303, 'synset': 'convertible.n.01', 'synonyms': ['convertible_(automobile)'], 'def': 'a car that has top that can be folded or removed', 'name': 'convertible_(automobile)'}, {'frequency': 'r', 'id': 304, 'synset': 'convertible.n.03', 'synonyms': ['sofa_bed'], 'def': 'a sofa that can be converted into a bed', 'name': 'sofa_bed'}, {'frequency': 'c', 'id': 305, 'synset': 'cookie.n.01', 'synonyms': ['cookie', 'cooky', 'biscuit_(cookie)'], 'def': "any of various small flat sweet cakes (`biscuit' is the British term)", 'name': 'cookie'}, {'frequency': 'r', 'id': 306, 'synset': 'cookie_jar.n.01', 'synonyms': ['cookie_jar', 'cooky_jar'], 'def': 'a jar in which cookies are kept (and sometimes money is hidden)', 'name': 'cookie_jar'}, {'frequency': 'r', 'id': 307, 'synset': 'cooking_utensil.n.01', 'synonyms': ['cooking_utensil'], 'def': 'a kitchen utensil made of material that does not melt easily; used for cooking', 'name': 'cooking_utensil'}, {'frequency': 'f', 'id': 308, 'synset': 'cooler.n.01', 'synonyms': ['cooler_(for_food)', 'ice_chest'], 'def': 'an insulated box for storing food often with ice', 'name': 'cooler_(for_food)'}, {'frequency': 'c', 'id': 309, 'synset': 'cork.n.04', 'synonyms': ['cork_(bottle_plug)', 'bottle_cork'], 'def': 'the plug in the mouth of a bottle (especially a wine bottle)', 'name': 'cork_(bottle_plug)'}, {'frequency': 'r', 'id': 310, 'synset': 'corkboard.n.01', 'synonyms': ['corkboard'], 'def': 'a sheet consisting of cork granules', 'name': 'corkboard'}, {'frequency': 'r', 'id': 311, 'synset': 'corkscrew.n.01', 'synonyms': ['corkscrew', 'bottle_screw'], 'def': 'a bottle opener that pulls corks', 'name': 'corkscrew'}, {'frequency': 'c', 'id': 312, 'synset': 'corn.n.03', 'synonyms': ['edible_corn', 'corn', 'maize'], 'def': 'ears of corn that can be prepared and served for human food', 'name': 'edible_corn'}, {'frequency': 'r', 'id': 313, 'synset': 'cornbread.n.01', 'synonyms': ['cornbread'], 'def': 'bread made primarily of cornmeal', 'name': 'cornbread'}, {'frequency': 'c', 'id': 314, 'synset': 'cornet.n.01', 'synonyms': ['cornet', 'horn', 'trumpet'], 'def': 'a brass musical instrument with a narrow tube and a flared bell and many valves', 'name': 'cornet'}, {'frequency': 'c', 'id': 315, 'synset': 'cornice.n.01', 'synonyms': ['cornice', 'valance', 'valance_board', 'pelmet'], 'def': 'a decorative framework to conceal curtain fixtures at the top of a window casing', 'name': 'cornice'}, {'frequency': 'r', 'id': 316, 'synset': 'cornmeal.n.01', 'synonyms': ['cornmeal'], 'def': 'coarsely ground corn', 'name': 'cornmeal'}, {'frequency': 'r', 'id': 317, 'synset': 'corset.n.01', 'synonyms': ['corset', 'girdle'], 'def': "a woman's close-fitting foundation garment", 'name': 'corset'}, {'frequency': 'r', 'id': 318, 'synset': 'cos.n.02', 'synonyms': ['romaine_lettuce'], 'def': 'lettuce with long dark-green leaves in a loosely packed elongated head', 'name': 'romaine_lettuce'}, {'frequency': 'c', 'id': 319, 'synset': 'costume.n.04', 'synonyms': ['costume'], 'def': 'the attire characteristic of a country or a time or a social class', 'name': 'costume'}, {'frequency': 'r', 'id': 320, 'synset': 'cougar.n.01', 'synonyms': ['cougar', 'puma', 'catamount', 'mountain_lion', 'panther'], 'def': 'large American feline resembling a lion', 'name': 'cougar'}, {'frequency': 'r', 'id': 321, 'synset': 'coverall.n.01', 'synonyms': ['coverall'], 'def': 'a loose-fitting protective garment that is worn over other clothing', 'name': 'coverall'}, {'frequency': 'r', 'id': 322, 'synset': 'cowbell.n.01', 'synonyms': ['cowbell'], 'def': 'a bell hung around the neck of cow so that the cow can be easily located', 'name': 'cowbell'}, {'frequency': 'f', 'id': 323, 'synset': 'cowboy_hat.n.01', 'synonyms': ['cowboy_hat', 'ten-gallon_hat'], 'def': 'a hat with a wide brim and a soft crown; worn by American ranch hands', 'name': 'cowboy_hat'}, {'frequency': 'r', 'id': 324, 'synset': 'crab.n.01', 'synonyms': ['crab_(animal)'], 'def': 'decapod having eyes on short stalks and a broad flattened shell and pincers', 'name': 'crab_(animal)'}, {'frequency': 'c', 'id': 325, 'synset': 'cracker.n.01', 'synonyms': ['cracker'], 'def': 'a thin crisp wafer', 'name': 'cracker'}, {'frequency': 'r', 'id': 326, 'synset': 'crape.n.01', 'synonyms': ['crape', 'crepe', 'French_pancake'], 'def': 'small very thin pancake', 'name': 'crape'}, {'frequency': 'f', 'id': 327, 'synset': 'crate.n.01', 'synonyms': ['crate'], 'def': 'a rugged box (usually made of wood); used for shipping', 'name': 'crate'}, {'frequency': 'r', 'id': 328, 'synset': 'crayon.n.01', 'synonyms': ['crayon', 'wax_crayon'], 'def': 'writing or drawing implement made of a colored stick of composition wax', 'name': 'crayon'}, {'frequency': 'r', 'id': 329, 'synset': 'cream_pitcher.n.01', 'synonyms': ['cream_pitcher'], 'def': 'a small pitcher for serving cream', 'name': 'cream_pitcher'}, {'frequency': 'r', 'id': 330, 'synset': 'credit_card.n.01', 'synonyms': ['credit_card', 'charge_card', 'debit_card'], 'def': 'a card, usually plastic, used to pay for goods and services', 'name': 'credit_card'}, {'frequency': 'c', 'id': 331, 'synset': 'crescent_roll.n.01', 'synonyms': ['crescent_roll', 'croissant'], 'def': 'very rich flaky crescent-shaped roll', 'name': 'crescent_roll'}, {'frequency': 'c', 'id': 332, 'synset': 'crib.n.01', 'synonyms': ['crib', 'cot'], 'def': 'baby bed with high sides made of slats', 'name': 'crib'}, {'frequency': 'c', 'id': 333, 'synset': 'crock.n.03', 'synonyms': ['crock_pot', 'earthenware_jar'], 'def': 'an earthen jar (made of baked clay)', 'name': 'crock_pot'}, {'frequency': 'f', 'id': 334, 'synset': 'crossbar.n.01', 'synonyms': ['crossbar'], 'def': 'a horizontal bar that goes across something', 'name': 'crossbar'}, {'frequency': 'r', 'id': 335, 'synset': 'crouton.n.01', 'synonyms': ['crouton'], 'def': 'a small piece of toasted or fried bread; served in soup or salads', 'name': 'crouton'}, {'frequency': 'r', 'id': 336, 'synset': 'crow.n.01', 'synonyms': ['crow'], 'def': 'black birds having a raucous call', 'name': 'crow'}, {'frequency': 'c', 'id': 337, 'synset': 'crown.n.04', 'synonyms': ['crown'], 'def': 'an ornamental jeweled headdress signifying sovereignty', 'name': 'crown'}, {'frequency': 'c', 'id': 338, 'synset': 'crucifix.n.01', 'synonyms': ['crucifix'], 'def': 'representation of the cross on which Jesus died', 'name': 'crucifix'}, {'frequency': 'c', 'id': 339, 'synset': 'cruise_ship.n.01', 'synonyms': ['cruise_ship', 'cruise_liner'], 'def': 'a passenger ship used commercially for pleasure cruises', 'name': 'cruise_ship'}, {'frequency': 'c', 'id': 340, 'synset': 'cruiser.n.01', 'synonyms': ['police_cruiser', 'patrol_car', 'police_car', 'squad_car'], 'def': 'a car in which policemen cruise the streets', 'name': 'police_cruiser'}, {'frequency': 'c', 'id': 341, 'synset': 'crumb.n.03', 'synonyms': ['crumb'], 'def': 'small piece of e.g. bread or cake', 'name': 'crumb'}, {'frequency': 'r', 'id': 342, 'synset': 'crutch.n.01', 'synonyms': ['crutch'], 'def': 'a wooden or metal staff that fits under the armpit and reaches to the ground', 'name': 'crutch'}, {'frequency': 'c', 'id': 343, 'synset': 'cub.n.03', 'synonyms': ['cub_(animal)'], 'def': 'the young of certain carnivorous mammals such as the bear or wolf or lion', 'name': 'cub_(animal)'}, {'frequency': 'r', 'id': 344, 'synset': 'cube.n.05', 'synonyms': ['cube', 'square_block'], 'def': 'a block in the (approximate) shape of a cube', 'name': 'cube'}, {'frequency': 'f', 'id': 345, 'synset': 'cucumber.n.02', 'synonyms': ['cucumber', 'cuke'], 'def': 'cylindrical green fruit with thin green rind and white flesh eaten as a vegetable', 'name': 'cucumber'}, {'frequency': 'c', 'id': 346, 'synset': 'cufflink.n.01', 'synonyms': ['cufflink'], 'def': 'jewelry consisting of linked buttons used to fasten the cuffs of a shirt', 'name': 'cufflink'}, {'frequency': 'f', 'id': 347, 'synset': 'cup.n.01', 'synonyms': ['cup'], 'def': 'a small open container usually used for drinking; usually has a handle', 'name': 'cup'}, {'frequency': 'c', 'id': 348, 'synset': 'cup.n.08', 'synonyms': ['trophy_cup'], 'def': 'a metal vessel with handles that is awarded as a trophy to a competition winner', 'name': 'trophy_cup'}, {'frequency': 'c', 'id': 349, 'synset': 'cupcake.n.01', 'synonyms': ['cupcake'], 'def': 'small cake baked in a muffin tin', 'name': 'cupcake'}, {'frequency': 'r', 'id': 350, 'synset': 'curler.n.01', 'synonyms': ['hair_curler', 'hair_roller', 'hair_crimper'], 'def': 'a cylindrical tube around which the hair is wound to curl it', 'name': 'hair_curler'}, {'frequency': 'r', 'id': 351, 'synset': 'curling_iron.n.01', 'synonyms': ['curling_iron'], 'def': 'a cylindrical home appliance that heats hair that has been curled around it', 'name': 'curling_iron'}, {'frequency': 'f', 'id': 352, 'synset': 'curtain.n.01', 'synonyms': ['curtain', 'drapery'], 'def': 'hanging cloth used as a blind (especially for a window)', 'name': 'curtain'}, {'frequency': 'f', 'id': 353, 'synset': 'cushion.n.03', 'synonyms': ['cushion'], 'def': 'a soft bag filled with air or padding such as feathers or foam rubber', 'name': 'cushion'}, {'frequency': 'r', 'id': 354, 'synset': 'custard.n.01', 'synonyms': ['custard'], 'def': 'sweetened mixture of milk and eggs baked or boiled or frozen', 'name': 'custard'}, {'frequency': 'c', 'id': 355, 'synset': 'cutter.n.06', 'synonyms': ['cutting_tool'], 'def': 'a cutting implement; a tool for cutting', 'name': 'cutting_tool'}, {'frequency': 'r', 'id': 356, 'synset': 'cylinder.n.04', 'synonyms': ['cylinder'], 'def': 'a cylindrical container', 'name': 'cylinder'}, {'frequency': 'r', 'id': 357, 'synset': 'cymbal.n.01', 'synonyms': ['cymbal'], 'def': 'a percussion instrument consisting of a concave brass disk', 'name': 'cymbal'}, {'frequency': 'r', 'id': 358, 'synset': 'dachshund.n.01', 'synonyms': ['dachshund', 'dachsie', 'badger_dog'], 'def': 'small long-bodied short-legged breed of dog having a short sleek coat and long drooping ears', 'name': 'dachshund'}, {'frequency': 'r', 'id': 359, 'synset': 'dagger.n.01', 'synonyms': ['dagger'], 'def': 'a short knife with a pointed blade used for piercing or stabbing', 'name': 'dagger'}, {'frequency': 'r', 'id': 360, 'synset': 'dartboard.n.01', 'synonyms': ['dartboard'], 'def': 'a circular board of wood or cork used as the target in the game of darts', 'name': 'dartboard'}, {'frequency': 'r', 'id': 361, 'synset': 'date.n.08', 'synonyms': ['date_(fruit)'], 'def': 'sweet edible fruit of the date palm with a single long woody seed', 'name': 'date_(fruit)'}, {'frequency': 'f', 'id': 362, 'synset': 'deck_chair.n.01', 'synonyms': ['deck_chair', 'beach_chair'], 'def': 'a folding chair for use outdoors; a wooden frame supports a length of canvas', 'name': 'deck_chair'}, {'frequency': 'c', 'id': 363, 'synset': 'deer.n.01', 'synonyms': ['deer', 'cervid'], 'def': "distinguished from Bovidae by the male's having solid deciduous antlers", 'name': 'deer'}, {'frequency': 'c', 'id': 364, 'synset': 'dental_floss.n.01', 'synonyms': ['dental_floss', 'floss'], 'def': 'a soft thread for cleaning the spaces between the teeth', 'name': 'dental_floss'}, {'frequency': 'f', 'id': 365, 'synset': 'desk.n.01', 'synonyms': ['desk'], 'def': 'a piece of furniture with a writing surface and usually drawers or other compartments', 'name': 'desk'}, {'frequency': 'r', 'id': 366, 'synset': 'detergent.n.01', 'synonyms': ['detergent'], 'def': 'a surface-active chemical widely used in industry and laundering', 'name': 'detergent'}, {'frequency': 'c', 'id': 367, 'synset': 'diaper.n.01', 'synonyms': ['diaper'], 'def': 'garment consisting of a folded cloth drawn up between the legs and fastened at the waist', 'name': 'diaper'}, {'frequency': 'r', 'id': 368, 'synset': 'diary.n.01', 'synonyms': ['diary', 'journal'], 'def': 'a daily written record of (usually personal) experiences and observations', 'name': 'diary'}, {'frequency': 'r', 'id': 369, 'synset': 'die.n.01', 'synonyms': ['die', 'dice'], 'def': 'a small cube with 1 to 6 spots on the six faces; used in gambling', 'name': 'die'}, {'frequency': 'r', 'id': 370, 'synset': 'dinghy.n.01', 'synonyms': ['dinghy', 'dory', 'rowboat'], 'def': 'a small boat of shallow draft with seats and oars with which it is propelled', 'name': 'dinghy'}, {'frequency': 'f', 'id': 371, 'synset': 'dining_table.n.01', 'synonyms': ['dining_table'], 'def': 'a table at which meals are served', 'name': 'dining_table'}, {'frequency': 'r', 'id': 372, 'synset': 'dinner_jacket.n.01', 'synonyms': ['tux', 'tuxedo'], 'def': 'semiformal evening dress for men', 'name': 'tux'}, {'frequency': 'c', 'id': 373, 'synset': 'dish.n.01', 'synonyms': ['dish'], 'def': 'a piece of dishware normally used as a container for holding or serving food', 'name': 'dish'}, {'frequency': 'c', 'id': 374, 'synset': 'dish.n.05', 'synonyms': ['dish_antenna'], 'def': 'directional antenna consisting of a parabolic reflector', 'name': 'dish_antenna'}, {'frequency': 'c', 'id': 375, 'synset': 'dishrag.n.01', 'synonyms': ['dishrag', 'dishcloth'], 'def': 'a cloth for washing dishes', 'name': 'dishrag'}, {'frequency': 'c', 'id': 376, 'synset': 'dishtowel.n.01', 'synonyms': ['dishtowel', 'tea_towel'], 'def': 'a towel for drying dishes', 'name': 'dishtowel'}, {'frequency': 'f', 'id': 377, 'synset': 'dishwasher.n.01', 'synonyms': ['dishwasher', 'dishwashing_machine'], 'def': 'a machine for washing dishes', 'name': 'dishwasher'}, {'frequency': 'r', 'id': 378, 'synset': 'dishwasher_detergent.n.01', 'synonyms': ['dishwasher_detergent', 'dishwashing_detergent', 'dishwashing_liquid'], 'def': 'a low-sudsing detergent designed for use in dishwashers', 'name': 'dishwasher_detergent'}, {'frequency': 'r', 'id': 379, 'synset': 'diskette.n.01', 'synonyms': ['diskette', 'floppy', 'floppy_disk'], 'def': 'a small plastic magnetic disk enclosed in a stiff envelope used to store data', 'name': 'diskette'}, {'frequency': 'c', 'id': 380, 'synset': 'dispenser.n.01', 'synonyms': ['dispenser'], 'def': 'a container so designed that the contents can be used in prescribed amounts', 'name': 'dispenser'}, {'frequency': 'c', 'id': 381, 'synset': 'dixie_cup.n.01', 'synonyms': ['Dixie_cup', 'paper_cup'], 'def': 'a disposable cup made of paper; for holding drinks', 'name': 'Dixie_cup'}, {'frequency': 'f', 'id': 382, 'synset': 'dog.n.01', 'synonyms': ['dog'], 'def': 'a common domesticated dog', 'name': 'dog'}, {'frequency': 'f', 'id': 383, 'synset': 'dog_collar.n.01', 'synonyms': ['dog_collar'], 'def': 'a collar for a dog', 'name': 'dog_collar'}, {'frequency': 'c', 'id': 384, 'synset': 'doll.n.01', 'synonyms': ['doll'], 'def': 'a toy replica of a HUMAN (NOT AN ANIMAL)', 'name': 'doll'}, {'frequency': 'r', 'id': 385, 'synset': 'dollar.n.02', 'synonyms': ['dollar', 'dollar_bill', 'one_dollar_bill'], 'def': 'a piece of paper money worth one dollar', 'name': 'dollar'}, {'frequency': 'r', 'id': 386, 'synset': 'dolphin.n.02', 'synonyms': ['dolphin'], 'def': 'any of various small toothed whales with a beaklike snout; larger than porpoises', 'name': 'dolphin'}, {'frequency': 'c', 'id': 387, 'synset': 'domestic_ass.n.01', 'synonyms': ['domestic_ass', 'donkey'], 'def': 'domestic beast of burden descended from the African wild ass; patient but stubborn', 'name': 'domestic_ass'}, {'frequency': 'r', 'id': 388, 'synset': 'domino.n.03', 'synonyms': ['eye_mask'], 'def': 'a mask covering the upper part of the face but with holes for the eyes', 'name': 'eye_mask'}, {'frequency': 'r', 'id': 389, 'synset': 'doorbell.n.01', 'synonyms': ['doorbell', 'buzzer'], 'def': 'a button at an outer door that gives a ringing or buzzing signal when pushed', 'name': 'doorbell'}, {'frequency': 'f', 'id': 390, 'synset': 'doorknob.n.01', 'synonyms': ['doorknob', 'doorhandle'], 'def': "a knob used to open a door (often called `doorhandle' in Great Britain)", 'name': 'doorknob'}, {'frequency': 'c', 'id': 391, 'synset': 'doormat.n.02', 'synonyms': ['doormat', 'welcome_mat'], 'def': 'a mat placed outside an exterior door for wiping the shoes before entering', 'name': 'doormat'}, {'frequency': 'f', 'id': 392, 'synset': 'doughnut.n.02', 'synonyms': ['doughnut', 'donut'], 'def': 'a small ring-shaped friedcake', 'name': 'doughnut'}, {'frequency': 'r', 'id': 393, 'synset': 'dove.n.01', 'synonyms': ['dove'], 'def': 'any of numerous small pigeons', 'name': 'dove'}, {'frequency': 'r', 'id': 394, 'synset': 'dragonfly.n.01', 'synonyms': ['dragonfly'], 'def': 'slender-bodied non-stinging insect having iridescent wings that are outspread at rest', 'name': 'dragonfly'}, {'frequency': 'f', 'id': 395, 'synset': 'drawer.n.01', 'synonyms': ['drawer'], 'def': 'a boxlike container in a piece of furniture; made so as to slide in and out', 'name': 'drawer'}, {'frequency': 'c', 'id': 396, 'synset': 'drawers.n.01', 'synonyms': ['underdrawers', 'boxers', 'boxershorts'], 'def': 'underpants worn by men', 'name': 'underdrawers'}, {'frequency': 'f', 'id': 397, 'synset': 'dress.n.01', 'synonyms': ['dress', 'frock'], 'def': 'a one-piece garment for a woman; has skirt and bodice', 'name': 'dress'}, {'frequency': 'c', 'id': 398, 'synset': 'dress_hat.n.01', 'synonyms': ['dress_hat', 'high_hat', 'opera_hat', 'silk_hat', 'top_hat'], 'def': "a man's hat with a tall crown; usually covered with silk or with beaver fur", 'name': 'dress_hat'}, {'frequency': 'c', 'id': 399, 'synset': 'dress_suit.n.01', 'synonyms': ['dress_suit'], 'def': 'formalwear consisting of full evening dress for men', 'name': 'dress_suit'}, {'frequency': 'c', 'id': 400, 'synset': 'dresser.n.05', 'synonyms': ['dresser'], 'def': 'a cabinet with shelves', 'name': 'dresser'}, {'frequency': 'c', 'id': 401, 'synset': 'drill.n.01', 'synonyms': ['drill'], 'def': 'a tool with a sharp rotating point for making holes in hard materials', 'name': 'drill'}, {'frequency': 'r', 'id': 402, 'synset': 'drinking_fountain.n.01', 'synonyms': ['drinking_fountain'], 'def': 'a public fountain to provide a jet of drinking water', 'name': 'drinking_fountain'}, {'frequency': 'r', 'id': 403, 'synset': 'drone.n.04', 'synonyms': ['drone'], 'def': 'an aircraft without a pilot that is operated by remote control', 'name': 'drone'}, {'frequency': 'r', 'id': 404, 'synset': 'dropper.n.01', 'synonyms': ['dropper', 'eye_dropper'], 'def': 'pipet consisting of a small tube with a vacuum bulb at one end for drawing liquid in and releasing it a drop at a time', 'name': 'dropper'}, {'frequency': 'c', 'id': 405, 'synset': 'drum.n.01', 'synonyms': ['drum_(musical_instrument)'], 'def': 'a musical percussion instrument; usually consists of a hollow cylinder with a membrane stretched across each end', 'name': 'drum_(musical_instrument)'}, {'frequency': 'r', 'id': 406, 'synset': 'drumstick.n.02', 'synonyms': ['drumstick'], 'def': 'a stick used for playing a drum', 'name': 'drumstick'}, {'frequency': 'f', 'id': 407, 'synset': 'duck.n.01', 'synonyms': ['duck'], 'def': 'small web-footed broad-billed swimming bird', 'name': 'duck'}, {'frequency': 'r', 'id': 408, 'synset': 'duckling.n.02', 'synonyms': ['duckling'], 'def': 'young duck', 'name': 'duckling'}, {'frequency': 'c', 'id': 409, 'synset': 'duct_tape.n.01', 'synonyms': ['duct_tape'], 'def': 'a wide silvery adhesive tape', 'name': 'duct_tape'}, {'frequency': 'f', 'id': 410, 'synset': 'duffel_bag.n.01', 'synonyms': ['duffel_bag', 'duffle_bag', 'duffel', 'duffle'], 'def': 'a large cylindrical bag of heavy cloth', 'name': 'duffel_bag'}, {'frequency': 'r', 'id': 411, 'synset': 'dumbbell.n.01', 'synonyms': ['dumbbell'], 'def': 'an exercising weight with two ball-like ends connected by a short handle', 'name': 'dumbbell'}, {'frequency': 'c', 'id': 412, 'synset': 'dumpster.n.01', 'synonyms': ['dumpster'], 'def': 'a container designed to receive and transport and dump waste', 'name': 'dumpster'}, {'frequency': 'r', 'id': 413, 'synset': 'dustpan.n.02', 'synonyms': ['dustpan'], 'def': 'a short-handled receptacle into which dust can be swept', 'name': 'dustpan'}, {'frequency': 'r', 'id': 414, 'synset': 'dutch_oven.n.02', 'synonyms': ['Dutch_oven'], 'def': 'iron or earthenware cooking pot; used for stews', 'name': 'Dutch_oven'}, {'frequency': 'c', 'id': 415, 'synset': 'eagle.n.01', 'synonyms': ['eagle'], 'def': 'large birds of prey noted for their broad wings and strong soaring flight', 'name': 'eagle'}, {'frequency': 'f', 'id': 416, 'synset': 'earphone.n.01', 'synonyms': ['earphone', 'earpiece', 'headphone'], 'def': 'device for listening to audio that is held over or inserted into the ear', 'name': 'earphone'}, {'frequency': 'r', 'id': 417, 'synset': 'earplug.n.01', 'synonyms': ['earplug'], 'def': 'a soft plug that is inserted into the ear canal to block sound', 'name': 'earplug'}, {'frequency': 'f', 'id': 418, 'synset': 'earring.n.01', 'synonyms': ['earring'], 'def': 'jewelry to ornament the ear', 'name': 'earring'}, {'frequency': 'c', 'id': 419, 'synset': 'easel.n.01', 'synonyms': ['easel'], 'def': "an upright tripod for displaying something (usually an artist's canvas)", 'name': 'easel'}, {'frequency': 'r', 'id': 420, 'synset': 'eclair.n.01', 'synonyms': ['eclair'], 'def': 'oblong cream puff', 'name': 'eclair'}, {'frequency': 'r', 'id': 421, 'synset': 'eel.n.01', 'synonyms': ['eel'], 'def': 'an elongate fish with fatty flesh', 'name': 'eel'}, {'frequency': 'f', 'id': 422, 'synset': 'egg.n.02', 'synonyms': ['egg', 'eggs'], 'def': 'oval reproductive body of a fowl (especially a hen) used as food', 'name': 'egg'}, {'frequency': 'r', 'id': 423, 'synset': 'egg_roll.n.01', 'synonyms': ['egg_roll', 'spring_roll'], 'def': 'minced vegetables and meat wrapped in a pancake and fried', 'name': 'egg_roll'}, {'frequency': 'c', 'id': 424, 'synset': 'egg_yolk.n.01', 'synonyms': ['egg_yolk', 'yolk_(egg)'], 'def': 'the yellow spherical part of an egg', 'name': 'egg_yolk'}, {'frequency': 'c', 'id': 425, 'synset': 'eggbeater.n.02', 'synonyms': ['eggbeater', 'eggwhisk'], 'def': 'a mixer for beating eggs or whipping cream', 'name': 'eggbeater'}, {'frequency': 'c', 'id': 426, 'synset': 'eggplant.n.01', 'synonyms': ['eggplant', 'aubergine'], 'def': 'egg-shaped vegetable having a shiny skin typically dark purple', 'name': 'eggplant'}, {'frequency': 'r', 'id': 427, 'synset': 'electric_chair.n.01', 'synonyms': ['electric_chair'], 'def': 'a chair-shaped instrument of execution by electrocution', 'name': 'electric_chair'}, {'frequency': 'f', 'id': 428, 'synset': 'electric_refrigerator.n.01', 'synonyms': ['refrigerator'], 'def': 'a refrigerator in which the coolant is pumped around by an electric motor', 'name': 'refrigerator'}, {'frequency': 'f', 'id': 429, 'synset': 'elephant.n.01', 'synonyms': ['elephant'], 'def': 'a common elephant', 'name': 'elephant'}, {'frequency': 'r', 'id': 430, 'synset': 'elk.n.01', 'synonyms': ['elk', 'moose'], 'def': 'large northern deer with enormous flattened antlers in the male', 'name': 'elk'}, {'frequency': 'c', 'id': 431, 'synset': 'envelope.n.01', 'synonyms': ['envelope'], 'def': 'a flat (usually rectangular) container for a letter, thin package, etc.', 'name': 'envelope'}, {'frequency': 'c', 'id': 432, 'synset': 'eraser.n.01', 'synonyms': ['eraser'], 'def': 'an implement used to erase something', 'name': 'eraser'}, {'frequency': 'r', 'id': 433, 'synset': 'escargot.n.01', 'synonyms': ['escargot'], 'def': 'edible snail usually served in the shell with a sauce of melted butter and garlic', 'name': 'escargot'}, {'frequency': 'r', 'id': 434, 'synset': 'eyepatch.n.01', 'synonyms': ['eyepatch'], 'def': 'a protective cloth covering for an injured eye', 'name': 'eyepatch'}, {'frequency': 'r', 'id': 435, 'synset': 'falcon.n.01', 'synonyms': ['falcon'], 'def': 'birds of prey having long pointed powerful wings adapted for swift flight', 'name': 'falcon'}, {'frequency': 'f', 'id': 436, 'synset': 'fan.n.01', 'synonyms': ['fan'], 'def': 'a device for creating a current of air by movement of a surface or surfaces', 'name': 'fan'}, {'frequency': 'f', 'id': 437, 'synset': 'faucet.n.01', 'synonyms': ['faucet', 'spigot', 'tap'], 'def': 'a regulator for controlling the flow of a liquid from a reservoir', 'name': 'faucet'}, {'frequency': 'r', 'id': 438, 'synset': 'fedora.n.01', 'synonyms': ['fedora'], 'def': 'a hat made of felt with a creased crown', 'name': 'fedora'}, {'frequency': 'r', 'id': 439, 'synset': 'ferret.n.02', 'synonyms': ['ferret'], 'def': 'domesticated albino variety of the European polecat bred for hunting rats and rabbits', 'name': 'ferret'}, {'frequency': 'c', 'id': 440, 'synset': 'ferris_wheel.n.01', 'synonyms': ['Ferris_wheel'], 'def': 'a large wheel with suspended seats that remain upright as the wheel rotates', 'name': 'Ferris_wheel'}, {'frequency': 'r', 'id': 441, 'synset': 'ferry.n.01', 'synonyms': ['ferry', 'ferryboat'], 'def': 'a boat that transports people or vehicles across a body of water and operates on a regular schedule', 'name': 'ferry'}, {'frequency': 'r', 'id': 442, 'synset': 'fig.n.04', 'synonyms': ['fig_(fruit)'], 'def': 'fleshy sweet pear-shaped yellowish or purple fruit eaten fresh or preserved or dried', 'name': 'fig_(fruit)'}, {'frequency': 'c', 'id': 443, 'synset': 'fighter.n.02', 'synonyms': ['fighter_jet', 'fighter_aircraft', 'attack_aircraft'], 'def': 'a high-speed military or naval airplane designed to destroy enemy targets', 'name': 'fighter_jet'}, {'frequency': 'f', 'id': 444, 'synset': 'figurine.n.01', 'synonyms': ['figurine'], 'def': 'a small carved or molded figure', 'name': 'figurine'}, {'frequency': 'c', 'id': 445, 'synset': 'file.n.03', 'synonyms': ['file_cabinet', 'filing_cabinet'], 'def': 'office furniture consisting of a container for keeping papers in order', 'name': 'file_cabinet'}, {'frequency': 'r', 'id': 446, 'synset': 'file.n.04', 'synonyms': ['file_(tool)'], 'def': 'a steel hand tool with small sharp teeth on some or all of its surfaces; used for smoothing wood or metal', 'name': 'file_(tool)'}, {'frequency': 'f', 'id': 447, 'synset': 'fire_alarm.n.02', 'synonyms': ['fire_alarm', 'smoke_alarm'], 'def': 'an alarm that is tripped off by fire or smoke', 'name': 'fire_alarm'}, {'frequency': 'c', 'id': 448, 'synset': 'fire_engine.n.01', 'synonyms': ['fire_engine', 'fire_truck'], 'def': 'large trucks that carry firefighters and equipment to the site of a fire', 'name': 'fire_engine'}, {'frequency': 'c', 'id': 449, 'synset': 'fire_extinguisher.n.01', 'synonyms': ['fire_extinguisher', 'extinguisher'], 'def': 'a manually operated device for extinguishing small fires', 'name': 'fire_extinguisher'}, {'frequency': 'c', 'id': 450, 'synset': 'fire_hose.n.01', 'synonyms': ['fire_hose'], 'def': 'a large hose that carries water from a fire hydrant to the site of the fire', 'name': 'fire_hose'}, {'frequency': 'f', 'id': 451, 'synset': 'fireplace.n.01', 'synonyms': ['fireplace'], 'def': 'an open recess in a wall at the base of a chimney where a fire can be built', 'name': 'fireplace'}, {'frequency': 'f', 'id': 452, 'synset': 'fireplug.n.01', 'synonyms': ['fireplug', 'fire_hydrant', 'hydrant'], 'def': 'an upright hydrant for drawing water to use in fighting a fire', 'name': 'fireplug'}, {'frequency': 'c', 'id': 453, 'synset': 'fish.n.01', 'synonyms': ['fish'], 'def': 'any of various mostly cold-blooded aquatic vertebrates usually having scales and breathing through gills', 'name': 'fish'}, {'frequency': 'r', 'id': 454, 'synset': 'fish.n.02', 'synonyms': ['fish_(food)'], 'def': 'the flesh of fish used as food', 'name': 'fish_(food)'}, {'frequency': 'r', 'id': 455, 'synset': 'fishbowl.n.02', 'synonyms': ['fishbowl', 'goldfish_bowl'], 'def': 'a transparent bowl in which small fish are kept', 'name': 'fishbowl'}, {'frequency': 'r', 'id': 456, 'synset': 'fishing_boat.n.01', 'synonyms': ['fishing_boat', 'fishing_vessel'], 'def': 'a vessel for fishing', 'name': 'fishing_boat'}, {'frequency': 'c', 'id': 457, 'synset': 'fishing_rod.n.01', 'synonyms': ['fishing_rod', 'fishing_pole'], 'def': 'a rod that is used in fishing to extend the fishing line', 'name': 'fishing_rod'}, {'frequency': 'f', 'id': 458, 'synset': 'flag.n.01', 'synonyms': ['flag'], 'def': 'emblem usually consisting of a rectangular piece of cloth of distinctive design (do not include pole)', 'name': 'flag'}, {'frequency': 'f', 'id': 459, 'synset': 'flagpole.n.02', 'synonyms': ['flagpole', 'flagstaff'], 'def': 'a tall staff or pole on which a flag is raised', 'name': 'flagpole'}, {'frequency': 'c', 'id': 460, 'synset': 'flamingo.n.01', 'synonyms': ['flamingo'], 'def': 'large pink web-footed bird with down-bent bill', 'name': 'flamingo'}, {'frequency': 'c', 'id': 461, 'synset': 'flannel.n.01', 'synonyms': ['flannel'], 'def': 'a soft light woolen fabric; used for clothing', 'name': 'flannel'}, {'frequency': 'r', 'id': 462, 'synset': 'flash.n.10', 'synonyms': ['flash', 'flashbulb'], 'def': 'a lamp for providing momentary light to take a photograph', 'name': 'flash'}, {'frequency': 'c', 'id': 463, 'synset': 'flashlight.n.01', 'synonyms': ['flashlight', 'torch'], 'def': 'a small portable battery-powered electric lamp', 'name': 'flashlight'}, {'frequency': 'r', 'id': 464, 'synset': 'fleece.n.03', 'synonyms': ['fleece'], 'def': 'a soft bulky fabric with deep pile; used chiefly for clothing', 'name': 'fleece'}, {'frequency': 'f', 'id': 465, 'synset': 'flip-flop.n.02', 'synonyms': ['flip-flop_(sandal)'], 'def': 'a backless sandal held to the foot by a thong between two toes', 'name': 'flip-flop_(sandal)'}, {'frequency': 'c', 'id': 466, 'synset': 'flipper.n.01', 'synonyms': ['flipper_(footwear)', 'fin_(footwear)'], 'def': 'a shoe to aid a person in swimming', 'name': 'flipper_(footwear)'}, {'frequency': 'f', 'id': 467, 'synset': 'flower_arrangement.n.01', 'synonyms': ['flower_arrangement', 'floral_arrangement'], 'def': 'a decorative arrangement of flowers', 'name': 'flower_arrangement'}, {'frequency': 'c', 'id': 468, 'synset': 'flute.n.02', 'synonyms': ['flute_glass', 'champagne_flute'], 'def': 'a tall narrow wineglass', 'name': 'flute_glass'}, {'frequency': 'r', 'id': 469, 'synset': 'foal.n.01', 'synonyms': ['foal'], 'def': 'a young horse', 'name': 'foal'}, {'frequency': 'c', 'id': 470, 'synset': 'folding_chair.n.01', 'synonyms': ['folding_chair'], 'def': 'a chair that can be folded flat for storage', 'name': 'folding_chair'}, {'frequency': 'c', 'id': 471, 'synset': 'food_processor.n.01', 'synonyms': ['food_processor'], 'def': 'a kitchen appliance for shredding, blending, chopping, or slicing food', 'name': 'food_processor'}, {'frequency': 'c', 'id': 472, 'synset': 'football.n.02', 'synonyms': ['football_(American)'], 'def': 'the inflated oblong ball used in playing American football', 'name': 'football_(American)'}, {'frequency': 'r', 'id': 473, 'synset': 'football_helmet.n.01', 'synonyms': ['football_helmet'], 'def': 'a padded helmet with a face mask to protect the head of football players', 'name': 'football_helmet'}, {'frequency': 'c', 'id': 474, 'synset': 'footstool.n.01', 'synonyms': ['footstool', 'footrest'], 'def': 'a low seat or a stool to rest the feet of a seated person', 'name': 'footstool'}, {'frequency': 'f', 'id': 475, 'synset': 'fork.n.01', 'synonyms': ['fork'], 'def': 'cutlery used for serving and eating food', 'name': 'fork'}, {'frequency': 'r', 'id': 476, 'synset': 'forklift.n.01', 'synonyms': ['forklift'], 'def': 'an industrial vehicle with a power operated fork in front that can be inserted under loads to lift and move them', 'name': 'forklift'}, {'frequency': 'r', 'id': 477, 'synset': 'freight_car.n.01', 'synonyms': ['freight_car'], 'def': 'a railway car that carries freight', 'name': 'freight_car'}, {'frequency': 'r', 'id': 478, 'synset': 'french_toast.n.01', 'synonyms': ['French_toast'], 'def': 'bread slice dipped in egg and milk and fried', 'name': 'French_toast'}, {'frequency': 'c', 'id': 479, 'synset': 'freshener.n.01', 'synonyms': ['freshener', 'air_freshener'], 'def': 'anything that freshens', 'name': 'freshener'}, {'frequency': 'f', 'id': 480, 'synset': 'frisbee.n.01', 'synonyms': ['frisbee'], 'def': 'a light, plastic disk propelled with a flip of the wrist for recreation or competition', 'name': 'frisbee'}, {'frequency': 'c', 'id': 481, 'synset': 'frog.n.01', 'synonyms': ['frog', 'toad', 'toad_frog'], 'def': 'a tailless stout-bodied amphibians with long hind limbs for leaping', 'name': 'frog'}, {'frequency': 'c', 'id': 482, 'synset': 'fruit_juice.n.01', 'synonyms': ['fruit_juice'], 'def': 'drink produced by squeezing or crushing fruit', 'name': 'fruit_juice'}, {'frequency': 'r', 'id': 483, 'synset': 'fruit_salad.n.01', 'synonyms': ['fruit_salad'], 'def': 'salad composed of fruits', 'name': 'fruit_salad'}, {'frequency': 'c', 'id': 484, 'synset': 'frying_pan.n.01', 'synonyms': ['frying_pan', 'frypan', 'skillet'], 'def': 'a pan used for frying foods', 'name': 'frying_pan'}, {'frequency': 'r', 'id': 485, 'synset': 'fudge.n.01', 'synonyms': ['fudge'], 'def': 'soft creamy candy', 'name': 'fudge'}, {'frequency': 'r', 'id': 486, 'synset': 'funnel.n.02', 'synonyms': ['funnel'], 'def': 'a cone-shaped utensil used to channel a substance into a container with a small mouth', 'name': 'funnel'}, {'frequency': 'c', 'id': 487, 'synset': 'futon.n.01', 'synonyms': ['futon'], 'def': 'a pad that is used for sleeping on the floor or on a raised frame', 'name': 'futon'}, {'frequency': 'r', 'id': 488, 'synset': 'gag.n.02', 'synonyms': ['gag', 'muzzle'], 'def': "restraint put into a person's mouth to prevent speaking or shouting", 'name': 'gag'}, {'frequency': 'r', 'id': 489, 'synset': 'garbage.n.03', 'synonyms': ['garbage'], 'def': 'a receptacle where waste can be discarded', 'name': 'garbage'}, {'frequency': 'c', 'id': 490, 'synset': 'garbage_truck.n.01', 'synonyms': ['garbage_truck'], 'def': 'a truck for collecting domestic refuse', 'name': 'garbage_truck'}, {'frequency': 'c', 'id': 491, 'synset': 'garden_hose.n.01', 'synonyms': ['garden_hose'], 'def': 'a hose used for watering a lawn or garden', 'name': 'garden_hose'}, {'frequency': 'c', 'id': 492, 'synset': 'gargle.n.01', 'synonyms': ['gargle', 'mouthwash'], 'def': 'a medicated solution used for gargling and rinsing the mouth', 'name': 'gargle'}, {'frequency': 'r', 'id': 493, 'synset': 'gargoyle.n.02', 'synonyms': ['gargoyle'], 'def': 'an ornament consisting of a grotesquely carved figure of a person or animal', 'name': 'gargoyle'}, {'frequency': 'c', 'id': 494, 'synset': 'garlic.n.02', 'synonyms': ['garlic', 'ail'], 'def': 'aromatic bulb used as seasoning', 'name': 'garlic'}, {'frequency': 'r', 'id': 495, 'synset': 'gasmask.n.01', 'synonyms': ['gasmask', 'respirator', 'gas_helmet'], 'def': 'a protective face mask with a filter', 'name': 'gasmask'}, {'frequency': 'r', 'id': 496, 'synset': 'gazelle.n.01', 'synonyms': ['gazelle'], 'def': 'small swift graceful antelope of Africa and Asia having lustrous eyes', 'name': 'gazelle'}, {'frequency': 'c', 'id': 497, 'synset': 'gelatin.n.02', 'synonyms': ['gelatin', 'jelly'], 'def': 'an edible jelly made with gelatin and used as a dessert or salad base or a coating for foods', 'name': 'gelatin'}, {'frequency': 'r', 'id': 498, 'synset': 'gem.n.02', 'synonyms': ['gemstone'], 'def': 'a crystalline rock that can be cut and polished for jewelry', 'name': 'gemstone'}, {'frequency': 'c', 'id': 499, 'synset': 'giant_panda.n.01', 'synonyms': ['giant_panda', 'panda', 'panda_bear'], 'def': 'large black-and-white herbivorous mammal of bamboo forests of China and Tibet', 'name': 'giant_panda'}, {'frequency': 'c', 'id': 500, 'synset': 'gift_wrap.n.01', 'synonyms': ['gift_wrap'], 'def': 'attractive wrapping paper suitable for wrapping gifts', 'name': 'gift_wrap'}, {'frequency': 'c', 'id': 501, 'synset': 'ginger.n.03', 'synonyms': ['ginger', 'gingerroot'], 'def': 'the root of the common ginger plant; used fresh as a seasoning', 'name': 'ginger'}, {'frequency': 'f', 'id': 502, 'synset': 'giraffe.n.01', 'synonyms': ['giraffe'], 'def': 'tall animal having a spotted coat and small horns and very long neck and legs', 'name': 'giraffe'}, {'frequency': 'c', 'id': 503, 'synset': 'girdle.n.02', 'synonyms': ['cincture', 'sash', 'waistband', 'waistcloth'], 'def': 'a band of material around the waist that strengthens a skirt or trousers', 'name': 'cincture'}, {'frequency': 'f', 'id': 504, 'synset': 'glass.n.02', 'synonyms': ['glass_(drink_container)', 'drinking_glass'], 'def': 'a container for holding liquids while drinking', 'name': 'glass_(drink_container)'}, {'frequency': 'c', 'id': 505, 'synset': 'globe.n.03', 'synonyms': ['globe'], 'def': 'a sphere on which a map (especially of the earth) is represented', 'name': 'globe'}, {'frequency': 'f', 'id': 506, 'synset': 'glove.n.02', 'synonyms': ['glove'], 'def': 'handwear covering the hand', 'name': 'glove'}, {'frequency': 'c', 'id': 507, 'synset': 'goat.n.01', 'synonyms': ['goat'], 'def': 'a common goat', 'name': 'goat'}, {'frequency': 'f', 'id': 508, 'synset': 'goggles.n.01', 'synonyms': ['goggles'], 'def': 'tight-fitting spectacles worn to protect the eyes', 'name': 'goggles'}, {'frequency': 'r', 'id': 509, 'synset': 'goldfish.n.01', 'synonyms': ['goldfish'], 'def': 'small golden or orange-red freshwater fishes used as pond or aquarium pets', 'name': 'goldfish'}, {'frequency': 'r', 'id': 510, 'synset': 'golf_club.n.02', 'synonyms': ['golf_club', 'golf-club'], 'def': 'golf equipment used by a golfer to hit a golf ball', 'name': 'golf_club'}, {'frequency': 'c', 'id': 511, 'synset': 'golfcart.n.01', 'synonyms': ['golfcart'], 'def': 'a small motor vehicle in which golfers can ride between shots', 'name': 'golfcart'}, {'frequency': 'r', 'id': 512, 'synset': 'gondola.n.02', 'synonyms': ['gondola_(boat)'], 'def': 'long narrow flat-bottomed boat propelled by sculling; traditionally used on canals of Venice', 'name': 'gondola_(boat)'}, {'frequency': 'c', 'id': 513, 'synset': 'goose.n.01', 'synonyms': ['goose'], 'def': 'loud, web-footed long-necked aquatic birds usually larger than ducks', 'name': 'goose'}, {'frequency': 'r', 'id': 514, 'synset': 'gorilla.n.01', 'synonyms': ['gorilla'], 'def': 'largest ape', 'name': 'gorilla'}, {'frequency': 'r', 'id': 515, 'synset': 'gourd.n.02', 'synonyms': ['gourd'], 'def': 'any of numerous inedible fruits with hard rinds', 'name': 'gourd'}, {'frequency': 'r', 'id': 516, 'synset': 'gown.n.04', 'synonyms': ['surgical_gown', 'scrubs_(surgical_clothing)'], 'def': 'protective garment worn by surgeons during operations', 'name': 'surgical_gown'}, {'frequency': 'f', 'id': 517, 'synset': 'grape.n.01', 'synonyms': ['grape'], 'def': 'any of various juicy fruit with green or purple skins; grow in clusters', 'name': 'grape'}, {'frequency': 'r', 'id': 518, 'synset': 'grasshopper.n.01', 'synonyms': ['grasshopper'], 'def': 'plant-eating insect with hind legs adapted for leaping', 'name': 'grasshopper'}, {'frequency': 'c', 'id': 519, 'synset': 'grater.n.01', 'synonyms': ['grater'], 'def': 'utensil with sharp perforations for shredding foods (as vegetables or cheese)', 'name': 'grater'}, {'frequency': 'c', 'id': 520, 'synset': 'gravestone.n.01', 'synonyms': ['gravestone', 'headstone', 'tombstone'], 'def': 'a stone that is used to mark a grave', 'name': 'gravestone'}, {'frequency': 'r', 'id': 521, 'synset': 'gravy_boat.n.01', 'synonyms': ['gravy_boat', 'gravy_holder'], 'def': 'a dish (often boat-shaped) for serving gravy or sauce', 'name': 'gravy_boat'}, {'frequency': 'c', 'id': 522, 'synset': 'green_bean.n.02', 'synonyms': ['green_bean'], 'def': 'a common bean plant cultivated for its slender green edible pods', 'name': 'green_bean'}, {'frequency': 'c', 'id': 523, 'synset': 'green_onion.n.01', 'synonyms': ['green_onion', 'spring_onion', 'scallion'], 'def': 'a young onion before the bulb has enlarged', 'name': 'green_onion'}, {'frequency': 'r', 'id': 524, 'synset': 'griddle.n.01', 'synonyms': ['griddle'], 'def': 'cooking utensil consisting of a flat heated surface on which food is cooked', 'name': 'griddle'}, {'frequency': 'r', 'id': 525, 'synset': 'grillroom.n.01', 'synonyms': ['grillroom', 'grill_(restaurant)'], 'def': 'a restaurant where food is cooked on a grill', 'name': 'grillroom'}, {'frequency': 'r', 'id': 526, 'synset': 'grinder.n.04', 'synonyms': ['grinder_(tool)'], 'def': 'a machine tool that polishes metal', 'name': 'grinder_(tool)'}, {'frequency': 'r', 'id': 527, 'synset': 'grits.n.01', 'synonyms': ['grits', 'hominy_grits'], 'def': 'coarsely ground corn boiled as a breakfast dish', 'name': 'grits'}, {'frequency': 'c', 'id': 528, 'synset': 'grizzly.n.01', 'synonyms': ['grizzly', 'grizzly_bear'], 'def': 'powerful brownish-yellow bear of the uplands of western North America', 'name': 'grizzly'}, {'frequency': 'c', 'id': 529, 'synset': 'grocery_bag.n.01', 'synonyms': ['grocery_bag'], 'def': "a sack for holding customer's groceries", 'name': 'grocery_bag'}, {'frequency': 'r', 'id': 530, 'synset': 'guacamole.n.01', 'synonyms': ['guacamole'], 'def': 'a dip made of mashed avocado mixed with chopped onions and other seasonings', 'name': 'guacamole'}, {'frequency': 'f', 'id': 531, 'synset': 'guitar.n.01', 'synonyms': ['guitar'], 'def': 'a stringed instrument usually having six strings; played by strumming or plucking', 'name': 'guitar'}, {'frequency': 'c', 'id': 532, 'synset': 'gull.n.02', 'synonyms': ['gull', 'seagull'], 'def': 'mostly white aquatic bird having long pointed wings and short legs', 'name': 'gull'}, {'frequency': 'c', 'id': 533, 'synset': 'gun.n.01', 'synonyms': ['gun'], 'def': 'a weapon that discharges a bullet at high velocity from a metal tube', 'name': 'gun'}, {'frequency': 'r', 'id': 534, 'synset': 'hair_spray.n.01', 'synonyms': ['hair_spray'], 'def': 'substance sprayed on the hair to hold it in place', 'name': 'hair_spray'}, {'frequency': 'c', 'id': 535, 'synset': 'hairbrush.n.01', 'synonyms': ['hairbrush'], 'def': "a brush used to groom a person's hair", 'name': 'hairbrush'}, {'frequency': 'c', 'id': 536, 'synset': 'hairnet.n.01', 'synonyms': ['hairnet'], 'def': 'a small net that someone wears over their hair to keep it in place', 'name': 'hairnet'}, {'frequency': 'c', 'id': 537, 'synset': 'hairpin.n.01', 'synonyms': ['hairpin'], 'def': "a double pronged pin used to hold women's hair in place", 'name': 'hairpin'}, {'frequency': 'f', 'id': 538, 'synset': 'ham.n.01', 'synonyms': ['ham', 'jambon', 'gammon'], 'def': 'meat cut from the thigh of a hog (usually smoked)', 'name': 'ham'}, {'frequency': 'c', 'id': 539, 'synset': 'hamburger.n.01', 'synonyms': ['hamburger', 'beefburger', 'burger'], 'def': 'a sandwich consisting of a patty of minced beef served on a bun', 'name': 'hamburger'}, {'frequency': 'c', 'id': 540, 'synset': 'hammer.n.02', 'synonyms': ['hammer'], 'def': 'a hand tool with a heavy head and a handle; used to deliver an impulsive force by striking', 'name': 'hammer'}, {'frequency': 'r', 'id': 541, 'synset': 'hammock.n.02', 'synonyms': ['hammock'], 'def': 'a hanging bed of canvas or rope netting (usually suspended between two trees)', 'name': 'hammock'}, {'frequency': 'r', 'id': 542, 'synset': 'hamper.n.02', 'synonyms': ['hamper'], 'def': 'a basket usually with a cover', 'name': 'hamper'}, {'frequency': 'r', 'id': 543, 'synset': 'hamster.n.01', 'synonyms': ['hamster'], 'def': 'short-tailed burrowing rodent with large cheek pouches', 'name': 'hamster'}, {'frequency': 'c', 'id': 544, 'synset': 'hand_blower.n.01', 'synonyms': ['hair_dryer'], 'def': 'a hand-held electric blower that can blow warm air onto the hair', 'name': 'hair_dryer'}, {'frequency': 'r', 'id': 545, 'synset': 'hand_glass.n.01', 'synonyms': ['hand_glass', 'hand_mirror'], 'def': 'a mirror intended to be held in the hand', 'name': 'hand_glass'}, {'frequency': 'f', 'id': 546, 'synset': 'hand_towel.n.01', 'synonyms': ['hand_towel', 'face_towel'], 'def': 'a small towel used to dry the hands or face', 'name': 'hand_towel'}, {'frequency': 'c', 'id': 547, 'synset': 'handcart.n.01', 'synonyms': ['handcart', 'pushcart', 'hand_truck'], 'def': 'wheeled vehicle that can be pushed by a person', 'name': 'handcart'}, {'frequency': 'r', 'id': 548, 'synset': 'handcuff.n.01', 'synonyms': ['handcuff'], 'def': 'shackle that consists of a metal loop that can be locked around the wrist', 'name': 'handcuff'}, {'frequency': 'c', 'id': 549, 'synset': 'handkerchief.n.01', 'synonyms': ['handkerchief'], 'def': 'a square piece of cloth used for wiping the eyes or nose or as a costume accessory', 'name': 'handkerchief'}, {'frequency': 'f', 'id': 550, 'synset': 'handle.n.01', 'synonyms': ['handle', 'grip', 'handgrip'], 'def': 'the appendage to an object that is designed to be held in order to use or move it', 'name': 'handle'}, {'frequency': 'r', 'id': 551, 'synset': 'handsaw.n.01', 'synonyms': ['handsaw', "carpenter's_saw"], 'def': 'a saw used with one hand for cutting wood', 'name': 'handsaw'}, {'frequency': 'r', 'id': 552, 'synset': 'hardback.n.01', 'synonyms': ['hardback_book', 'hardcover_book'], 'def': 'a book with cardboard or cloth or leather covers', 'name': 'hardback_book'}, {'frequency': 'r', 'id': 553, 'synset': 'harmonium.n.01', 'synonyms': ['harmonium', 'organ_(musical_instrument)', 'reed_organ_(musical_instrument)'], 'def': 'a free-reed instrument in which air is forced through the reeds by bellows', 'name': 'harmonium'}, {'frequency': 'f', 'id': 554, 'synset': 'hat.n.01', 'synonyms': ['hat'], 'def': 'headwear that protects the head from bad weather, sun, or worn for fashion', 'name': 'hat'}, {'frequency': 'r', 'id': 555, 'synset': 'hatbox.n.01', 'synonyms': ['hatbox'], 'def': 'a round piece of luggage for carrying hats', 'name': 'hatbox'}, {'frequency': 'r', 'id': 556, 'synset': 'hatch.n.03', 'synonyms': ['hatch'], 'def': 'a movable barrier covering a hatchway', 'name': 'hatch'}, {'frequency': 'c', 'id': 557, 'synset': 'head_covering.n.01', 'synonyms': ['veil'], 'def': 'a garment that covers the head and face', 'name': 'veil'}, {'frequency': 'f', 'id': 558, 'synset': 'headband.n.01', 'synonyms': ['headband'], 'def': 'a band worn around or over the head', 'name': 'headband'}, {'frequency': 'f', 'id': 559, 'synset': 'headboard.n.01', 'synonyms': ['headboard'], 'def': 'a vertical board or panel forming the head of a bedstead', 'name': 'headboard'}, {'frequency': 'f', 'id': 560, 'synset': 'headlight.n.01', 'synonyms': ['headlight', 'headlamp'], 'def': 'a powerful light with reflector; attached to the front of an automobile or locomotive', 'name': 'headlight'}, {'frequency': 'c', 'id': 561, 'synset': 'headscarf.n.01', 'synonyms': ['headscarf'], 'def': 'a kerchief worn over the head and tied under the chin', 'name': 'headscarf'}, {'frequency': 'r', 'id': 562, 'synset': 'headset.n.01', 'synonyms': ['headset'], 'def': 'receiver consisting of a pair of headphones', 'name': 'headset'}, {'frequency': 'c', 'id': 563, 'synset': 'headstall.n.01', 'synonyms': ['headstall_(for_horses)', 'headpiece_(for_horses)'], 'def': "the band that is the part of a bridle that fits around a horse's head", 'name': 'headstall_(for_horses)'}, {'frequency': 'r', 'id': 564, 'synset': 'hearing_aid.n.02', 'synonyms': ['hearing_aid'], 'def': 'an acoustic device used to direct sound to the ear of a hearing-impaired person', 'name': 'hearing_aid'}, {'frequency': 'c', 'id': 565, 'synset': 'heart.n.02', 'synonyms': ['heart'], 'def': 'a muscular organ; its contractions move the blood through the body', 'name': 'heart'}, {'frequency': 'c', 'id': 566, 'synset': 'heater.n.01', 'synonyms': ['heater', 'warmer'], 'def': 'device that heats water or supplies warmth to a room', 'name': 'heater'}, {'frequency': 'c', 'id': 567, 'synset': 'helicopter.n.01', 'synonyms': ['helicopter'], 'def': 'an aircraft without wings that obtains its lift from the rotation of overhead blades', 'name': 'helicopter'}, {'frequency': 'f', 'id': 568, 'synset': 'helmet.n.02', 'synonyms': ['helmet'], 'def': 'a protective headgear made of hard material to resist blows', 'name': 'helmet'}, {'frequency': 'r', 'id': 569, 'synset': 'heron.n.02', 'synonyms': ['heron'], 'def': 'grey or white wading bird with long neck and long legs and (usually) long bill', 'name': 'heron'}, {'frequency': 'c', 'id': 570, 'synset': 'highchair.n.01', 'synonyms': ['highchair', 'feeding_chair'], 'def': 'a chair for feeding a very young child', 'name': 'highchair'}, {'frequency': 'f', 'id': 571, 'synset': 'hinge.n.01', 'synonyms': ['hinge'], 'def': 'a joint that holds two parts together so that one can swing relative to the other', 'name': 'hinge'}, {'frequency': 'r', 'id': 572, 'synset': 'hippopotamus.n.01', 'synonyms': ['hippopotamus'], 'def': 'massive thick-skinned animal living in or around rivers of tropical Africa', 'name': 'hippopotamus'}, {'frequency': 'r', 'id': 573, 'synset': 'hockey_stick.n.01', 'synonyms': ['hockey_stick'], 'def': 'sports implement consisting of a stick used by hockey players to move the puck', 'name': 'hockey_stick'}, {'frequency': 'c', 'id': 574, 'synset': 'hog.n.03', 'synonyms': ['hog', 'pig'], 'def': 'domestic swine', 'name': 'hog'}, {'frequency': 'f', 'id': 575, 'synset': 'home_plate.n.01', 'synonyms': ['home_plate_(baseball)', 'home_base_(baseball)'], 'def': '(baseball) a rubber slab where the batter stands; it must be touched by a base runner in order to score', 'name': 'home_plate_(baseball)'}, {'frequency': 'c', 'id': 576, 'synset': 'honey.n.01', 'synonyms': ['honey'], 'def': 'a sweet yellow liquid produced by bees', 'name': 'honey'}, {'frequency': 'f', 'id': 577, 'synset': 'hood.n.06', 'synonyms': ['fume_hood', 'exhaust_hood'], 'def': 'metal covering leading to a vent that exhausts smoke or fumes', 'name': 'fume_hood'}, {'frequency': 'f', 'id': 578, 'synset': 'hook.n.05', 'synonyms': ['hook'], 'def': 'a curved or bent implement for suspending or pulling something', 'name': 'hook'}, {'frequency': 'f', 'id': 579, 'synset': 'horse.n.01', 'synonyms': ['horse'], 'def': 'a common horse', 'name': 'horse'}, {'frequency': 'f', 'id': 580, 'synset': 'hose.n.03', 'synonyms': ['hose', 'hosepipe'], 'def': 'a flexible pipe for conveying a liquid or gas', 'name': 'hose'}, {'frequency': 'r', 'id': 581, 'synset': 'hot-air_balloon.n.01', 'synonyms': ['hot-air_balloon'], 'def': 'balloon for travel through the air in a basket suspended below a large bag of heated air', 'name': 'hot-air_balloon'}, {'frequency': 'r', 'id': 582, 'synset': 'hot_plate.n.01', 'synonyms': ['hotplate'], 'def': 'a portable electric appliance for heating or cooking or keeping food warm', 'name': 'hotplate'}, {'frequency': 'c', 'id': 583, 'synset': 'hot_sauce.n.01', 'synonyms': ['hot_sauce'], 'def': 'a pungent peppery sauce', 'name': 'hot_sauce'}, {'frequency': 'r', 'id': 584, 'synset': 'hourglass.n.01', 'synonyms': ['hourglass'], 'def': 'a sandglass timer that runs for sixty minutes', 'name': 'hourglass'}, {'frequency': 'r', 'id': 585, 'synset': 'houseboat.n.01', 'synonyms': ['houseboat'], 'def': 'a barge that is designed and equipped for use as a dwelling', 'name': 'houseboat'}, {'frequency': 'r', 'id': 586, 'synset': 'hummingbird.n.01', 'synonyms': ['hummingbird'], 'def': 'tiny American bird having brilliant iridescent plumage and long slender bills', 'name': 'hummingbird'}, {'frequency': 'r', 'id': 587, 'synset': 'hummus.n.01', 'synonyms': ['hummus', 'humus', 'hommos', 'hoummos', 'humous'], 'def': 'a thick spread made from mashed chickpeas', 'name': 'hummus'}, {'frequency': 'c', 'id': 588, 'synset': 'ice_bear.n.01', 'synonyms': ['polar_bear'], 'def': 'white bear of Arctic regions', 'name': 'polar_bear'}, {'frequency': 'c', 'id': 589, 'synset': 'ice_cream.n.01', 'synonyms': ['icecream'], 'def': 'frozen dessert containing cream and sugar and flavoring', 'name': 'icecream'}, {'frequency': 'r', 'id': 590, 'synset': 'ice_lolly.n.01', 'synonyms': ['popsicle'], 'def': 'ice cream or water ice on a small wooden stick', 'name': 'popsicle'}, {'frequency': 'c', 'id': 591, 'synset': 'ice_maker.n.01', 'synonyms': ['ice_maker'], 'def': 'an appliance included in some electric refrigerators for making ice cubes', 'name': 'ice_maker'}, {'frequency': 'r', 'id': 592, 'synset': 'ice_pack.n.01', 'synonyms': ['ice_pack', 'ice_bag'], 'def': 'a waterproof bag filled with ice: applied to the body (especially the head) to cool or reduce swelling', 'name': 'ice_pack'}, {'frequency': 'r', 'id': 593, 'synset': 'ice_skate.n.01', 'synonyms': ['ice_skate'], 'def': 'skate consisting of a boot with a steel blade fitted to the sole', 'name': 'ice_skate'}, {'frequency': 'r', 'id': 594, 'synset': 'ice_tea.n.01', 'synonyms': ['ice_tea', 'iced_tea'], 'def': 'strong tea served over ice', 'name': 'ice_tea'}, {'frequency': 'c', 'id': 595, 'synset': 'igniter.n.01', 'synonyms': ['igniter', 'ignitor', 'lighter'], 'def': 'a substance or device used to start a fire', 'name': 'igniter'}, {'frequency': 'r', 'id': 596, 'synset': 'incense.n.01', 'synonyms': ['incense'], 'def': 'a substance that produces a fragrant odor when burned', 'name': 'incense'}, {'frequency': 'r', 'id': 597, 'synset': 'inhaler.n.01', 'synonyms': ['inhaler', 'inhalator'], 'def': 'a dispenser that produces a chemical vapor to be inhaled through mouth or nose', 'name': 'inhaler'}, {'frequency': 'c', 'id': 598, 'synset': 'ipod.n.01', 'synonyms': ['iPod'], 'def': 'a pocket-sized device used to play music files', 'name': 'iPod'}, {'frequency': 'c', 'id': 599, 'synset': 'iron.n.04', 'synonyms': ['iron_(for_clothing)', 'smoothing_iron_(for_clothing)'], 'def': 'home appliance consisting of a flat metal base that is heated and used to smooth cloth', 'name': 'iron_(for_clothing)'}, {'frequency': 'r', 'id': 600, 'synset': 'ironing_board.n.01', 'synonyms': ['ironing_board'], 'def': 'narrow padded board on collapsible supports; used for ironing clothes', 'name': 'ironing_board'}, {'frequency': 'f', 'id': 601, 'synset': 'jacket.n.01', 'synonyms': ['jacket'], 'def': 'a waist-length coat', 'name': 'jacket'}, {'frequency': 'r', 'id': 602, 'synset': 'jam.n.01', 'synonyms': ['jam'], 'def': 'preserve of crushed fruit', 'name': 'jam'}, {'frequency': 'f', 'id': 603, 'synset': 'jean.n.01', 'synonyms': ['jean', 'blue_jean', 'denim'], 'def': '(usually plural) close-fitting trousers of heavy denim for manual work or casual wear', 'name': 'jean'}, {'frequency': 'c', 'id': 604, 'synset': 'jeep.n.01', 'synonyms': ['jeep', 'landrover'], 'def': 'a car suitable for traveling over rough terrain', 'name': 'jeep'}, {'frequency': 'r', 'id': 605, 'synset': 'jelly_bean.n.01', 'synonyms': ['jelly_bean', 'jelly_egg'], 'def': 'sugar-glazed jellied candy', 'name': 'jelly_bean'}, {'frequency': 'f', 'id': 606, 'synset': 'jersey.n.03', 'synonyms': ['jersey', 'T-shirt', 'tee_shirt'], 'def': 'a close-fitting pullover shirt', 'name': 'jersey'}, {'frequency': 'c', 'id': 607, 'synset': 'jet.n.01', 'synonyms': ['jet_plane', 'jet-propelled_plane'], 'def': 'an airplane powered by one or more jet engines', 'name': 'jet_plane'}, {'frequency': 'c', 'id': 608, 'synset': 'jewelry.n.01', 'synonyms': ['jewelry', 'jewellery'], 'def': 'an adornment (as a bracelet or ring or necklace) made of precious metals and set with gems (or imitation gems)', 'name': 'jewelry'}, {'frequency': 'r', 'id': 609, 'synset': 'joystick.n.02', 'synonyms': ['joystick'], 'def': 'a control device for computers consisting of a vertical handle that can move freely in two directions', 'name': 'joystick'}, {'frequency': 'r', 'id': 610, 'synset': 'jump_suit.n.01', 'synonyms': ['jumpsuit'], 'def': "one-piece garment fashioned after a parachutist's uniform", 'name': 'jumpsuit'}, {'frequency': 'c', 'id': 611, 'synset': 'kayak.n.01', 'synonyms': ['kayak'], 'def': 'a small canoe consisting of a light frame made watertight with animal skins', 'name': 'kayak'}, {'frequency': 'r', 'id': 612, 'synset': 'keg.n.02', 'synonyms': ['keg'], 'def': 'small cask or barrel', 'name': 'keg'}, {'frequency': 'r', 'id': 613, 'synset': 'kennel.n.01', 'synonyms': ['kennel', 'doghouse'], 'def': 'outbuilding that serves as a shelter for a dog', 'name': 'kennel'}, {'frequency': 'c', 'id': 614, 'synset': 'kettle.n.01', 'synonyms': ['kettle', 'boiler'], 'def': 'a metal pot for stewing or boiling; usually has a lid', 'name': 'kettle'}, {'frequency': 'f', 'id': 615, 'synset': 'key.n.01', 'synonyms': ['key'], 'def': 'metal instrument used to unlock a lock', 'name': 'key'}, {'frequency': 'r', 'id': 616, 'synset': 'keycard.n.01', 'synonyms': ['keycard'], 'def': 'a plastic card used to gain access typically to a door', 'name': 'keycard'}, {'frequency': 'r', 'id': 617, 'synset': 'kilt.n.01', 'synonyms': ['kilt'], 'def': 'a knee-length pleated tartan skirt worn by men as part of the traditional dress in the Highlands of northern Scotland', 'name': 'kilt'}, {'frequency': 'c', 'id': 618, 'synset': 'kimono.n.01', 'synonyms': ['kimono'], 'def': 'a loose robe; imitated from robes originally worn by Japanese', 'name': 'kimono'}, {'frequency': 'f', 'id': 619, 'synset': 'kitchen_sink.n.01', 'synonyms': ['kitchen_sink'], 'def': 'a sink in a kitchen', 'name': 'kitchen_sink'}, {'frequency': 'c', 'id': 620, 'synset': 'kitchen_table.n.01', 'synonyms': ['kitchen_table'], 'def': 'a table in the kitchen', 'name': 'kitchen_table'}, {'frequency': 'f', 'id': 621, 'synset': 'kite.n.03', 'synonyms': ['kite'], 'def': 'plaything consisting of a light frame covered with tissue paper; flown in wind at end of a string', 'name': 'kite'}, {'frequency': 'c', 'id': 622, 'synset': 'kitten.n.01', 'synonyms': ['kitten', 'kitty'], 'def': 'young domestic cat', 'name': 'kitten'}, {'frequency': 'c', 'id': 623, 'synset': 'kiwi.n.03', 'synonyms': ['kiwi_fruit'], 'def': 'fuzzy brown egg-shaped fruit with slightly tart green flesh', 'name': 'kiwi_fruit'}, {'frequency': 'f', 'id': 624, 'synset': 'knee_pad.n.01', 'synonyms': ['knee_pad'], 'def': 'protective garment consisting of a pad worn by football or baseball or hockey players', 'name': 'knee_pad'}, {'frequency': 'f', 'id': 625, 'synset': 'knife.n.01', 'synonyms': ['knife'], 'def': 'tool with a blade and point used as a cutting instrument', 'name': 'knife'}, {'frequency': 'r', 'id': 626, 'synset': 'knight.n.02', 'synonyms': ['knight_(chess_piece)', 'horse_(chess_piece)'], 'def': 'a chess game piece shaped to resemble the head of a horse', 'name': 'knight_(chess_piece)'}, {'frequency': 'r', 'id': 627, 'synset': 'knitting_needle.n.01', 'synonyms': ['knitting_needle'], 'def': 'needle consisting of a slender rod with pointed ends; usually used in pairs', 'name': 'knitting_needle'}, {'frequency': 'f', 'id': 628, 'synset': 'knob.n.02', 'synonyms': ['knob'], 'def': 'a round handle often found on a door', 'name': 'knob'}, {'frequency': 'r', 'id': 629, 'synset': 'knocker.n.05', 'synonyms': ['knocker_(on_a_door)', 'doorknocker'], 'def': 'a device (usually metal and ornamental) attached by a hinge to a door', 'name': 'knocker_(on_a_door)'}, {'frequency': 'r', 'id': 630, 'synset': 'koala.n.01', 'synonyms': ['koala', 'koala_bear'], 'def': 'sluggish tailless Australian marsupial with grey furry ears and coat', 'name': 'koala'}, {'frequency': 'r', 'id': 631, 'synset': 'lab_coat.n.01', 'synonyms': ['lab_coat', 'laboratory_coat'], 'def': 'a light coat worn to protect clothing from substances used while working in a laboratory', 'name': 'lab_coat'}, {'frequency': 'f', 'id': 632, 'synset': 'ladder.n.01', 'synonyms': ['ladder'], 'def': 'steps consisting of two parallel members connected by rungs', 'name': 'ladder'}, {'frequency': 'c', 'id': 633, 'synset': 'ladle.n.01', 'synonyms': ['ladle'], 'def': 'a spoon-shaped vessel with a long handle frequently used to transfer liquids', 'name': 'ladle'}, {'frequency': 'r', 'id': 634, 'synset': 'ladybug.n.01', 'synonyms': ['ladybug', 'ladybeetle', 'ladybird_beetle'], 'def': 'small round bright-colored and spotted beetle, typically red and black', 'name': 'ladybug'}, {'frequency': 'c', 'id': 635, 'synset': 'lamb.n.01', 'synonyms': ['lamb_(animal)'], 'def': 'young sheep', 'name': 'lamb_(animal)'}, {'frequency': 'r', 'id': 636, 'synset': 'lamb_chop.n.01', 'synonyms': ['lamb-chop', 'lambchop'], 'def': 'chop cut from a lamb', 'name': 'lamb-chop'}, {'frequency': 'f', 'id': 637, 'synset': 'lamp.n.02', 'synonyms': ['lamp'], 'def': 'a piece of furniture holding one or more electric light bulbs', 'name': 'lamp'}, {'frequency': 'f', 'id': 638, 'synset': 'lamppost.n.01', 'synonyms': ['lamppost'], 'def': 'a metal post supporting an outdoor lamp (such as a streetlight)', 'name': 'lamppost'}, {'frequency': 'f', 'id': 639, 'synset': 'lampshade.n.01', 'synonyms': ['lampshade'], 'def': 'a protective ornamental shade used to screen a light bulb from direct view', 'name': 'lampshade'}, {'frequency': 'c', 'id': 640, 'synset': 'lantern.n.01', 'synonyms': ['lantern'], 'def': 'light in a transparent protective case', 'name': 'lantern'}, {'frequency': 'f', 'id': 641, 'synset': 'lanyard.n.02', 'synonyms': ['lanyard', 'laniard'], 'def': 'a cord worn around the neck to hold a knife or whistle, etc.', 'name': 'lanyard'}, {'frequency': 'f', 'id': 642, 'synset': 'laptop.n.01', 'synonyms': ['laptop_computer', 'notebook_computer'], 'def': 'a portable computer small enough to use in your lap', 'name': 'laptop_computer'}, {'frequency': 'r', 'id': 643, 'synset': 'lasagna.n.01', 'synonyms': ['lasagna', 'lasagne'], 'def': 'baked dish of layers of lasagna pasta with sauce and cheese and meat or vegetables', 'name': 'lasagna'}, {'frequency': 'c', 'id': 644, 'synset': 'latch.n.02', 'synonyms': ['latch'], 'def': 'a bar that can be lowered or slid into a groove to fasten a door or gate', 'name': 'latch'}, {'frequency': 'r', 'id': 645, 'synset': 'lawn_mower.n.01', 'synonyms': ['lawn_mower'], 'def': 'garden tool for mowing grass on lawns', 'name': 'lawn_mower'}, {'frequency': 'r', 'id': 646, 'synset': 'leather.n.01', 'synonyms': ['leather'], 'def': 'an animal skin made smooth and flexible by removing the hair and then tanning', 'name': 'leather'}, {'frequency': 'c', 'id': 647, 'synset': 'legging.n.01', 'synonyms': ['legging_(clothing)', 'leging_(clothing)', 'leg_covering'], 'def': 'a garment covering the leg (usually extending from the knee to the ankle)', 'name': 'legging_(clothing)'}, {'frequency': 'c', 'id': 648, 'synset': 'lego.n.01', 'synonyms': ['Lego', 'Lego_set'], 'def': "a child's plastic construction set for making models from blocks", 'name': 'Lego'}, {'frequency': 'f', 'id': 649, 'synset': 'lemon.n.01', 'synonyms': ['lemon'], 'def': 'yellow oval fruit with juicy acidic flesh', 'name': 'lemon'}, {'frequency': 'r', 'id': 650, 'synset': 'lemonade.n.01', 'synonyms': ['lemonade'], 'def': 'sweetened beverage of diluted lemon juice', 'name': 'lemonade'}, {'frequency': 'f', 'id': 651, 'synset': 'lettuce.n.02', 'synonyms': ['lettuce'], 'def': 'leafy plant commonly eaten in salad or on sandwiches', 'name': 'lettuce'}, {'frequency': 'f', 'id': 652, 'synset': 'license_plate.n.01', 'synonyms': ['license_plate', 'numberplate'], 'def': "a plate mounted on the front and back of car and bearing the car's registration number", 'name': 'license_plate'}, {'frequency': 'f', 'id': 653, 'synset': 'life_buoy.n.01', 'synonyms': ['life_buoy', 'lifesaver', 'life_belt', 'life_ring'], 'def': 'a ring-shaped life preserver used to prevent drowning (NOT a life-jacket or vest)', 'name': 'life_buoy'}, {'frequency': 'f', 'id': 654, 'synset': 'life_jacket.n.01', 'synonyms': ['life_jacket', 'life_vest'], 'def': 'life preserver consisting of a sleeveless jacket of buoyant or inflatable design', 'name': 'life_jacket'}, {'frequency': 'f', 'id': 655, 'synset': 'light_bulb.n.01', 'synonyms': ['lightbulb'], 'def': 'glass bulb or tube shaped electric device that emits light (DO NOT MARK LAMPS AS A WHOLE)', 'name': 'lightbulb'}, {'frequency': 'r', 'id': 656, 'synset': 'lightning_rod.n.02', 'synonyms': ['lightning_rod', 'lightning_conductor'], 'def': 'a metallic conductor that is attached to a high point and leads to the ground', 'name': 'lightning_rod'}, {'frequency': 'c', 'id': 657, 'synset': 'lime.n.06', 'synonyms': ['lime'], 'def': 'the green acidic fruit of any of various lime trees', 'name': 'lime'}, {'frequency': 'r', 'id': 658, 'synset': 'limousine.n.01', 'synonyms': ['limousine'], 'def': 'long luxurious car; usually driven by a chauffeur', 'name': 'limousine'}, {'frequency': 'r', 'id': 659, 'synset': 'linen.n.02', 'synonyms': ['linen_paper'], 'def': 'a high-quality paper made of linen fibers or with a linen finish', 'name': 'linen_paper'}, {'frequency': 'c', 'id': 660, 'synset': 'lion.n.01', 'synonyms': ['lion'], 'def': 'large gregarious predatory cat of Africa and India', 'name': 'lion'}, {'frequency': 'c', 'id': 661, 'synset': 'lip_balm.n.01', 'synonyms': ['lip_balm'], 'def': 'a balm applied to the lips', 'name': 'lip_balm'}, {'frequency': 'c', 'id': 662, 'synset': 'lipstick.n.01', 'synonyms': ['lipstick', 'lip_rouge'], 'def': 'makeup that is used to color the lips', 'name': 'lipstick'}, {'frequency': 'r', 'id': 663, 'synset': 'liquor.n.01', 'synonyms': ['liquor', 'spirits', 'hard_liquor', 'liqueur', 'cordial'], 'def': 'an alcoholic beverage that is distilled rather than fermented', 'name': 'liquor'}, {'frequency': 'r', 'id': 664, 'synset': 'lizard.n.01', 'synonyms': ['lizard'], 'def': 'a reptile with usually two pairs of legs and a tapering tail', 'name': 'lizard'}, {'frequency': 'r', 'id': 665, 'synset': 'loafer.n.02', 'synonyms': ['Loafer_(type_of_shoe)'], 'def': 'a low leather step-in shoe', 'name': 'Loafer_(type_of_shoe)'}, {'frequency': 'f', 'id': 666, 'synset': 'log.n.01', 'synonyms': ['log'], 'def': 'a segment of the trunk of a tree when stripped of branches', 'name': 'log'}, {'frequency': 'c', 'id': 667, 'synset': 'lollipop.n.02', 'synonyms': ['lollipop'], 'def': 'hard candy on a stick', 'name': 'lollipop'}, {'frequency': 'c', 'id': 668, 'synset': 'lotion.n.01', 'synonyms': ['lotion'], 'def': 'any of various cosmetic preparations that are applied to the skin', 'name': 'lotion'}, {'frequency': 'f', 'id': 669, 'synset': 'loudspeaker.n.01', 'synonyms': ['speaker_(stero_equipment)'], 'def': 'electronic device that produces sound often as part of a stereo system', 'name': 'speaker_(stero_equipment)'}, {'frequency': 'c', 'id': 670, 'synset': 'love_seat.n.01', 'synonyms': ['loveseat'], 'def': 'small sofa that seats two people', 'name': 'loveseat'}, {'frequency': 'r', 'id': 671, 'synset': 'machine_gun.n.01', 'synonyms': ['machine_gun'], 'def': 'a rapidly firing automatic gun', 'name': 'machine_gun'}, {'frequency': 'f', 'id': 672, 'synset': 'magazine.n.02', 'synonyms': ['magazine'], 'def': 'a paperback periodic publication', 'name': 'magazine'}, {'frequency': 'f', 'id': 673, 'synset': 'magnet.n.01', 'synonyms': ['magnet'], 'def': 'a device that attracts iron and produces a magnetic field', 'name': 'magnet'}, {'frequency': 'r', 'id': 674, 'synset': 'mail_slot.n.01', 'synonyms': ['mail_slot'], 'def': 'a slot (usually in a door) through which mail can be delivered', 'name': 'mail_slot'}, {'frequency': 'c', 'id': 675, 'synset': 'mailbox.n.01', 'synonyms': ['mailbox_(at_home)', 'letter_box_(at_home)'], 'def': 'a private box for delivery of mail', 'name': 'mailbox_(at_home)'}, {'frequency': 'r', 'id': 676, 'synset': 'mallet.n.01', 'synonyms': ['mallet'], 'def': 'a sports implement with a long handle and a hammer-like head used to hit a ball', 'name': 'mallet'}, {'frequency': 'r', 'id': 677, 'synset': 'mammoth.n.01', 'synonyms': ['mammoth'], 'def': 'any of numerous extinct elephants widely distributed in the Pleistocene', 'name': 'mammoth'}, {'frequency': 'c', 'id': 678, 'synset': 'mandarin.n.05', 'synonyms': ['mandarin_orange'], 'def': 'a somewhat flat reddish-orange loose skinned citrus of China', 'name': 'mandarin_orange'}, {'frequency': 'c', 'id': 679, 'synset': 'manger.n.01', 'synonyms': ['manger', 'trough'], 'def': 'a container (usually in a barn or stable) from which cattle or horses feed', 'name': 'manger'}, {'frequency': 'f', 'id': 680, 'synset': 'manhole.n.01', 'synonyms': ['manhole'], 'def': 'a hole (usually with a flush cover) through which a person can gain access to an underground structure', 'name': 'manhole'}, {'frequency': 'c', 'id': 681, 'synset': 'map.n.01', 'synonyms': ['map'], 'def': "a diagrammatic representation of the earth's surface (or part of it)", 'name': 'map'}, {'frequency': 'c', 'id': 682, 'synset': 'marker.n.03', 'synonyms': ['marker'], 'def': 'a writing implement for making a mark', 'name': 'marker'}, {'frequency': 'r', 'id': 683, 'synset': 'martini.n.01', 'synonyms': ['martini'], 'def': 'a cocktail made of gin (or vodka) with dry vermouth', 'name': 'martini'}, {'frequency': 'r', 'id': 684, 'synset': 'mascot.n.01', 'synonyms': ['mascot'], 'def': 'a person or animal that is adopted by a team or other group as a symbolic figure', 'name': 'mascot'}, {'frequency': 'c', 'id': 685, 'synset': 'mashed_potato.n.01', 'synonyms': ['mashed_potato'], 'def': 'potato that has been peeled and boiled and then mashed', 'name': 'mashed_potato'}, {'frequency': 'r', 'id': 686, 'synset': 'masher.n.02', 'synonyms': ['masher'], 'def': 'a kitchen utensil used for mashing (e.g. potatoes)', 'name': 'masher'}, {'frequency': 'f', 'id': 687, 'synset': 'mask.n.04', 'synonyms': ['mask', 'facemask'], 'def': 'a protective covering worn over the face', 'name': 'mask'}, {'frequency': 'f', 'id': 688, 'synset': 'mast.n.01', 'synonyms': ['mast'], 'def': 'a vertical spar for supporting sails', 'name': 'mast'}, {'frequency': 'c', 'id': 689, 'synset': 'mat.n.03', 'synonyms': ['mat_(gym_equipment)', 'gym_mat'], 'def': 'sports equipment consisting of a piece of thick padding on the floor for gymnastics', 'name': 'mat_(gym_equipment)'}, {'frequency': 'r', 'id': 690, 'synset': 'matchbox.n.01', 'synonyms': ['matchbox'], 'def': 'a box for holding matches', 'name': 'matchbox'}, {'frequency': 'f', 'id': 691, 'synset': 'mattress.n.01', 'synonyms': ['mattress'], 'def': 'a thick pad filled with resilient material used as a bed or part of a bed', 'name': 'mattress'}, {'frequency': 'c', 'id': 692, 'synset': 'measuring_cup.n.01', 'synonyms': ['measuring_cup'], 'def': 'graduated cup used to measure liquid or granular ingredients', 'name': 'measuring_cup'}, {'frequency': 'c', 'id': 693, 'synset': 'measuring_stick.n.01', 'synonyms': ['measuring_stick', 'ruler_(measuring_stick)', 'measuring_rod'], 'def': 'measuring instrument having a sequence of marks at regular intervals', 'name': 'measuring_stick'}, {'frequency': 'c', 'id': 694, 'synset': 'meatball.n.01', 'synonyms': ['meatball'], 'def': 'ground meat formed into a ball and fried or simmered in broth', 'name': 'meatball'}, {'frequency': 'c', 'id': 695, 'synset': 'medicine.n.02', 'synonyms': ['medicine'], 'def': 'something that treats or prevents or alleviates the symptoms of disease', 'name': 'medicine'}, {'frequency': 'r', 'id': 696, 'synset': 'melon.n.01', 'synonyms': ['melon'], 'def': 'fruit of the gourd family having a hard rind and sweet juicy flesh', 'name': 'melon'}, {'frequency': 'f', 'id': 697, 'synset': 'microphone.n.01', 'synonyms': ['microphone'], 'def': 'device for converting sound waves into electrical energy', 'name': 'microphone'}, {'frequency': 'r', 'id': 698, 'synset': 'microscope.n.01', 'synonyms': ['microscope'], 'def': 'magnifier of the image of small objects', 'name': 'microscope'}, {'frequency': 'f', 'id': 699, 'synset': 'microwave.n.02', 'synonyms': ['microwave_oven'], 'def': 'kitchen appliance that cooks food by passing an electromagnetic wave through it', 'name': 'microwave_oven'}, {'frequency': 'r', 'id': 700, 'synset': 'milestone.n.01', 'synonyms': ['milestone', 'milepost'], 'def': 'stone post at side of a road to show distances', 'name': 'milestone'}, {'frequency': 'c', 'id': 701, 'synset': 'milk.n.01', 'synonyms': ['milk'], 'def': 'a white nutritious liquid secreted by mammals and used as food by human beings', 'name': 'milk'}, {'frequency': 'f', 'id': 702, 'synset': 'minivan.n.01', 'synonyms': ['minivan'], 'def': 'a small box-shaped passenger van', 'name': 'minivan'}, {'frequency': 'r', 'id': 703, 'synset': 'mint.n.05', 'synonyms': ['mint_candy'], 'def': 'a candy that is flavored with a mint oil', 'name': 'mint_candy'}, {'frequency': 'f', 'id': 704, 'synset': 'mirror.n.01', 'synonyms': ['mirror'], 'def': 'polished surface that forms images by reflecting light', 'name': 'mirror'}, {'frequency': 'c', 'id': 705, 'synset': 'mitten.n.01', 'synonyms': ['mitten'], 'def': 'glove that encases the thumb separately and the other four fingers together', 'name': 'mitten'}, {'frequency': 'c', 'id': 706, 'synset': 'mixer.n.04', 'synonyms': ['mixer_(kitchen_tool)', 'stand_mixer'], 'def': 'a kitchen utensil that is used for mixing foods', 'name': 'mixer_(kitchen_tool)'}, {'frequency': 'c', 'id': 707, 'synset': 'money.n.03', 'synonyms': ['money'], 'def': 'the official currency issued by a government or national bank', 'name': 'money'}, {'frequency': 'f', 'id': 708, 'synset': 'monitor.n.04', 'synonyms': ['monitor_(computer_equipment) computer_monitor'], 'def': 'a computer monitor', 'name': 'monitor_(computer_equipment) computer_monitor'}, {'frequency': 'c', 'id': 709, 'synset': 'monkey.n.01', 'synonyms': ['monkey'], 'def': 'any of various long-tailed primates', 'name': 'monkey'}, {'frequency': 'f', 'id': 710, 'synset': 'motor.n.01', 'synonyms': ['motor'], 'def': 'machine that converts other forms of energy into mechanical energy and so imparts motion', 'name': 'motor'}, {'frequency': 'f', 'id': 711, 'synset': 'motor_scooter.n.01', 'synonyms': ['motor_scooter', 'scooter'], 'def': 'a wheeled vehicle with small wheels and a low-powered engine', 'name': 'motor_scooter'}, {'frequency': 'r', 'id': 712, 'synset': 'motor_vehicle.n.01', 'synonyms': ['motor_vehicle', 'automotive_vehicle'], 'def': 'a self-propelled wheeled vehicle that does not run on rails', 'name': 'motor_vehicle'}, {'frequency': 'r', 'id': 713, 'synset': 'motorboat.n.01', 'synonyms': ['motorboat', 'powerboat'], 'def': 'a boat propelled by an internal-combustion engine', 'name': 'motorboat'}, {'frequency': 'f', 'id': 714, 'synset': 'motorcycle.n.01', 'synonyms': ['motorcycle'], 'def': 'a motor vehicle with two wheels and a strong frame', 'name': 'motorcycle'}, {'frequency': 'f', 'id': 715, 'synset': 'mound.n.01', 'synonyms': ['mound_(baseball)', "pitcher's_mound"], 'def': '(baseball) the slight elevation on which the pitcher stands', 'name': 'mound_(baseball)'}, {'frequency': 'r', 'id': 716, 'synset': 'mouse.n.01', 'synonyms': ['mouse_(animal_rodent)'], 'def': 'a small rodent with pointed snouts and small ears on elongated bodies with slender usually hairless tails', 'name': 'mouse_(animal_rodent)'}, {'frequency': 'f', 'id': 717, 'synset': 'mouse.n.04', 'synonyms': ['mouse_(computer_equipment)', 'computer_mouse'], 'def': 'a computer input device that controls an on-screen pointer', 'name': 'mouse_(computer_equipment)'}, {'frequency': 'f', 'id': 718, 'synset': 'mousepad.n.01', 'synonyms': ['mousepad'], 'def': 'a small portable pad that provides an operating surface for a computer mouse', 'name': 'mousepad'}, {'frequency': 'c', 'id': 719, 'synset': 'muffin.n.01', 'synonyms': ['muffin'], 'def': 'a sweet quick bread baked in a cup-shaped pan', 'name': 'muffin'}, {'frequency': 'f', 'id': 720, 'synset': 'mug.n.04', 'synonyms': ['mug'], 'def': 'with handle and usually cylindrical', 'name': 'mug'}, {'frequency': 'f', 'id': 721, 'synset': 'mushroom.n.02', 'synonyms': ['mushroom'], 'def': 'a common mushroom', 'name': 'mushroom'}, {'frequency': 'r', 'id': 722, 'synset': 'music_stool.n.01', 'synonyms': ['music_stool', 'piano_stool'], 'def': 'a stool for piano players; usually adjustable in height', 'name': 'music_stool'}, {'frequency': 'r', 'id': 723, 'synset': 'musical_instrument.n.01', 'synonyms': ['musical_instrument', 'instrument_(musical)'], 'def': 'any of various devices or contrivances that can be used to produce musical tones or sounds', 'name': 'musical_instrument'}, {'frequency': 'r', 'id': 724, 'synset': 'nailfile.n.01', 'synonyms': ['nailfile'], 'def': 'a small flat file for shaping the nails', 'name': 'nailfile'}, {'frequency': 'r', 'id': 725, 'synset': 'nameplate.n.01', 'synonyms': ['nameplate'], 'def': 'a plate bearing a name', 'name': 'nameplate'}, {'frequency': 'f', 'id': 726, 'synset': 'napkin.n.01', 'synonyms': ['napkin', 'table_napkin', 'serviette'], 'def': 'a small piece of table linen or paper that is used to wipe the mouth and to cover the lap in order to protect clothing', 'name': 'napkin'}, {'frequency': 'r', 'id': 727, 'synset': 'neckerchief.n.01', 'synonyms': ['neckerchief'], 'def': 'a kerchief worn around the neck', 'name': 'neckerchief'}, {'frequency': 'f', 'id': 728, 'synset': 'necklace.n.01', 'synonyms': ['necklace'], 'def': 'jewelry consisting of a cord or chain (often bearing gems) worn about the neck as an ornament', 'name': 'necklace'}, {'frequency': 'f', 'id': 729, 'synset': 'necktie.n.01', 'synonyms': ['necktie', 'tie_(necktie)'], 'def': 'neckwear consisting of a long narrow piece of material worn under a collar and tied in knot at the front', 'name': 'necktie'}, {'frequency': 'r', 'id': 730, 'synset': 'needle.n.03', 'synonyms': ['needle'], 'def': 'a sharp pointed implement (usually metal)', 'name': 'needle'}, {'frequency': 'c', 'id': 731, 'synset': 'nest.n.01', 'synonyms': ['nest'], 'def': 'a structure in which animals lay eggs or give birth to their young', 'name': 'nest'}, {'frequency': 'r', 'id': 732, 'synset': 'newsstand.n.01', 'synonyms': ['newsstand'], 'def': 'a stall where newspapers and other periodicals are sold', 'name': 'newsstand'}, {'frequency': 'c', 'id': 733, 'synset': 'nightwear.n.01', 'synonyms': ['nightshirt', 'nightwear', 'sleepwear', 'nightclothes'], 'def': 'garments designed to be worn in bed', 'name': 'nightshirt'}, {'frequency': 'r', 'id': 734, 'synset': 'nosebag.n.01', 'synonyms': ['nosebag_(for_animals)', 'feedbag'], 'def': 'a canvas bag that is used to feed an animal (such as a horse); covers the muzzle and fastens at the top of the head', 'name': 'nosebag_(for_animals)'}, {'frequency': 'r', 'id': 735, 'synset': 'noseband.n.01', 'synonyms': ['noseband_(for_animals)', 'nosepiece_(for_animals)'], 'def': "a strap that is the part of a bridle that goes over the animal's nose", 'name': 'noseband_(for_animals)'}, {'frequency': 'f', 'id': 736, 'synset': 'notebook.n.01', 'synonyms': ['notebook'], 'def': 'a book with blank pages for recording notes or memoranda', 'name': 'notebook'}, {'frequency': 'c', 'id': 737, 'synset': 'notepad.n.01', 'synonyms': ['notepad'], 'def': 'a pad of paper for keeping notes', 'name': 'notepad'}, {'frequency': 'c', 'id': 738, 'synset': 'nut.n.03', 'synonyms': ['nut'], 'def': 'a small metal block (usually square or hexagonal) with internal screw thread to be fitted onto a bolt', 'name': 'nut'}, {'frequency': 'r', 'id': 739, 'synset': 'nutcracker.n.01', 'synonyms': ['nutcracker'], 'def': 'a hand tool used to crack nuts open', 'name': 'nutcracker'}, {'frequency': 'c', 'id': 740, 'synset': 'oar.n.01', 'synonyms': ['oar'], 'def': 'an implement used to propel or steer a boat', 'name': 'oar'}, {'frequency': 'r', 'id': 741, 'synset': 'octopus.n.01', 'synonyms': ['octopus_(food)'], 'def': 'tentacles of octopus prepared as food', 'name': 'octopus_(food)'}, {'frequency': 'r', 'id': 742, 'synset': 'octopus.n.02', 'synonyms': ['octopus_(animal)'], 'def': 'bottom-living cephalopod having a soft oval body with eight long tentacles', 'name': 'octopus_(animal)'}, {'frequency': 'c', 'id': 743, 'synset': 'oil_lamp.n.01', 'synonyms': ['oil_lamp', 'kerosene_lamp', 'kerosine_lamp'], 'def': 'a lamp that burns oil (as kerosine) for light', 'name': 'oil_lamp'}, {'frequency': 'c', 'id': 744, 'synset': 'olive_oil.n.01', 'synonyms': ['olive_oil'], 'def': 'oil from olives', 'name': 'olive_oil'}, {'frequency': 'r', 'id': 745, 'synset': 'omelet.n.01', 'synonyms': ['omelet', 'omelette'], 'def': 'beaten eggs cooked until just set; may be folded around e.g. ham or cheese or jelly', 'name': 'omelet'}, {'frequency': 'f', 'id': 746, 'synset': 'onion.n.01', 'synonyms': ['onion'], 'def': 'the bulb of an onion plant', 'name': 'onion'}, {'frequency': 'f', 'id': 747, 'synset': 'orange.n.01', 'synonyms': ['orange_(fruit)'], 'def': 'orange (FRUIT of an orange tree)', 'name': 'orange_(fruit)'}, {'frequency': 'c', 'id': 748, 'synset': 'orange_juice.n.01', 'synonyms': ['orange_juice'], 'def': 'bottled or freshly squeezed juice of oranges', 'name': 'orange_juice'}, {'frequency': 'r', 'id': 749, 'synset': 'oregano.n.01', 'synonyms': ['oregano', 'marjoram'], 'def': 'aromatic Eurasian perennial herb used in cooking and baking', 'name': 'oregano'}, {'frequency': 'c', 'id': 750, 'synset': 'ostrich.n.02', 'synonyms': ['ostrich'], 'def': 'fast-running African flightless bird with two-toed feet; largest living bird', 'name': 'ostrich'}, {'frequency': 'c', 'id': 751, 'synset': 'ottoman.n.03', 'synonyms': ['ottoman', 'pouf', 'pouffe', 'hassock'], 'def': 'thick cushion used as a seat', 'name': 'ottoman'}, {'frequency': 'c', 'id': 752, 'synset': 'overall.n.01', 'synonyms': ['overalls_(clothing)'], 'def': 'work clothing consisting of denim trousers usually with a bib and shoulder straps', 'name': 'overalls_(clothing)'}, {'frequency': 'c', 'id': 753, 'synset': 'owl.n.01', 'synonyms': ['owl'], 'def': 'nocturnal bird of prey with hawk-like beak and claws and large head with front-facing eyes', 'name': 'owl'}, {'frequency': 'c', 'id': 754, 'synset': 'packet.n.03', 'synonyms': ['packet'], 'def': 'a small package or bundle', 'name': 'packet'}, {'frequency': 'r', 'id': 755, 'synset': 'pad.n.03', 'synonyms': ['inkpad', 'inking_pad', 'stamp_pad'], 'def': 'absorbent material saturated with ink used to transfer ink evenly to a rubber stamp', 'name': 'inkpad'}, {'frequency': 'c', 'id': 756, 'synset': 'pad.n.04', 'synonyms': ['pad'], 'def': 'a flat mass of soft material used for protection, stuffing, or comfort', 'name': 'pad'}, {'frequency': 'c', 'id': 757, 'synset': 'paddle.n.04', 'synonyms': ['paddle', 'boat_paddle'], 'def': 'a short light oar used without an oarlock to propel a canoe or small boat', 'name': 'paddle'}, {'frequency': 'c', 'id': 758, 'synset': 'padlock.n.01', 'synonyms': ['padlock'], 'def': 'a detachable, portable lock', 'name': 'padlock'}, {'frequency': 'r', 'id': 759, 'synset': 'paintbox.n.01', 'synonyms': ['paintbox'], 'def': "a box containing a collection of cubes or tubes of artists' paint", 'name': 'paintbox'}, {'frequency': 'c', 'id': 760, 'synset': 'paintbrush.n.01', 'synonyms': ['paintbrush'], 'def': 'a brush used as an applicator to apply paint', 'name': 'paintbrush'}, {'frequency': 'f', 'id': 761, 'synset': 'painting.n.01', 'synonyms': ['painting'], 'def': 'graphic art consisting of an artistic composition made by applying paints to a surface', 'name': 'painting'}, {'frequency': 'c', 'id': 762, 'synset': 'pajama.n.02', 'synonyms': ['pajamas', 'pyjamas'], 'def': 'loose-fitting nightclothes worn for sleeping or lounging', 'name': 'pajamas'}, {'frequency': 'c', 'id': 763, 'synset': 'palette.n.02', 'synonyms': ['palette', 'pallet'], 'def': 'board that provides a flat surface on which artists mix paints and the range of colors used', 'name': 'palette'}, {'frequency': 'f', 'id': 764, 'synset': 'pan.n.01', 'synonyms': ['pan_(for_cooking)', 'cooking_pan'], 'def': 'cooking utensil consisting of a wide metal vessel', 'name': 'pan_(for_cooking)'}, {'frequency': 'r', 'id': 765, 'synset': 'pan.n.03', 'synonyms': ['pan_(metal_container)'], 'def': 'shallow container made of metal', 'name': 'pan_(metal_container)'}, {'frequency': 'c', 'id': 766, 'synset': 'pancake.n.01', 'synonyms': ['pancake'], 'def': 'a flat cake of thin batter fried on both sides on a griddle', 'name': 'pancake'}, {'frequency': 'r', 'id': 767, 'synset': 'pantyhose.n.01', 'synonyms': ['pantyhose'], 'def': "a woman's tights consisting of underpants and stockings", 'name': 'pantyhose'}, {'frequency': 'r', 'id': 768, 'synset': 'papaya.n.02', 'synonyms': ['papaya'], 'def': 'large oval melon-like tropical fruit with yellowish flesh', 'name': 'papaya'}, {'frequency': 'r', 'id': 769, 'synset': 'paper_clip.n.01', 'synonyms': ['paperclip'], 'def': 'a wire or plastic clip for holding sheets of paper together', 'name': 'paperclip'}, {'frequency': 'f', 'id': 770, 'synset': 'paper_plate.n.01', 'synonyms': ['paper_plate'], 'def': 'a disposable plate made of cardboard', 'name': 'paper_plate'}, {'frequency': 'f', 'id': 771, 'synset': 'paper_towel.n.01', 'synonyms': ['paper_towel'], 'def': 'a disposable towel made of absorbent paper', 'name': 'paper_towel'}, {'frequency': 'r', 'id': 772, 'synset': 'paperback_book.n.01', 'synonyms': ['paperback_book', 'paper-back_book', 'softback_book', 'soft-cover_book'], 'def': 'a book with paper covers', 'name': 'paperback_book'}, {'frequency': 'r', 'id': 773, 'synset': 'paperweight.n.01', 'synonyms': ['paperweight'], 'def': 'a weight used to hold down a stack of papers', 'name': 'paperweight'}, {'frequency': 'c', 'id': 774, 'synset': 'parachute.n.01', 'synonyms': ['parachute'], 'def': 'rescue equipment consisting of a device that fills with air and retards your fall', 'name': 'parachute'}, {'frequency': 'r', 'id': 775, 'synset': 'parakeet.n.01', 'synonyms': ['parakeet', 'parrakeet', 'parroket', 'paraquet', 'paroquet', 'parroquet'], 'def': 'any of numerous small slender long-tailed parrots', 'name': 'parakeet'}, {'frequency': 'c', 'id': 776, 'synset': 'parasail.n.01', 'synonyms': ['parasail_(sports)'], 'def': 'parachute that will lift a person up into the air when it is towed by a motorboat or a car', 'name': 'parasail_(sports)'}, {'frequency': 'r', 'id': 777, 'synset': 'parchment.n.01', 'synonyms': ['parchment'], 'def': 'a superior paper resembling sheepskin', 'name': 'parchment'}, {'frequency': 'r', 'id': 778, 'synset': 'parka.n.01', 'synonyms': ['parka', 'anorak'], 'def': "a kind of heavy jacket (`windcheater' is a British term)", 'name': 'parka'}, {'frequency': 'f', 'id': 779, 'synset': 'parking_meter.n.01', 'synonyms': ['parking_meter'], 'def': 'a coin-operated timer located next to a parking space', 'name': 'parking_meter'}, {'frequency': 'c', 'id': 780, 'synset': 'parrot.n.01', 'synonyms': ['parrot'], 'def': 'usually brightly colored tropical birds with short hooked beaks and the ability to mimic sounds', 'name': 'parrot'}, {'frequency': 'c', 'id': 781, 'synset': 'passenger_car.n.01', 'synonyms': ['passenger_car_(part_of_a_train)', 'coach_(part_of_a_train)'], 'def': 'a railcar where passengers ride', 'name': 'passenger_car_(part_of_a_train)'}, {'frequency': 'r', 'id': 782, 'synset': 'passenger_ship.n.01', 'synonyms': ['passenger_ship'], 'def': 'a ship built to carry passengers', 'name': 'passenger_ship'}, {'frequency': 'r', 'id': 783, 'synset': 'passport.n.02', 'synonyms': ['passport'], 'def': 'a document issued by a country to a citizen allowing that person to travel abroad and re-enter the home country', 'name': 'passport'}, {'frequency': 'f', 'id': 784, 'synset': 'pastry.n.02', 'synonyms': ['pastry'], 'def': 'any of various baked foods made of dough or batter', 'name': 'pastry'}, {'frequency': 'r', 'id': 785, 'synset': 'patty.n.01', 'synonyms': ['patty_(food)'], 'def': 'small flat mass of chopped food', 'name': 'patty_(food)'}, {'frequency': 'c', 'id': 786, 'synset': 'pea.n.01', 'synonyms': ['pea_(food)'], 'def': 'seed of a pea plant used for food', 'name': 'pea_(food)'}, {'frequency': 'c', 'id': 787, 'synset': 'peach.n.03', 'synonyms': ['peach'], 'def': 'downy juicy fruit with sweet yellowish or whitish flesh', 'name': 'peach'}, {'frequency': 'c', 'id': 788, 'synset': 'peanut_butter.n.01', 'synonyms': ['peanut_butter'], 'def': 'a spread made from ground peanuts', 'name': 'peanut_butter'}, {'frequency': 'c', 'id': 789, 'synset': 'pear.n.01', 'synonyms': ['pear'], 'def': 'sweet juicy gritty-textured fruit available in many varieties', 'name': 'pear'}, {'frequency': 'r', 'id': 790, 'synset': 'peeler.n.03', 'synonyms': ['peeler_(tool_for_fruit_and_vegetables)'], 'def': 'a device for peeling vegetables or fruits', 'name': 'peeler_(tool_for_fruit_and_vegetables)'}, {'frequency': 'r', 'id': 791, 'synset': 'pegboard.n.01', 'synonyms': ['pegboard'], 'def': 'a board perforated with regularly spaced holes into which pegs can be fitted', 'name': 'pegboard'}, {'frequency': 'c', 'id': 792, 'synset': 'pelican.n.01', 'synonyms': ['pelican'], 'def': 'large long-winged warm-water seabird having a large bill with a distensible pouch for fish', 'name': 'pelican'}, {'frequency': 'f', 'id': 793, 'synset': 'pen.n.01', 'synonyms': ['pen'], 'def': 'a writing implement with a point from which ink flows', 'name': 'pen'}, {'frequency': 'c', 'id': 794, 'synset': 'pencil.n.01', 'synonyms': ['pencil'], 'def': 'a thin cylindrical pointed writing implement made of wood and graphite', 'name': 'pencil'}, {'frequency': 'r', 'id': 795, 'synset': 'pencil_box.n.01', 'synonyms': ['pencil_box', 'pencil_case'], 'def': 'a box for holding pencils', 'name': 'pencil_box'}, {'frequency': 'r', 'id': 796, 'synset': 'pencil_sharpener.n.01', 'synonyms': ['pencil_sharpener'], 'def': 'a rotary implement for sharpening the point on pencils', 'name': 'pencil_sharpener'}, {'frequency': 'r', 'id': 797, 'synset': 'pendulum.n.01', 'synonyms': ['pendulum'], 'def': 'an apparatus consisting of an object mounted so that it swings freely under the influence of gravity', 'name': 'pendulum'}, {'frequency': 'c', 'id': 798, 'synset': 'penguin.n.01', 'synonyms': ['penguin'], 'def': 'short-legged flightless birds of cold southern regions having webbed feet and wings modified as flippers', 'name': 'penguin'}, {'frequency': 'r', 'id': 799, 'synset': 'pennant.n.02', 'synonyms': ['pennant'], 'def': 'a flag longer than it is wide (and often tapering)', 'name': 'pennant'}, {'frequency': 'r', 'id': 800, 'synset': 'penny.n.02', 'synonyms': ['penny_(coin)'], 'def': 'a coin worth one-hundredth of the value of the basic unit', 'name': 'penny_(coin)'}, {'frequency': 'c', 'id': 801, 'synset': 'pepper.n.03', 'synonyms': ['pepper', 'peppercorn'], 'def': 'pungent seasoning from the berry of the common pepper plant; whole or ground', 'name': 'pepper'}, {'frequency': 'c', 'id': 802, 'synset': 'pepper_mill.n.01', 'synonyms': ['pepper_mill', 'pepper_grinder'], 'def': 'a mill for grinding pepper', 'name': 'pepper_mill'}, {'frequency': 'c', 'id': 803, 'synset': 'perfume.n.02', 'synonyms': ['perfume'], 'def': 'a toiletry that emits and diffuses a fragrant odor', 'name': 'perfume'}, {'frequency': 'r', 'id': 804, 'synset': 'persimmon.n.02', 'synonyms': ['persimmon'], 'def': 'orange fruit resembling a plum; edible when fully ripe', 'name': 'persimmon'}, {'frequency': 'f', 'id': 805, 'synset': 'person.n.01', 'synonyms': ['baby', 'child', 'boy', 'girl', 'man', 'woman', 'person', 'human'], 'def': 'a human being', 'name': 'baby'}, {'frequency': 'r', 'id': 806, 'synset': 'pet.n.01', 'synonyms': ['pet'], 'def': 'a domesticated animal kept for companionship or amusement', 'name': 'pet'}, {'frequency': 'r', 'id': 807, 'synset': 'petfood.n.01', 'synonyms': ['petfood', 'pet-food'], 'def': 'food prepared for animal pets', 'name': 'petfood'}, {'frequency': 'r', 'id': 808, 'synset': 'pew.n.01', 'synonyms': ['pew_(church_bench)', 'church_bench'], 'def': 'long bench with backs; used in church by the congregation', 'name': 'pew_(church_bench)'}, {'frequency': 'r', 'id': 809, 'synset': 'phonebook.n.01', 'synonyms': ['phonebook', 'telephone_book', 'telephone_directory'], 'def': 'a directory containing an alphabetical list of telephone subscribers and their telephone numbers', 'name': 'phonebook'}, {'frequency': 'c', 'id': 810, 'synset': 'phonograph_record.n.01', 'synonyms': ['phonograph_record', 'phonograph_recording', 'record_(phonograph_recording)'], 'def': 'sound recording consisting of a typically black disk with a continuous groove', 'name': 'phonograph_record'}, {'frequency': 'c', 'id': 811, 'synset': 'piano.n.01', 'synonyms': ['piano'], 'def': 'a keyboard instrument that is played by depressing keys that cause hammers to strike tuned strings and produce sounds', 'name': 'piano'}, {'frequency': 'f', 'id': 812, 'synset': 'pickle.n.01', 'synonyms': ['pickle'], 'def': 'vegetables (especially cucumbers) preserved in brine or vinegar', 'name': 'pickle'}, {'frequency': 'f', 'id': 813, 'synset': 'pickup.n.01', 'synonyms': ['pickup_truck'], 'def': 'a light truck with an open body and low sides and a tailboard', 'name': 'pickup_truck'}, {'frequency': 'c', 'id': 814, 'synset': 'pie.n.01', 'synonyms': ['pie'], 'def': 'dish baked in pastry-lined pan often with a pastry top', 'name': 'pie'}, {'frequency': 'c', 'id': 815, 'synset': 'pigeon.n.01', 'synonyms': ['pigeon'], 'def': 'wild and domesticated birds having a heavy body and short legs', 'name': 'pigeon'}, {'frequency': 'r', 'id': 816, 'synset': 'piggy_bank.n.01', 'synonyms': ['piggy_bank', 'penny_bank'], 'def': "a child's coin bank (often shaped like a pig)", 'name': 'piggy_bank'}, {'frequency': 'f', 'id': 817, 'synset': 'pillow.n.01', 'synonyms': ['pillow'], 'def': 'a cushion to support the head of a sleeping person', 'name': 'pillow'}, {'frequency': 'r', 'id': 818, 'synset': 'pin.n.09', 'synonyms': ['pin_(non_jewelry)'], 'def': 'a small slender (often pointed) piece of wood or metal used to support or fasten or attach things', 'name': 'pin_(non_jewelry)'}, {'frequency': 'f', 'id': 819, 'synset': 'pineapple.n.02', 'synonyms': ['pineapple'], 'def': 'large sweet fleshy tropical fruit with a tuft of stiff leaves', 'name': 'pineapple'}, {'frequency': 'c', 'id': 820, 'synset': 'pinecone.n.01', 'synonyms': ['pinecone'], 'def': 'the seed-producing cone of a pine tree', 'name': 'pinecone'}, {'frequency': 'r', 'id': 821, 'synset': 'ping-pong_ball.n.01', 'synonyms': ['ping-pong_ball'], 'def': 'light hollow ball used in playing table tennis', 'name': 'ping-pong_ball'}, {'frequency': 'r', 'id': 822, 'synset': 'pinwheel.n.03', 'synonyms': ['pinwheel'], 'def': 'a toy consisting of vanes of colored paper or plastic that is pinned to a stick and spins when it is pointed into the wind', 'name': 'pinwheel'}, {'frequency': 'r', 'id': 823, 'synset': 'pipe.n.01', 'synonyms': ['tobacco_pipe'], 'def': 'a tube with a small bowl at one end; used for smoking tobacco', 'name': 'tobacco_pipe'}, {'frequency': 'f', 'id': 824, 'synset': 'pipe.n.02', 'synonyms': ['pipe', 'piping'], 'def': 'a long tube made of metal or plastic that is used to carry water or oil or gas etc.', 'name': 'pipe'}, {'frequency': 'r', 'id': 825, 'synset': 'pistol.n.01', 'synonyms': ['pistol', 'handgun'], 'def': 'a firearm that is held and fired with one hand', 'name': 'pistol'}, {'frequency': 'r', 'id': 826, 'synset': 'pita.n.01', 'synonyms': ['pita_(bread)', 'pocket_bread'], 'def': 'usually small round bread that can open into a pocket for filling', 'name': 'pita_(bread)'}, {'frequency': 'f', 'id': 827, 'synset': 'pitcher.n.02', 'synonyms': ['pitcher_(vessel_for_liquid)', 'ewer'], 'def': 'an open vessel with a handle and a spout for pouring', 'name': 'pitcher_(vessel_for_liquid)'}, {'frequency': 'r', 'id': 828, 'synset': 'pitchfork.n.01', 'synonyms': ['pitchfork'], 'def': 'a long-handled hand tool with sharp widely spaced prongs for lifting and pitching hay', 'name': 'pitchfork'}, {'frequency': 'f', 'id': 829, 'synset': 'pizza.n.01', 'synonyms': ['pizza'], 'def': 'Italian open pie made of thin bread dough spread with a spiced mixture of e.g. tomato sauce and cheese', 'name': 'pizza'}, {'frequency': 'f', 'id': 830, 'synset': 'place_mat.n.01', 'synonyms': ['place_mat'], 'def': 'a mat placed on a table for an individual place setting', 'name': 'place_mat'}, {'frequency': 'f', 'id': 831, 'synset': 'plate.n.04', 'synonyms': ['plate'], 'def': 'dish on which food is served or from which food is eaten', 'name': 'plate'}, {'frequency': 'c', 'id': 832, 'synset': 'platter.n.01', 'synonyms': ['platter'], 'def': 'a large shallow dish used for serving food', 'name': 'platter'}, {'frequency': 'r', 'id': 833, 'synset': 'playing_card.n.01', 'synonyms': ['playing_card'], 'def': 'one of a pack of cards that are used to play card games', 'name': 'playing_card'}, {'frequency': 'r', 'id': 834, 'synset': 'playpen.n.01', 'synonyms': ['playpen'], 'def': 'a portable enclosure in which babies may be left to play', 'name': 'playpen'}, {'frequency': 'c', 'id': 835, 'synset': 'pliers.n.01', 'synonyms': ['pliers', 'plyers'], 'def': 'a gripping hand tool with two hinged arms and (usually) serrated jaws', 'name': 'pliers'}, {'frequency': 'r', 'id': 836, 'synset': 'plow.n.01', 'synonyms': ['plow_(farm_equipment)', 'plough_(farm_equipment)'], 'def': 'a farm tool having one or more heavy blades to break the soil and cut a furrow prior to sowing', 'name': 'plow_(farm_equipment)'}, {'frequency': 'r', 'id': 837, 'synset': 'pocket_watch.n.01', 'synonyms': ['pocket_watch'], 'def': 'a watch that is carried in a small watch pocket', 'name': 'pocket_watch'}, {'frequency': 'c', 'id': 838, 'synset': 'pocketknife.n.01', 'synonyms': ['pocketknife'], 'def': 'a knife with a blade that folds into the handle; suitable for carrying in the pocket', 'name': 'pocketknife'}, {'frequency': 'c', 'id': 839, 'synset': 'poker.n.01', 'synonyms': ['poker_(fire_stirring_tool)', 'stove_poker', 'fire_hook'], 'def': 'fire iron consisting of a metal rod with a handle; used to stir a fire', 'name': 'poker_(fire_stirring_tool)'}, {'frequency': 'f', 'id': 840, 'synset': 'pole.n.01', 'synonyms': ['pole', 'post'], 'def': 'a long (usually round) rod of wood or metal or plastic', 'name': 'pole'}, {'frequency': 'r', 'id': 841, 'synset': 'police_van.n.01', 'synonyms': ['police_van', 'police_wagon', 'paddy_wagon', 'patrol_wagon'], 'def': 'van used by police to transport prisoners', 'name': 'police_van'}, {'frequency': 'f', 'id': 842, 'synset': 'polo_shirt.n.01', 'synonyms': ['polo_shirt', 'sport_shirt'], 'def': 'a shirt with short sleeves designed for comfort and casual wear', 'name': 'polo_shirt'}, {'frequency': 'r', 'id': 843, 'synset': 'poncho.n.01', 'synonyms': ['poncho'], 'def': 'a blanket-like cloak with a hole in the center for the head', 'name': 'poncho'}, {'frequency': 'c', 'id': 844, 'synset': 'pony.n.05', 'synonyms': ['pony'], 'def': 'any of various breeds of small gentle horses usually less than five feet high at the shoulder', 'name': 'pony'}, {'frequency': 'r', 'id': 845, 'synset': 'pool_table.n.01', 'synonyms': ['pool_table', 'billiard_table', 'snooker_table'], 'def': 'game equipment consisting of a heavy table on which pool is played', 'name': 'pool_table'}, {'frequency': 'f', 'id': 846, 'synset': 'pop.n.02', 'synonyms': ['pop_(soda)', 'soda_(pop)', 'tonic', 'soft_drink'], 'def': 'a sweet drink containing carbonated water and flavoring', 'name': 'pop_(soda)'}, {'frequency': 'r', 'id': 847, 'synset': 'portrait.n.02', 'synonyms': ['portrait', 'portrayal'], 'def': 'any likeness of a person, in any medium', 'name': 'portrait'}, {'frequency': 'c', 'id': 848, 'synset': 'postbox.n.01', 'synonyms': ['postbox_(public)', 'mailbox_(public)'], 'def': 'public box for deposit of mail', 'name': 'postbox_(public)'}, {'frequency': 'c', 'id': 849, 'synset': 'postcard.n.01', 'synonyms': ['postcard', 'postal_card', 'mailing-card'], 'def': 'a card for sending messages by post without an envelope', 'name': 'postcard'}, {'frequency': 'f', 'id': 850, 'synset': 'poster.n.01', 'synonyms': ['poster', 'placard'], 'def': 'a sign posted in a public place as an advertisement', 'name': 'poster'}, {'frequency': 'f', 'id': 851, 'synset': 'pot.n.01', 'synonyms': ['pot'], 'def': 'metal or earthenware cooking vessel that is usually round and deep; often has a handle and lid', 'name': 'pot'}, {'frequency': 'f', 'id': 852, 'synset': 'pot.n.04', 'synonyms': ['flowerpot'], 'def': 'a container in which plants are cultivated', 'name': 'flowerpot'}, {'frequency': 'f', 'id': 853, 'synset': 'potato.n.01', 'synonyms': ['potato'], 'def': 'an edible tuber native to South America', 'name': 'potato'}, {'frequency': 'c', 'id': 854, 'synset': 'potholder.n.01', 'synonyms': ['potholder'], 'def': 'an insulated pad for holding hot pots', 'name': 'potholder'}, {'frequency': 'c', 'id': 855, 'synset': 'pottery.n.01', 'synonyms': ['pottery', 'clayware'], 'def': 'ceramic ware made from clay and baked in a kiln', 'name': 'pottery'}, {'frequency': 'c', 'id': 856, 'synset': 'pouch.n.01', 'synonyms': ['pouch'], 'def': 'a small or medium size container for holding or carrying things', 'name': 'pouch'}, {'frequency': 'r', 'id': 857, 'synset': 'power_shovel.n.01', 'synonyms': ['power_shovel', 'excavator', 'digger'], 'def': 'a machine for excavating', 'name': 'power_shovel'}, {'frequency': 'c', 'id': 858, 'synset': 'prawn.n.01', 'synonyms': ['prawn', 'shrimp'], 'def': 'any of various edible decapod crustaceans', 'name': 'prawn'}, {'frequency': 'f', 'id': 859, 'synset': 'printer.n.03', 'synonyms': ['printer', 'printing_machine'], 'def': 'a machine that prints', 'name': 'printer'}, {'frequency': 'c', 'id': 860, 'synset': 'projectile.n.01', 'synonyms': ['projectile_(weapon)', 'missile'], 'def': 'a weapon that is forcibly thrown or projected at a targets', 'name': 'projectile_(weapon)'}, {'frequency': 'c', 'id': 861, 'synset': 'projector.n.02', 'synonyms': ['projector'], 'def': 'an optical instrument that projects an enlarged image onto a screen', 'name': 'projector'}, {'frequency': 'f', 'id': 862, 'synset': 'propeller.n.01', 'synonyms': ['propeller', 'propellor'], 'def': 'a mechanical device that rotates to push against air or water', 'name': 'propeller'}, {'frequency': 'r', 'id': 863, 'synset': 'prune.n.01', 'synonyms': ['prune'], 'def': 'dried plum', 'name': 'prune'}, {'frequency': 'r', 'id': 864, 'synset': 'pudding.n.01', 'synonyms': ['pudding'], 'def': 'any of various soft thick unsweetened baked dishes', 'name': 'pudding'}, {'frequency': 'r', 'id': 865, 'synset': 'puffer.n.02', 'synonyms': ['puffer_(fish)', 'pufferfish', 'blowfish', 'globefish'], 'def': 'fishes whose elongated spiny body can inflate itself with water or air to form a globe', 'name': 'puffer_(fish)'}, {'frequency': 'r', 'id': 866, 'synset': 'puffin.n.01', 'synonyms': ['puffin'], 'def': 'seabirds having short necks and brightly colored compressed bills', 'name': 'puffin'}, {'frequency': 'r', 'id': 867, 'synset': 'pug.n.01', 'synonyms': ['pug-dog'], 'def': 'small compact smooth-coated breed of Asiatic origin having a tightly curled tail and broad flat wrinkled muzzle', 'name': 'pug-dog'}, {'frequency': 'c', 'id': 868, 'synset': 'pumpkin.n.02', 'synonyms': ['pumpkin'], 'def': 'usually large pulpy deep-yellow round fruit of the squash family maturing in late summer or early autumn', 'name': 'pumpkin'}, {'frequency': 'r', 'id': 869, 'synset': 'punch.n.03', 'synonyms': ['puncher'], 'def': 'a tool for making holes or indentations', 'name': 'puncher'}, {'frequency': 'r', 'id': 870, 'synset': 'puppet.n.01', 'synonyms': ['puppet', 'marionette'], 'def': 'a small figure of a person operated from above with strings by a puppeteer', 'name': 'puppet'}, {'frequency': 'r', 'id': 871, 'synset': 'puppy.n.01', 'synonyms': ['puppy'], 'def': 'a young dog', 'name': 'puppy'}, {'frequency': 'r', 'id': 872, 'synset': 'quesadilla.n.01', 'synonyms': ['quesadilla'], 'def': 'a tortilla that is filled with cheese and heated', 'name': 'quesadilla'}, {'frequency': 'r', 'id': 873, 'synset': 'quiche.n.02', 'synonyms': ['quiche'], 'def': 'a tart filled with rich unsweetened custard; often contains other ingredients (as cheese or ham or seafood or vegetables)', 'name': 'quiche'}, {'frequency': 'f', 'id': 874, 'synset': 'quilt.n.01', 'synonyms': ['quilt', 'comforter'], 'def': 'bedding made of two layers of cloth filled with stuffing and stitched together', 'name': 'quilt'}, {'frequency': 'c', 'id': 875, 'synset': 'rabbit.n.01', 'synonyms': ['rabbit'], 'def': 'any of various burrowing animals of the family Leporidae having long ears and short tails', 'name': 'rabbit'}, {'frequency': 'r', 'id': 876, 'synset': 'racer.n.02', 'synonyms': ['race_car', 'racing_car'], 'def': 'a fast car that competes in races', 'name': 'race_car'}, {'frequency': 'c', 'id': 877, 'synset': 'racket.n.04', 'synonyms': ['racket', 'racquet'], 'def': 'a sports implement used to strike a ball in various games', 'name': 'racket'}, {'frequency': 'r', 'id': 878, 'synset': 'radar.n.01', 'synonyms': ['radar'], 'def': 'measuring instrument in which the echo of a pulse of microwave radiation is used to detect and locate distant objects', 'name': 'radar'}, {'frequency': 'c', 'id': 879, 'synset': 'radiator.n.03', 'synonyms': ['radiator'], 'def': 'a mechanism consisting of a metal honeycomb through which hot fluids circulate', 'name': 'radiator'}, {'frequency': 'c', 'id': 880, 'synset': 'radio_receiver.n.01', 'synonyms': ['radio_receiver', 'radio_set', 'radio', 'tuner_(radio)'], 'def': 'an electronic receiver that detects and demodulates and amplifies transmitted radio signals', 'name': 'radio_receiver'}, {'frequency': 'c', 'id': 881, 'synset': 'radish.n.03', 'synonyms': ['radish', 'daikon'], 'def': 'pungent edible root of any of various cultivated radish plants', 'name': 'radish'}, {'frequency': 'c', 'id': 882, 'synset': 'raft.n.01', 'synonyms': ['raft'], 'def': 'a flat float (usually made of logs or planks) that can be used for transport or as a platform for swimmers', 'name': 'raft'}, {'frequency': 'r', 'id': 883, 'synset': 'rag_doll.n.01', 'synonyms': ['rag_doll'], 'def': 'a cloth doll that is stuffed and (usually) painted', 'name': 'rag_doll'}, {'frequency': 'c', 'id': 884, 'synset': 'raincoat.n.01', 'synonyms': ['raincoat', 'waterproof_jacket'], 'def': 'a water-resistant coat', 'name': 'raincoat'}, {'frequency': 'c', 'id': 885, 'synset': 'ram.n.05', 'synonyms': ['ram_(animal)'], 'def': 'uncastrated adult male sheep', 'name': 'ram_(animal)'}, {'frequency': 'c', 'id': 886, 'synset': 'raspberry.n.02', 'synonyms': ['raspberry'], 'def': 'red or black edible aggregate berries usually smaller than the related blackberries', 'name': 'raspberry'}, {'frequency': 'r', 'id': 887, 'synset': 'rat.n.01', 'synonyms': ['rat'], 'def': 'any of various long-tailed rodents similar to but larger than a mouse', 'name': 'rat'}, {'frequency': 'c', 'id': 888, 'synset': 'razorblade.n.01', 'synonyms': ['razorblade'], 'def': 'a blade that has very sharp edge', 'name': 'razorblade'}, {'frequency': 'c', 'id': 889, 'synset': 'reamer.n.01', 'synonyms': ['reamer_(juicer)', 'juicer', 'juice_reamer'], 'def': 'a squeezer with a conical ridged center that is used for squeezing juice from citrus fruit', 'name': 'reamer_(juicer)'}, {'frequency': 'f', 'id': 890, 'synset': 'rearview_mirror.n.01', 'synonyms': ['rearview_mirror'], 'def': 'car mirror that reflects the view out of the rear window', 'name': 'rearview_mirror'}, {'frequency': 'c', 'id': 891, 'synset': 'receipt.n.02', 'synonyms': ['receipt'], 'def': 'an acknowledgment (usually tangible) that payment has been made', 'name': 'receipt'}, {'frequency': 'c', 'id': 892, 'synset': 'recliner.n.01', 'synonyms': ['recliner', 'reclining_chair', 'lounger_(chair)'], 'def': 'an armchair whose back can be lowered and foot can be raised to allow the sitter to recline in it', 'name': 'recliner'}, {'frequency': 'r', 'id': 893, 'synset': 'record_player.n.01', 'synonyms': ['record_player', 'phonograph_(record_player)', 'turntable'], 'def': 'machine in which rotating records cause a stylus to vibrate and the vibrations are amplified acoustically or electronically', 'name': 'record_player'}, {'frequency': 'r', 'id': 894, 'synset': 'red_cabbage.n.02', 'synonyms': ['red_cabbage'], 'def': 'compact head of purplish-red leaves', 'name': 'red_cabbage'}, {'frequency': 'f', 'id': 895, 'synset': 'reflector.n.01', 'synonyms': ['reflector'], 'def': 'device that reflects light, radiation, etc.', 'name': 'reflector'}, {'frequency': 'f', 'id': 896, 'synset': 'remote_control.n.01', 'synonyms': ['remote_control'], 'def': 'a device that can be used to control a machine or apparatus from a distance', 'name': 'remote_control'}, {'frequency': 'c', 'id': 897, 'synset': 'rhinoceros.n.01', 'synonyms': ['rhinoceros'], 'def': 'massive powerful herbivorous odd-toed ungulate of southeast Asia and Africa having very thick skin and one or two horns on the snout', 'name': 'rhinoceros'}, {'frequency': 'r', 'id': 898, 'synset': 'rib.n.03', 'synonyms': ['rib_(food)'], 'def': 'cut of meat including one or more ribs', 'name': 'rib_(food)'}, {'frequency': 'r', 'id': 899, 'synset': 'rifle.n.01', 'synonyms': ['rifle'], 'def': 'a shoulder firearm with a long barrel', 'name': 'rifle'}, {'frequency': 'f', 'id': 900, 'synset': 'ring.n.08', 'synonyms': ['ring'], 'def': 'jewelry consisting of a circlet of precious metal (often set with jewels) worn on the finger', 'name': 'ring'}, {'frequency': 'r', 'id': 901, 'synset': 'river_boat.n.01', 'synonyms': ['river_boat'], 'def': 'a boat used on rivers or to ply a river', 'name': 'river_boat'}, {'frequency': 'r', 'id': 902, 'synset': 'road_map.n.02', 'synonyms': ['road_map'], 'def': '(NOT A ROAD) a MAP showing roads (for automobile travel)', 'name': 'road_map'}, {'frequency': 'c', 'id': 903, 'synset': 'robe.n.01', 'synonyms': ['robe'], 'def': 'any loose flowing garment', 'name': 'robe'}, {'frequency': 'c', 'id': 904, 'synset': 'rocking_chair.n.01', 'synonyms': ['rocking_chair'], 'def': 'a chair mounted on rockers', 'name': 'rocking_chair'}, {'frequency': 'r', 'id': 905, 'synset': 'roller_skate.n.01', 'synonyms': ['roller_skate'], 'def': 'a shoe with pairs of rollers (small hard wheels) fixed to the sole', 'name': 'roller_skate'}, {'frequency': 'r', 'id': 906, 'synset': 'rollerblade.n.01', 'synonyms': ['Rollerblade'], 'def': 'an in-line variant of a roller skate', 'name': 'Rollerblade'}, {'frequency': 'c', 'id': 907, 'synset': 'rolling_pin.n.01', 'synonyms': ['rolling_pin'], 'def': 'utensil consisting of a cylinder (usually of wood) with a handle at each end; used to roll out dough', 'name': 'rolling_pin'}, {'frequency': 'r', 'id': 908, 'synset': 'root_beer.n.01', 'synonyms': ['root_beer'], 'def': 'carbonated drink containing extracts of roots and herbs', 'name': 'root_beer'}, {'frequency': 'c', 'id': 909, 'synset': 'router.n.02', 'synonyms': ['router_(computer_equipment)'], 'def': 'a device that forwards data packets between computer networks', 'name': 'router_(computer_equipment)'}, {'frequency': 'f', 'id': 910, 'synset': 'rubber_band.n.01', 'synonyms': ['rubber_band', 'elastic_band'], 'def': 'a narrow band of elastic rubber used to hold things (such as papers) together', 'name': 'rubber_band'}, {'frequency': 'c', 'id': 911, 'synset': 'runner.n.08', 'synonyms': ['runner_(carpet)'], 'def': 'a long narrow carpet', 'name': 'runner_(carpet)'}, {'frequency': 'f', 'id': 912, 'synset': 'sack.n.01', 'synonyms': ['plastic_bag', 'paper_bag'], 'def': "a bag made of paper or plastic for holding customer's purchases", 'name': 'plastic_bag'}, {'frequency': 'f', 'id': 913, 'synset': 'saddle.n.01', 'synonyms': ['saddle_(on_an_animal)'], 'def': 'a seat for the rider of a horse or camel', 'name': 'saddle_(on_an_animal)'}, {'frequency': 'f', 'id': 914, 'synset': 'saddle_blanket.n.01', 'synonyms': ['saddle_blanket', 'saddlecloth', 'horse_blanket'], 'def': 'stable gear consisting of a blanket placed under the saddle', 'name': 'saddle_blanket'}, {'frequency': 'c', 'id': 915, 'synset': 'saddlebag.n.01', 'synonyms': ['saddlebag'], 'def': 'a large bag (or pair of bags) hung over a saddle', 'name': 'saddlebag'}, {'frequency': 'r', 'id': 916, 'synset': 'safety_pin.n.01', 'synonyms': ['safety_pin'], 'def': 'a pin in the form of a clasp; has a guard so the point of the pin will not stick the user', 'name': 'safety_pin'}, {'frequency': 'c', 'id': 917, 'synset': 'sail.n.01', 'synonyms': ['sail'], 'def': 'a large piece of fabric by means of which wind is used to propel a sailing vessel', 'name': 'sail'}, {'frequency': 'c', 'id': 918, 'synset': 'salad.n.01', 'synonyms': ['salad'], 'def': 'food mixtures either arranged on a plate or tossed and served with a moist dressing; usually consisting of or including greens', 'name': 'salad'}, {'frequency': 'r', 'id': 919, 'synset': 'salad_plate.n.01', 'synonyms': ['salad_plate', 'salad_bowl'], 'def': 'a plate or bowl for individual servings of salad', 'name': 'salad_plate'}, {'frequency': 'r', 'id': 920, 'synset': 'salami.n.01', 'synonyms': ['salami'], 'def': 'highly seasoned fatty sausage of pork and beef usually dried', 'name': 'salami'}, {'frequency': 'r', 'id': 921, 'synset': 'salmon.n.01', 'synonyms': ['salmon_(fish)'], 'def': 'any of various large food and game fishes of northern waters', 'name': 'salmon_(fish)'}, {'frequency': 'r', 'id': 922, 'synset': 'salmon.n.03', 'synonyms': ['salmon_(food)'], 'def': 'flesh of any of various marine or freshwater fish of the family Salmonidae', 'name': 'salmon_(food)'}, {'frequency': 'r', 'id': 923, 'synset': 'salsa.n.01', 'synonyms': ['salsa'], 'def': 'spicy sauce of tomatoes and onions and chili peppers to accompany Mexican foods', 'name': 'salsa'}, {'frequency': 'f', 'id': 924, 'synset': 'saltshaker.n.01', 'synonyms': ['saltshaker'], 'def': 'a shaker with a perforated top for sprinkling salt', 'name': 'saltshaker'}, {'frequency': 'f', 'id': 925, 'synset': 'sandal.n.01', 'synonyms': ['sandal_(type_of_shoe)'], 'def': 'a shoe consisting of a sole fastened by straps to the foot', 'name': 'sandal_(type_of_shoe)'}, {'frequency': 'f', 'id': 926, 'synset': 'sandwich.n.01', 'synonyms': ['sandwich'], 'def': 'two (or more) slices of bread with a filling between them', 'name': 'sandwich'}, {'frequency': 'r', 'id': 927, 'synset': 'satchel.n.01', 'synonyms': ['satchel'], 'def': 'luggage consisting of a small case with a flat bottom and (usually) a shoulder strap', 'name': 'satchel'}, {'frequency': 'r', 'id': 928, 'synset': 'saucepan.n.01', 'synonyms': ['saucepan'], 'def': 'a deep pan with a handle; used for stewing or boiling', 'name': 'saucepan'}, {'frequency': 'f', 'id': 929, 'synset': 'saucer.n.02', 'synonyms': ['saucer'], 'def': 'a small shallow dish for holding a cup at the table', 'name': 'saucer'}, {'frequency': 'f', 'id': 930, 'synset': 'sausage.n.01', 'synonyms': ['sausage'], 'def': 'highly seasoned minced meat stuffed in casings', 'name': 'sausage'}, {'frequency': 'r', 'id': 931, 'synset': 'sawhorse.n.01', 'synonyms': ['sawhorse', 'sawbuck'], 'def': 'a framework for holding wood that is being sawed', 'name': 'sawhorse'}, {'frequency': 'r', 'id': 932, 'synset': 'sax.n.02', 'synonyms': ['saxophone'], 'def': "a wind instrument with a `J'-shaped form typically made of brass", 'name': 'saxophone'}, {'frequency': 'f', 'id': 933, 'synset': 'scale.n.07', 'synonyms': ['scale_(measuring_instrument)'], 'def': 'a measuring instrument for weighing; shows amount of mass', 'name': 'scale_(measuring_instrument)'}, {'frequency': 'r', 'id': 934, 'synset': 'scarecrow.n.01', 'synonyms': ['scarecrow', 'strawman'], 'def': 'an effigy in the shape of a man to frighten birds away from seeds', 'name': 'scarecrow'}, {'frequency': 'f', 'id': 935, 'synset': 'scarf.n.01', 'synonyms': ['scarf'], 'def': 'a garment worn around the head or neck or shoulders for warmth or decoration', 'name': 'scarf'}, {'frequency': 'c', 'id': 936, 'synset': 'school_bus.n.01', 'synonyms': ['school_bus'], 'def': 'a bus used to transport children to or from school', 'name': 'school_bus'}, {'frequency': 'f', 'id': 937, 'synset': 'scissors.n.01', 'synonyms': ['scissors'], 'def': 'a tool having two crossed pivoting blades with looped handles', 'name': 'scissors'}, {'frequency': 'c', 'id': 938, 'synset': 'scoreboard.n.01', 'synonyms': ['scoreboard'], 'def': 'a large board for displaying the score of a contest (and some other information)', 'name': 'scoreboard'}, {'frequency': 'c', 'id': 939, 'synset': 'scrambled_eggs.n.01', 'synonyms': ['scrambled_eggs'], 'def': 'eggs beaten and cooked to a soft firm consistency while stirring', 'name': 'scrambled_eggs'}, {'frequency': 'r', 'id': 940, 'synset': 'scraper.n.01', 'synonyms': ['scraper'], 'def': 'any of various hand tools for scraping', 'name': 'scraper'}, {'frequency': 'r', 'id': 941, 'synset': 'scratcher.n.03', 'synonyms': ['scratcher'], 'def': 'a device used for scratching', 'name': 'scratcher'}, {'frequency': 'c', 'id': 942, 'synset': 'screwdriver.n.01', 'synonyms': ['screwdriver'], 'def': 'a hand tool for driving screws; has a tip that fits into the head of a screw', 'name': 'screwdriver'}, {'frequency': 'c', 'id': 943, 'synset': 'scrub_brush.n.01', 'synonyms': ['scrubbing_brush'], 'def': 'a brush with short stiff bristles for heavy cleaning', 'name': 'scrubbing_brush'}, {'frequency': 'c', 'id': 944, 'synset': 'sculpture.n.01', 'synonyms': ['sculpture'], 'def': 'a three-dimensional work of art', 'name': 'sculpture'}, {'frequency': 'r', 'id': 945, 'synset': 'seabird.n.01', 'synonyms': ['seabird', 'seafowl'], 'def': 'a bird that frequents coastal waters and the open ocean: gulls; pelicans; gannets; cormorants; albatrosses; petrels; etc.', 'name': 'seabird'}, {'frequency': 'r', 'id': 946, 'synset': 'seahorse.n.02', 'synonyms': ['seahorse'], 'def': 'small fish with horse-like heads bent sharply downward and curled tails', 'name': 'seahorse'}, {'frequency': 'r', 'id': 947, 'synset': 'seaplane.n.01', 'synonyms': ['seaplane', 'hydroplane'], 'def': 'an airplane that can land on or take off from water', 'name': 'seaplane'}, {'frequency': 'c', 'id': 948, 'synset': 'seashell.n.01', 'synonyms': ['seashell'], 'def': 'the shell of a marine organism', 'name': 'seashell'}, {'frequency': 'r', 'id': 949, 'synset': 'seedling.n.01', 'synonyms': ['seedling'], 'def': 'young plant or tree grown from a seed', 'name': 'seedling'}, {'frequency': 'c', 'id': 950, 'synset': 'serving_dish.n.01', 'synonyms': ['serving_dish'], 'def': 'a dish used for serving food', 'name': 'serving_dish'}, {'frequency': 'r', 'id': 951, 'synset': 'sewing_machine.n.01', 'synonyms': ['sewing_machine'], 'def': 'a textile machine used as a home appliance for sewing', 'name': 'sewing_machine'}, {'frequency': 'r', 'id': 952, 'synset': 'shaker.n.03', 'synonyms': ['shaker'], 'def': 'a container in which something can be shaken', 'name': 'shaker'}, {'frequency': 'c', 'id': 953, 'synset': 'shampoo.n.01', 'synonyms': ['shampoo'], 'def': 'cleansing agent consisting of soaps or detergents used for washing the hair', 'name': 'shampoo'}, {'frequency': 'r', 'id': 954, 'synset': 'shark.n.01', 'synonyms': ['shark'], 'def': 'typically large carnivorous fishes with sharpe teeth', 'name': 'shark'}, {'frequency': 'r', 'id': 955, 'synset': 'sharpener.n.01', 'synonyms': ['sharpener'], 'def': 'any implement that is used to make something (an edge or a point) sharper', 'name': 'sharpener'}, {'frequency': 'r', 'id': 956, 'synset': 'sharpie.n.03', 'synonyms': ['Sharpie'], 'def': 'a pen with indelible ink that will write on any surface', 'name': 'Sharpie'}, {'frequency': 'r', 'id': 957, 'synset': 'shaver.n.03', 'synonyms': ['shaver_(electric)', 'electric_shaver', 'electric_razor'], 'def': 'a razor powered by an electric motor', 'name': 'shaver_(electric)'}, {'frequency': 'c', 'id': 958, 'synset': 'shaving_cream.n.01', 'synonyms': ['shaving_cream', 'shaving_soap'], 'def': 'toiletry consisting that forms a rich lather for softening the beard before shaving', 'name': 'shaving_cream'}, {'frequency': 'r', 'id': 959, 'synset': 'shawl.n.01', 'synonyms': ['shawl'], 'def': 'cloak consisting of an oblong piece of cloth used to cover the head and shoulders', 'name': 'shawl'}, {'frequency': 'r', 'id': 960, 'synset': 'shears.n.01', 'synonyms': ['shears'], 'def': 'large scissors with strong blades', 'name': 'shears'}, {'frequency': 'f', 'id': 961, 'synset': 'sheep.n.01', 'synonyms': ['sheep'], 'def': 'woolly usually horned ruminant mammal related to the goat', 'name': 'sheep'}, {'frequency': 'r', 'id': 962, 'synset': 'shepherd_dog.n.01', 'synonyms': ['shepherd_dog', 'sheepdog'], 'def': 'any of various usually long-haired breeds of dog reared to herd and guard sheep', 'name': 'shepherd_dog'}, {'frequency': 'r', 'id': 963, 'synset': 'sherbert.n.01', 'synonyms': ['sherbert', 'sherbet'], 'def': 'a frozen dessert made primarily of fruit juice and sugar', 'name': 'sherbert'}, {'frequency': 'r', 'id': 964, 'synset': 'shield.n.02', 'synonyms': ['shield'], 'def': 'armor carried on the arm to intercept blows', 'name': 'shield'}, {'frequency': 'f', 'id': 965, 'synset': 'shirt.n.01', 'synonyms': ['shirt'], 'def': 'a garment worn on the upper half of the body', 'name': 'shirt'}, {'frequency': 'f', 'id': 966, 'synset': 'shoe.n.01', 'synonyms': ['shoe', 'sneaker_(type_of_shoe)', 'tennis_shoe'], 'def': 'common footwear covering the foot', 'name': 'shoe'}, {'frequency': 'c', 'id': 967, 'synset': 'shopping_bag.n.01', 'synonyms': ['shopping_bag'], 'def': 'a bag made of plastic or strong paper (often with handles); used to transport goods after shopping', 'name': 'shopping_bag'}, {'frequency': 'c', 'id': 968, 'synset': 'shopping_cart.n.01', 'synonyms': ['shopping_cart'], 'def': 'a handcart that holds groceries or other goods while shopping', 'name': 'shopping_cart'}, {'frequency': 'f', 'id': 969, 'synset': 'short_pants.n.01', 'synonyms': ['short_pants', 'shorts_(clothing)', 'trunks_(clothing)'], 'def': 'trousers that end at or above the knee', 'name': 'short_pants'}, {'frequency': 'r', 'id': 970, 'synset': 'shot_glass.n.01', 'synonyms': ['shot_glass'], 'def': 'a small glass adequate to hold a single swallow of whiskey', 'name': 'shot_glass'}, {'frequency': 'c', 'id': 971, 'synset': 'shoulder_bag.n.01', 'synonyms': ['shoulder_bag'], 'def': 'a large handbag that can be carried by a strap looped over the shoulder', 'name': 'shoulder_bag'}, {'frequency': 'c', 'id': 972, 'synset': 'shovel.n.01', 'synonyms': ['shovel'], 'def': 'a hand tool for lifting loose material such as snow, dirt, etc.', 'name': 'shovel'}, {'frequency': 'f', 'id': 973, 'synset': 'shower.n.01', 'synonyms': ['shower_head'], 'def': 'a plumbing fixture that sprays water over you', 'name': 'shower_head'}, {'frequency': 'f', 'id': 974, 'synset': 'shower_curtain.n.01', 'synonyms': ['shower_curtain'], 'def': 'a curtain that keeps water from splashing out of the shower area', 'name': 'shower_curtain'}, {'frequency': 'r', 'id': 975, 'synset': 'shredder.n.01', 'synonyms': ['shredder_(for_paper)'], 'def': 'a device that shreds documents', 'name': 'shredder_(for_paper)'}, {'frequency': 'r', 'id': 976, 'synset': 'sieve.n.01', 'synonyms': ['sieve', 'screen_(sieve)'], 'def': 'a strainer for separating lumps from powdered material or grading particles', 'name': 'sieve'}, {'frequency': 'f', 'id': 977, 'synset': 'signboard.n.01', 'synonyms': ['signboard'], 'def': 'structure displaying a board on which advertisements can be posted', 'name': 'signboard'}, {'frequency': 'c', 'id': 978, 'synset': 'silo.n.01', 'synonyms': ['silo'], 'def': 'a cylindrical tower used for storing goods', 'name': 'silo'}, {'frequency': 'f', 'id': 979, 'synset': 'sink.n.01', 'synonyms': ['sink'], 'def': 'plumbing fixture consisting of a water basin fixed to a wall or floor and having a drainpipe', 'name': 'sink'}, {'frequency': 'f', 'id': 980, 'synset': 'skateboard.n.01', 'synonyms': ['skateboard'], 'def': 'a board with wheels that is ridden in a standing or crouching position and propelled by foot', 'name': 'skateboard'}, {'frequency': 'c', 'id': 981, 'synset': 'skewer.n.01', 'synonyms': ['skewer'], 'def': 'a long pin for holding meat in position while it is being roasted', 'name': 'skewer'}, {'frequency': 'f', 'id': 982, 'synset': 'ski.n.01', 'synonyms': ['ski'], 'def': 'sports equipment for skiing on snow', 'name': 'ski'}, {'frequency': 'f', 'id': 983, 'synset': 'ski_boot.n.01', 'synonyms': ['ski_boot'], 'def': 'a stiff boot that is fastened to a ski with a ski binding', 'name': 'ski_boot'}, {'frequency': 'f', 'id': 984, 'synset': 'ski_parka.n.01', 'synonyms': ['ski_parka', 'ski_jacket'], 'def': 'a parka to be worn while skiing', 'name': 'ski_parka'}, {'frequency': 'f', 'id': 985, 'synset': 'ski_pole.n.01', 'synonyms': ['ski_pole'], 'def': 'a pole with metal points used as an aid in skiing', 'name': 'ski_pole'}, {'frequency': 'f', 'id': 986, 'synset': 'skirt.n.02', 'synonyms': ['skirt'], 'def': 'a garment hanging from the waist; worn mainly by girls and women', 'name': 'skirt'}, {'frequency': 'c', 'id': 987, 'synset': 'sled.n.01', 'synonyms': ['sled', 'sledge', 'sleigh'], 'def': 'a vehicle or flat object for transportation over snow by sliding or pulled by dogs, etc.', 'name': 'sled'}, {'frequency': 'c', 'id': 988, 'synset': 'sleeping_bag.n.01', 'synonyms': ['sleeping_bag'], 'def': 'large padded bag designed to be slept in outdoors', 'name': 'sleeping_bag'}, {'frequency': 'r', 'id': 989, 'synset': 'sling.n.05', 'synonyms': ['sling_(bandage)', 'triangular_bandage'], 'def': 'bandage to support an injured forearm; slung over the shoulder or neck', 'name': 'sling_(bandage)'}, {'frequency': 'c', 'id': 990, 'synset': 'slipper.n.01', 'synonyms': ['slipper_(footwear)', 'carpet_slipper_(footwear)'], 'def': 'low footwear that can be slipped on and off easily; usually worn indoors', 'name': 'slipper_(footwear)'}, {'frequency': 'r', 'id': 991, 'synset': 'smoothie.n.02', 'synonyms': ['smoothie'], 'def': 'a thick smooth drink consisting of fresh fruit pureed with ice cream or yoghurt or milk', 'name': 'smoothie'}, {'frequency': 'r', 'id': 992, 'synset': 'snake.n.01', 'synonyms': ['snake', 'serpent'], 'def': 'limbless scaly elongate reptile; some are venomous', 'name': 'snake'}, {'frequency': 'f', 'id': 993, 'synset': 'snowboard.n.01', 'synonyms': ['snowboard'], 'def': 'a board that resembles a broad ski or a small surfboard; used in a standing position to slide down snow-covered slopes', 'name': 'snowboard'}, {'frequency': 'c', 'id': 994, 'synset': 'snowman.n.01', 'synonyms': ['snowman'], 'def': 'a figure of a person made of packed snow', 'name': 'snowman'}, {'frequency': 'c', 'id': 995, 'synset': 'snowmobile.n.01', 'synonyms': ['snowmobile'], 'def': 'tracked vehicle for travel on snow having skis in front', 'name': 'snowmobile'}, {'frequency': 'f', 'id': 996, 'synset': 'soap.n.01', 'synonyms': ['soap'], 'def': 'a cleansing agent made from the salts of vegetable or animal fats', 'name': 'soap'}, {'frequency': 'f', 'id': 997, 'synset': 'soccer_ball.n.01', 'synonyms': ['soccer_ball'], 'def': "an inflated ball used in playing soccer (called `football' outside of the United States)", 'name': 'soccer_ball'}, {'frequency': 'f', 'id': 998, 'synset': 'sock.n.01', 'synonyms': ['sock'], 'def': 'cloth covering for the foot; worn inside the shoe; reaches to between the ankle and the knee', 'name': 'sock'}, {'frequency': 'r', 'id': 999, 'synset': 'soda_fountain.n.02', 'synonyms': ['soda_fountain'], 'def': 'an apparatus for dispensing soda water', 'name': 'soda_fountain'}, {'frequency': 'r', 'id': 1000, 'synset': 'soda_water.n.01', 'synonyms': ['carbonated_water', 'club_soda', 'seltzer', 'sparkling_water'], 'def': 'effervescent beverage artificially charged with carbon dioxide', 'name': 'carbonated_water'}, {'frequency': 'f', 'id': 1001, 'synset': 'sofa.n.01', 'synonyms': ['sofa', 'couch', 'lounge'], 'def': 'an upholstered seat for more than one person', 'name': 'sofa'}, {'frequency': 'r', 'id': 1002, 'synset': 'softball.n.01', 'synonyms': ['softball'], 'def': 'ball used in playing softball', 'name': 'softball'}, {'frequency': 'c', 'id': 1003, 'synset': 'solar_array.n.01', 'synonyms': ['solar_array', 'solar_battery', 'solar_panel'], 'def': 'electrical device consisting of a large array of connected solar cells', 'name': 'solar_array'}, {'frequency': 'r', 'id': 1004, 'synset': 'sombrero.n.02', 'synonyms': ['sombrero'], 'def': 'a straw hat with a tall crown and broad brim; worn in American southwest and in Mexico', 'name': 'sombrero'}, {'frequency': 'c', 'id': 1005, 'synset': 'soup.n.01', 'synonyms': ['soup'], 'def': 'liquid food especially of meat or fish or vegetable stock often containing pieces of solid food', 'name': 'soup'}, {'frequency': 'r', 'id': 1006, 'synset': 'soup_bowl.n.01', 'synonyms': ['soup_bowl'], 'def': 'a bowl for serving soup', 'name': 'soup_bowl'}, {'frequency': 'c', 'id': 1007, 'synset': 'soupspoon.n.01', 'synonyms': ['soupspoon'], 'def': 'a spoon with a rounded bowl for eating soup', 'name': 'soupspoon'}, {'frequency': 'c', 'id': 1008, 'synset': 'sour_cream.n.01', 'synonyms': ['sour_cream', 'soured_cream'], 'def': 'soured light cream', 'name': 'sour_cream'}, {'frequency': 'r', 'id': 1009, 'synset': 'soya_milk.n.01', 'synonyms': ['soya_milk', 'soybean_milk', 'soymilk'], 'def': 'a milk substitute containing soybean flour and water; used in some infant formulas and in making tofu', 'name': 'soya_milk'}, {'frequency': 'r', 'id': 1010, 'synset': 'space_shuttle.n.01', 'synonyms': ['space_shuttle'], 'def': "a reusable spacecraft with wings for a controlled descent through the Earth's atmosphere", 'name': 'space_shuttle'}, {'frequency': 'r', 'id': 1011, 'synset': 'sparkler.n.02', 'synonyms': ['sparkler_(fireworks)'], 'def': 'a firework that burns slowly and throws out a shower of sparks', 'name': 'sparkler_(fireworks)'}, {'frequency': 'f', 'id': 1012, 'synset': 'spatula.n.02', 'synonyms': ['spatula'], 'def': 'a hand tool with a thin flexible blade used to mix or spread soft substances', 'name': 'spatula'}, {'frequency': 'r', 'id': 1013, 'synset': 'spear.n.01', 'synonyms': ['spear', 'lance'], 'def': 'a long pointed rod used as a tool or weapon', 'name': 'spear'}, {'frequency': 'f', 'id': 1014, 'synset': 'spectacles.n.01', 'synonyms': ['spectacles', 'specs', 'eyeglasses', 'glasses'], 'def': 'optical instrument consisting of a frame that holds a pair of lenses for correcting defective vision', 'name': 'spectacles'}, {'frequency': 'c', 'id': 1015, 'synset': 'spice_rack.n.01', 'synonyms': ['spice_rack'], 'def': 'a rack for displaying containers filled with spices', 'name': 'spice_rack'}, {'frequency': 'r', 'id': 1016, 'synset': 'spider.n.01', 'synonyms': ['spider'], 'def': 'predatory arachnid with eight legs, two poison fangs, two feelers, and usually two silk-spinning organs at the back end of the body', 'name': 'spider'}, {'frequency': 'c', 'id': 1017, 'synset': 'sponge.n.01', 'synonyms': ['sponge'], 'def': 'a porous mass usable to absorb water typically used for cleaning', 'name': 'sponge'}, {'frequency': 'f', 'id': 1018, 'synset': 'spoon.n.01', 'synonyms': ['spoon'], 'def': 'a piece of cutlery with a shallow bowl-shaped container and a handle', 'name': 'spoon'}, {'frequency': 'c', 'id': 1019, 'synset': 'sportswear.n.01', 'synonyms': ['sportswear', 'athletic_wear', 'activewear'], 'def': 'attire worn for sport or for casual wear', 'name': 'sportswear'}, {'frequency': 'c', 'id': 1020, 'synset': 'spotlight.n.02', 'synonyms': ['spotlight'], 'def': 'a lamp that produces a strong beam of light to illuminate a restricted area; used to focus attention of a stage performer', 'name': 'spotlight'}, {'frequency': 'r', 'id': 1021, 'synset': 'squirrel.n.01', 'synonyms': ['squirrel'], 'def': 'a kind of arboreal rodent having a long bushy tail', 'name': 'squirrel'}, {'frequency': 'c', 'id': 1022, 'synset': 'stapler.n.01', 'synonyms': ['stapler_(stapling_machine)'], 'def': 'a machine that inserts staples into sheets of paper in order to fasten them together', 'name': 'stapler_(stapling_machine)'}, {'frequency': 'r', 'id': 1023, 'synset': 'starfish.n.01', 'synonyms': ['starfish', 'sea_star'], 'def': 'echinoderms characterized by five arms extending from a central disk', 'name': 'starfish'}, {'frequency': 'f', 'id': 1024, 'synset': 'statue.n.01', 'synonyms': ['statue_(sculpture)'], 'def': 'a sculpture representing a human or animal', 'name': 'statue_(sculpture)'}, {'frequency': 'c', 'id': 1025, 'synset': 'steak.n.01', 'synonyms': ['steak_(food)'], 'def': 'a slice of meat cut from the fleshy part of an animal or large fish', 'name': 'steak_(food)'}, {'frequency': 'r', 'id': 1026, 'synset': 'steak_knife.n.01', 'synonyms': ['steak_knife'], 'def': 'a sharp table knife used in eating steak', 'name': 'steak_knife'}, {'frequency': 'r', 'id': 1027, 'synset': 'steamer.n.02', 'synonyms': ['steamer_(kitchen_appliance)'], 'def': 'a cooking utensil that can be used to cook food by steaming it', 'name': 'steamer_(kitchen_appliance)'}, {'frequency': 'f', 'id': 1028, 'synset': 'steering_wheel.n.01', 'synonyms': ['steering_wheel'], 'def': 'a handwheel that is used for steering', 'name': 'steering_wheel'}, {'frequency': 'r', 'id': 1029, 'synset': 'stencil.n.01', 'synonyms': ['stencil'], 'def': 'a sheet of material (metal, plastic, etc.) that has been perforated with a pattern; ink or paint can pass through the perforations to create the printed pattern on the surface below', 'name': 'stencil'}, {'frequency': 'r', 'id': 1030, 'synset': 'step_ladder.n.01', 'synonyms': ['stepladder'], 'def': 'a folding portable ladder hinged at the top', 'name': 'stepladder'}, {'frequency': 'c', 'id': 1031, 'synset': 'step_stool.n.01', 'synonyms': ['step_stool'], 'def': 'a stool that has one or two steps that fold under the seat', 'name': 'step_stool'}, {'frequency': 'c', 'id': 1032, 'synset': 'stereo.n.01', 'synonyms': ['stereo_(sound_system)'], 'def': 'electronic device for playing audio', 'name': 'stereo_(sound_system)'}, {'frequency': 'r', 'id': 1033, 'synset': 'stew.n.02', 'synonyms': ['stew'], 'def': 'food prepared by stewing especially meat or fish with vegetables', 'name': 'stew'}, {'frequency': 'r', 'id': 1034, 'synset': 'stirrer.n.02', 'synonyms': ['stirrer'], 'def': 'an implement used for stirring', 'name': 'stirrer'}, {'frequency': 'f', 'id': 1035, 'synset': 'stirrup.n.01', 'synonyms': ['stirrup'], 'def': "support consisting of metal loops into which rider's feet go", 'name': 'stirrup'}, {'frequency': 'c', 'id': 1036, 'synset': 'stocking.n.01', 'synonyms': ['stockings_(leg_wear)'], 'def': 'close-fitting hosiery to cover the foot and leg; come in matched pairs', 'name': 'stockings_(leg_wear)'}, {'frequency': 'f', 'id': 1037, 'synset': 'stool.n.01', 'synonyms': ['stool'], 'def': 'a simple seat without a back or arms', 'name': 'stool'}, {'frequency': 'f', 'id': 1038, 'synset': 'stop_sign.n.01', 'synonyms': ['stop_sign'], 'def': 'a traffic sign to notify drivers that they must come to a complete stop', 'name': 'stop_sign'}, {'frequency': 'f', 'id': 1039, 'synset': 'stoplight.n.01', 'synonyms': ['brake_light'], 'def': 'a red light on the rear of a motor vehicle that signals when the brakes are applied', 'name': 'brake_light'}, {'frequency': 'f', 'id': 1040, 'synset': 'stove.n.01', 'synonyms': ['stove', 'kitchen_stove', 'range_(kitchen_appliance)', 'kitchen_range', 'cooking_stove'], 'def': 'a kitchen appliance used for cooking food', 'name': 'stove'}, {'frequency': 'c', 'id': 1041, 'synset': 'strainer.n.01', 'synonyms': ['strainer'], 'def': 'a filter to retain larger pieces while smaller pieces and liquids pass through', 'name': 'strainer'}, {'frequency': 'f', 'id': 1042, 'synset': 'strap.n.01', 'synonyms': ['strap'], 'def': 'an elongated strip of material for binding things together or holding', 'name': 'strap'}, {'frequency': 'f', 'id': 1043, 'synset': 'straw.n.04', 'synonyms': ['straw_(for_drinking)', 'drinking_straw'], 'def': 'a thin paper or plastic tube used to suck liquids into the mouth', 'name': 'straw_(for_drinking)'}, {'frequency': 'f', 'id': 1044, 'synset': 'strawberry.n.01', 'synonyms': ['strawberry'], 'def': 'sweet fleshy red fruit', 'name': 'strawberry'}, {'frequency': 'f', 'id': 1045, 'synset': 'street_sign.n.01', 'synonyms': ['street_sign'], 'def': 'a sign visible from the street', 'name': 'street_sign'}, {'frequency': 'f', 'id': 1046, 'synset': 'streetlight.n.01', 'synonyms': ['streetlight', 'street_lamp'], 'def': 'a lamp supported on a lamppost; for illuminating a street', 'name': 'streetlight'}, {'frequency': 'r', 'id': 1047, 'synset': 'string_cheese.n.01', 'synonyms': ['string_cheese'], 'def': 'cheese formed in long strings twisted together', 'name': 'string_cheese'}, {'frequency': 'r', 'id': 1048, 'synset': 'stylus.n.02', 'synonyms': ['stylus'], 'def': 'a pointed tool for writing or drawing or engraving', 'name': 'stylus'}, {'frequency': 'r', 'id': 1049, 'synset': 'subwoofer.n.01', 'synonyms': ['subwoofer'], 'def': 'a loudspeaker that is designed to reproduce very low bass frequencies', 'name': 'subwoofer'}, {'frequency': 'r', 'id': 1050, 'synset': 'sugar_bowl.n.01', 'synonyms': ['sugar_bowl'], 'def': 'a dish in which sugar is served', 'name': 'sugar_bowl'}, {'frequency': 'r', 'id': 1051, 'synset': 'sugarcane.n.01', 'synonyms': ['sugarcane_(plant)'], 'def': 'juicy canes whose sap is a source of molasses and commercial sugar; fresh canes are sometimes chewed for the juice', 'name': 'sugarcane_(plant)'}, {'frequency': 'c', 'id': 1052, 'synset': 'suit.n.01', 'synonyms': ['suit_(clothing)'], 'def': 'a set of garments (usually including a jacket and trousers or skirt) for outerwear all of the same fabric and color', 'name': 'suit_(clothing)'}, {'frequency': 'c', 'id': 1053, 'synset': 'sunflower.n.01', 'synonyms': ['sunflower'], 'def': 'any plant of the genus Helianthus having large flower heads with dark disk florets and showy yellow rays', 'name': 'sunflower'}, {'frequency': 'f', 'id': 1054, 'synset': 'sunglasses.n.01', 'synonyms': ['sunglasses'], 'def': 'spectacles that are darkened or polarized to protect the eyes from the glare of the sun', 'name': 'sunglasses'}, {'frequency': 'c', 'id': 1055, 'synset': 'sunhat.n.01', 'synonyms': ['sunhat'], 'def': 'a hat with a broad brim that protects the face from direct exposure to the sun', 'name': 'sunhat'}, {'frequency': 'r', 'id': 1056, 'synset': 'sunscreen.n.01', 'synonyms': ['sunscreen', 'sunblock'], 'def': 'a cream spread on the skin; contains a chemical to filter out ultraviolet light and so protect from sunburn', 'name': 'sunscreen'}, {'frequency': 'f', 'id': 1057, 'synset': 'surfboard.n.01', 'synonyms': ['surfboard'], 'def': 'a narrow buoyant board for riding surf', 'name': 'surfboard'}, {'frequency': 'c', 'id': 1058, 'synset': 'sushi.n.01', 'synonyms': ['sushi'], 'def': 'rice (with raw fish) wrapped in seaweed', 'name': 'sushi'}, {'frequency': 'c', 'id': 1059, 'synset': 'swab.n.02', 'synonyms': ['mop'], 'def': 'cleaning implement consisting of absorbent material fastened to a handle; for cleaning floors', 'name': 'mop'}, {'frequency': 'c', 'id': 1060, 'synset': 'sweat_pants.n.01', 'synonyms': ['sweat_pants'], 'def': 'loose-fitting trousers with elastic cuffs; worn by athletes', 'name': 'sweat_pants'}, {'frequency': 'c', 'id': 1061, 'synset': 'sweatband.n.02', 'synonyms': ['sweatband'], 'def': 'a band of material tied around the forehead or wrist to absorb sweat', 'name': 'sweatband'}, {'frequency': 'f', 'id': 1062, 'synset': 'sweater.n.01', 'synonyms': ['sweater'], 'def': 'a crocheted or knitted garment covering the upper part of the body', 'name': 'sweater'}, {'frequency': 'f', 'id': 1063, 'synset': 'sweatshirt.n.01', 'synonyms': ['sweatshirt'], 'def': 'cotton knit pullover with long sleeves worn during athletic activity', 'name': 'sweatshirt'}, {'frequency': 'c', 'id': 1064, 'synset': 'sweet_potato.n.02', 'synonyms': ['sweet_potato'], 'def': 'the edible tuberous root of the sweet potato vine', 'name': 'sweet_potato'}, {'frequency': 'f', 'id': 1065, 'synset': 'swimsuit.n.01', 'synonyms': ['swimsuit', 'swimwear', 'bathing_suit', 'swimming_costume', 'bathing_costume', 'swimming_trunks', 'bathing_trunks'], 'def': 'garment worn for swimming', 'name': 'swimsuit'}, {'frequency': 'c', 'id': 1066, 'synset': 'sword.n.01', 'synonyms': ['sword'], 'def': 'a cutting or thrusting weapon that has a long metal blade', 'name': 'sword'}, {'frequency': 'r', 'id': 1067, 'synset': 'syringe.n.01', 'synonyms': ['syringe'], 'def': 'a medical instrument used to inject or withdraw fluids', 'name': 'syringe'}, {'frequency': 'r', 'id': 1068, 'synset': 'tabasco.n.02', 'synonyms': ['Tabasco_sauce'], 'def': 'very spicy sauce (trade name Tabasco) made from fully-aged red peppers', 'name': 'Tabasco_sauce'}, {'frequency': 'r', 'id': 1069, 'synset': 'table-tennis_table.n.01', 'synonyms': ['table-tennis_table', 'ping-pong_table'], 'def': 'a table used for playing table tennis', 'name': 'table-tennis_table'}, {'frequency': 'f', 'id': 1070, 'synset': 'table.n.02', 'synonyms': ['table'], 'def': 'a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs', 'name': 'table'}, {'frequency': 'c', 'id': 1071, 'synset': 'table_lamp.n.01', 'synonyms': ['table_lamp'], 'def': 'a lamp that sits on a table', 'name': 'table_lamp'}, {'frequency': 'f', 'id': 1072, 'synset': 'tablecloth.n.01', 'synonyms': ['tablecloth'], 'def': 'a covering spread over a dining table', 'name': 'tablecloth'}, {'frequency': 'r', 'id': 1073, 'synset': 'tachometer.n.01', 'synonyms': ['tachometer'], 'def': 'measuring instrument for indicating speed of rotation', 'name': 'tachometer'}, {'frequency': 'r', 'id': 1074, 'synset': 'taco.n.02', 'synonyms': ['taco'], 'def': 'a small tortilla cupped around a filling', 'name': 'taco'}, {'frequency': 'f', 'id': 1075, 'synset': 'tag.n.02', 'synonyms': ['tag'], 'def': 'a label associated with something for the purpose of identification or information', 'name': 'tag'}, {'frequency': 'f', 'id': 1076, 'synset': 'taillight.n.01', 'synonyms': ['taillight', 'rear_light'], 'def': 'lamp (usually red) mounted at the rear of a motor vehicle', 'name': 'taillight'}, {'frequency': 'r', 'id': 1077, 'synset': 'tambourine.n.01', 'synonyms': ['tambourine'], 'def': 'a shallow drum with a single drumhead and with metallic disks in the sides', 'name': 'tambourine'}, {'frequency': 'r', 'id': 1078, 'synset': 'tank.n.01', 'synonyms': ['army_tank', 'armored_combat_vehicle', 'armoured_combat_vehicle'], 'def': 'an enclosed armored military vehicle; has a cannon and moves on caterpillar treads', 'name': 'army_tank'}, {'frequency': 'c', 'id': 1079, 'synset': 'tank.n.02', 'synonyms': ['tank_(storage_vessel)', 'storage_tank'], 'def': 'a large (usually metallic) vessel for holding gases or liquids', 'name': 'tank_(storage_vessel)'}, {'frequency': 'f', 'id': 1080, 'synset': 'tank_top.n.01', 'synonyms': ['tank_top_(clothing)'], 'def': 'a tight-fitting sleeveless shirt with wide shoulder straps and low neck and no front opening', 'name': 'tank_top_(clothing)'}, {'frequency': 'c', 'id': 1081, 'synset': 'tape.n.01', 'synonyms': ['tape_(sticky_cloth_or_paper)'], 'def': 'a long thin piece of cloth or paper as used for binding or fastening', 'name': 'tape_(sticky_cloth_or_paper)'}, {'frequency': 'c', 'id': 1082, 'synset': 'tape.n.04', 'synonyms': ['tape_measure', 'measuring_tape'], 'def': 'measuring instrument consisting of a narrow strip (cloth or metal) marked in inches or centimeters and used for measuring lengths', 'name': 'tape_measure'}, {'frequency': 'c', 'id': 1083, 'synset': 'tapestry.n.02', 'synonyms': ['tapestry'], 'def': 'a heavy textile with a woven design; used for curtains and upholstery', 'name': 'tapestry'}, {'frequency': 'f', 'id': 1084, 'synset': 'tarpaulin.n.01', 'synonyms': ['tarp'], 'def': 'waterproofed canvas', 'name': 'tarp'}, {'frequency': 'c', 'id': 1085, 'synset': 'tartan.n.01', 'synonyms': ['tartan', 'plaid'], 'def': 'a cloth having a crisscross design', 'name': 'tartan'}, {'frequency': 'c', 'id': 1086, 'synset': 'tassel.n.01', 'synonyms': ['tassel'], 'def': 'adornment consisting of a bunch of cords fastened at one end', 'name': 'tassel'}, {'frequency': 'r', 'id': 1087, 'synset': 'tea_bag.n.01', 'synonyms': ['tea_bag'], 'def': 'a measured amount of tea in a bag for an individual serving of tea', 'name': 'tea_bag'}, {'frequency': 'c', 'id': 1088, 'synset': 'teacup.n.02', 'synonyms': ['teacup'], 'def': 'a cup from which tea is drunk', 'name': 'teacup'}, {'frequency': 'c', 'id': 1089, 'synset': 'teakettle.n.01', 'synonyms': ['teakettle'], 'def': 'kettle for boiling water to make tea', 'name': 'teakettle'}, {'frequency': 'c', 'id': 1090, 'synset': 'teapot.n.01', 'synonyms': ['teapot'], 'def': 'pot for brewing tea; usually has a spout and handle', 'name': 'teapot'}, {'frequency': 'f', 'id': 1091, 'synset': 'teddy.n.01', 'synonyms': ['teddy_bear'], 'def': "plaything consisting of a child's toy bear (usually plush and stuffed with soft materials)", 'name': 'teddy_bear'}, {'frequency': 'f', 'id': 1092, 'synset': 'telephone.n.01', 'synonyms': ['telephone', 'phone', 'telephone_set'], 'def': 'electronic device for communicating by voice over long distances', 'name': 'telephone'}, {'frequency': 'c', 'id': 1093, 'synset': 'telephone_booth.n.01', 'synonyms': ['telephone_booth', 'phone_booth', 'call_box', 'telephone_box', 'telephone_kiosk'], 'def': 'booth for using a telephone', 'name': 'telephone_booth'}, {'frequency': 'f', 'id': 1094, 'synset': 'telephone_pole.n.01', 'synonyms': ['telephone_pole', 'telegraph_pole', 'telegraph_post'], 'def': 'tall pole supporting telephone wires', 'name': 'telephone_pole'}, {'frequency': 'r', 'id': 1095, 'synset': 'telephoto_lens.n.01', 'synonyms': ['telephoto_lens', 'zoom_lens'], 'def': 'a camera lens that magnifies the image', 'name': 'telephoto_lens'}, {'frequency': 'c', 'id': 1096, 'synset': 'television_camera.n.01', 'synonyms': ['television_camera', 'tv_camera'], 'def': 'television equipment for capturing and recording video', 'name': 'television_camera'}, {'frequency': 'f', 'id': 1097, 'synset': 'television_receiver.n.01', 'synonyms': ['television_set', 'tv', 'tv_set'], 'def': 'an electronic device that receives television signals and displays them on a screen', 'name': 'television_set'}, {'frequency': 'f', 'id': 1098, 'synset': 'tennis_ball.n.01', 'synonyms': ['tennis_ball'], 'def': 'ball about the size of a fist used in playing tennis', 'name': 'tennis_ball'}, {'frequency': 'f', 'id': 1099, 'synset': 'tennis_racket.n.01', 'synonyms': ['tennis_racket'], 'def': 'a racket used to play tennis', 'name': 'tennis_racket'}, {'frequency': 'r', 'id': 1100, 'synset': 'tequila.n.01', 'synonyms': ['tequila'], 'def': 'Mexican liquor made from fermented juices of an agave plant', 'name': 'tequila'}, {'frequency': 'c', 'id': 1101, 'synset': 'thermometer.n.01', 'synonyms': ['thermometer'], 'def': 'measuring instrument for measuring temperature', 'name': 'thermometer'}, {'frequency': 'c', 'id': 1102, 'synset': 'thermos.n.01', 'synonyms': ['thermos_bottle'], 'def': 'vacuum flask that preserves temperature of hot or cold drinks', 'name': 'thermos_bottle'}, {'frequency': 'c', 'id': 1103, 'synset': 'thermostat.n.01', 'synonyms': ['thermostat'], 'def': 'a regulator for automatically regulating temperature by starting or stopping the supply of heat', 'name': 'thermostat'}, {'frequency': 'r', 'id': 1104, 'synset': 'thimble.n.02', 'synonyms': ['thimble'], 'def': 'a small metal cap to protect the finger while sewing; can be used as a small container', 'name': 'thimble'}, {'frequency': 'c', 'id': 1105, 'synset': 'thread.n.01', 'synonyms': ['thread', 'yarn'], 'def': 'a fine cord of twisted fibers (of cotton or silk or wool or nylon etc.) used in sewing and weaving', 'name': 'thread'}, {'frequency': 'c', 'id': 1106, 'synset': 'thumbtack.n.01', 'synonyms': ['thumbtack', 'drawing_pin', 'pushpin'], 'def': 'a tack for attaching papers to a bulletin board or drawing board', 'name': 'thumbtack'}, {'frequency': 'c', 'id': 1107, 'synset': 'tiara.n.01', 'synonyms': ['tiara'], 'def': 'a jeweled headdress worn by women on formal occasions', 'name': 'tiara'}, {'frequency': 'c', 'id': 1108, 'synset': 'tiger.n.02', 'synonyms': ['tiger'], 'def': 'large feline of forests in most of Asia having a tawny coat with black stripes', 'name': 'tiger'}, {'frequency': 'c', 'id': 1109, 'synset': 'tights.n.01', 'synonyms': ['tights_(clothing)', 'leotards'], 'def': 'skintight knit hose covering the body from the waist to the feet worn by acrobats and dancers and as stockings by women and girls', 'name': 'tights_(clothing)'}, {'frequency': 'c', 'id': 1110, 'synset': 'timer.n.01', 'synonyms': ['timer', 'stopwatch'], 'def': 'a timepiece that measures a time interval and signals its end', 'name': 'timer'}, {'frequency': 'f', 'id': 1111, 'synset': 'tinfoil.n.01', 'synonyms': ['tinfoil'], 'def': 'foil made of tin or an alloy of tin and lead', 'name': 'tinfoil'}, {'frequency': 'r', 'id': 1112, 'synset': 'tinsel.n.01', 'synonyms': ['tinsel'], 'def': 'a showy decoration that is basically valueless', 'name': 'tinsel'}, {'frequency': 'f', 'id': 1113, 'synset': 'tissue.n.02', 'synonyms': ['tissue_paper'], 'def': 'a soft thin (usually translucent) paper', 'name': 'tissue_paper'}, {'frequency': 'c', 'id': 1114, 'synset': 'toast.n.01', 'synonyms': ['toast_(food)'], 'def': 'slice of bread that has been toasted', 'name': 'toast_(food)'}, {'frequency': 'f', 'id': 1115, 'synset': 'toaster.n.02', 'synonyms': ['toaster'], 'def': 'a kitchen appliance (usually electric) for toasting bread', 'name': 'toaster'}, {'frequency': 'c', 'id': 1116, 'synset': 'toaster_oven.n.01', 'synonyms': ['toaster_oven'], 'def': 'kitchen appliance consisting of a small electric oven for toasting or warming food', 'name': 'toaster_oven'}, {'frequency': 'f', 'id': 1117, 'synset': 'toilet.n.02', 'synonyms': ['toilet'], 'def': 'a plumbing fixture for defecation and urination', 'name': 'toilet'}, {'frequency': 'f', 'id': 1118, 'synset': 'toilet_tissue.n.01', 'synonyms': ['toilet_tissue', 'toilet_paper', 'bathroom_tissue'], 'def': 'a soft thin absorbent paper for use in toilets', 'name': 'toilet_tissue'}, {'frequency': 'f', 'id': 1119, 'synset': 'tomato.n.01', 'synonyms': ['tomato'], 'def': 'mildly acid red or yellow pulpy fruit eaten as a vegetable', 'name': 'tomato'}, {'frequency': 'c', 'id': 1120, 'synset': 'tongs.n.01', 'synonyms': ['tongs'], 'def': 'any of various devices for taking hold of objects; usually have two hinged legs with handles above and pointed hooks below', 'name': 'tongs'}, {'frequency': 'c', 'id': 1121, 'synset': 'toolbox.n.01', 'synonyms': ['toolbox'], 'def': 'a box or chest or cabinet for holding hand tools', 'name': 'toolbox'}, {'frequency': 'f', 'id': 1122, 'synset': 'toothbrush.n.01', 'synonyms': ['toothbrush'], 'def': 'small brush; has long handle; used to clean teeth', 'name': 'toothbrush'}, {'frequency': 'f', 'id': 1123, 'synset': 'toothpaste.n.01', 'synonyms': ['toothpaste'], 'def': 'a dentifrice in the form of a paste', 'name': 'toothpaste'}, {'frequency': 'c', 'id': 1124, 'synset': 'toothpick.n.01', 'synonyms': ['toothpick'], 'def': 'pick consisting of a small strip of wood or plastic; used to pick food from between the teeth', 'name': 'toothpick'}, {'frequency': 'c', 'id': 1125, 'synset': 'top.n.09', 'synonyms': ['cover'], 'def': 'covering for a hole (especially a hole in the top of a container)', 'name': 'cover'}, {'frequency': 'c', 'id': 1126, 'synset': 'tortilla.n.01', 'synonyms': ['tortilla'], 'def': 'thin unleavened pancake made from cornmeal or wheat flour', 'name': 'tortilla'}, {'frequency': 'c', 'id': 1127, 'synset': 'tow_truck.n.01', 'synonyms': ['tow_truck'], 'def': 'a truck equipped to hoist and pull wrecked cars (or to remove cars from no-parking zones)', 'name': 'tow_truck'}, {'frequency': 'f', 'id': 1128, 'synset': 'towel.n.01', 'synonyms': ['towel'], 'def': 'a rectangular piece of absorbent cloth (or paper) for drying or wiping', 'name': 'towel'}, {'frequency': 'f', 'id': 1129, 'synset': 'towel_rack.n.01', 'synonyms': ['towel_rack', 'towel_rail', 'towel_bar'], 'def': 'a rack consisting of one or more bars on which towels can be hung', 'name': 'towel_rack'}, {'frequency': 'f', 'id': 1130, 'synset': 'toy.n.03', 'synonyms': ['toy'], 'def': 'a device regarded as providing amusement', 'name': 'toy'}, {'frequency': 'c', 'id': 1131, 'synset': 'tractor.n.01', 'synonyms': ['tractor_(farm_equipment)'], 'def': 'a wheeled vehicle with large wheels; used in farming and other applications', 'name': 'tractor_(farm_equipment)'}, {'frequency': 'f', 'id': 1132, 'synset': 'traffic_light.n.01', 'synonyms': ['traffic_light'], 'def': 'a device to control vehicle traffic often consisting of three or more lights', 'name': 'traffic_light'}, {'frequency': 'r', 'id': 1133, 'synset': 'trail_bike.n.01', 'synonyms': ['dirt_bike'], 'def': 'a lightweight motorcycle equipped with rugged tires and suspension for off-road use', 'name': 'dirt_bike'}, {'frequency': 'c', 'id': 1134, 'synset': 'trailer_truck.n.01', 'synonyms': ['trailer_truck', 'tractor_trailer', 'trucking_rig', 'articulated_lorry', 'semi_truck'], 'def': 'a truck consisting of a tractor and trailer together', 'name': 'trailer_truck'}, {'frequency': 'f', 'id': 1135, 'synset': 'train.n.01', 'synonyms': ['train_(railroad_vehicle)', 'railroad_train'], 'def': 'public or private transport provided by a line of railway cars coupled together and drawn by a locomotive', 'name': 'train_(railroad_vehicle)'}, {'frequency': 'r', 'id': 1136, 'synset': 'trampoline.n.01', 'synonyms': ['trampoline'], 'def': 'gymnastic apparatus consisting of a strong canvas sheet attached with springs to a metal frame', 'name': 'trampoline'}, {'frequency': 'f', 'id': 1137, 'synset': 'tray.n.01', 'synonyms': ['tray'], 'def': 'an open receptacle for holding or displaying or serving articles or food', 'name': 'tray'}, {'frequency': 'r', 'id': 1138, 'synset': 'tree_house.n.01', 'synonyms': ['tree_house'], 'def': '(NOT A TREE) a PLAYHOUSE built in the branches of a tree', 'name': 'tree_house'}, {'frequency': 'r', 'id': 1139, 'synset': 'trench_coat.n.01', 'synonyms': ['trench_coat'], 'def': 'a military style raincoat; belted with deep pockets', 'name': 'trench_coat'}, {'frequency': 'r', 'id': 1140, 'synset': 'triangle.n.05', 'synonyms': ['triangle_(musical_instrument)'], 'def': 'a percussion instrument consisting of a metal bar bent in the shape of an open triangle', 'name': 'triangle_(musical_instrument)'}, {'frequency': 'r', 'id': 1141, 'synset': 'tricycle.n.01', 'synonyms': ['tricycle'], 'def': 'a vehicle with three wheels that is moved by foot pedals', 'name': 'tricycle'}, {'frequency': 'c', 'id': 1142, 'synset': 'tripod.n.01', 'synonyms': ['tripod'], 'def': 'a three-legged rack used for support', 'name': 'tripod'}, {'frequency': 'f', 'id': 1143, 'synset': 'trouser.n.01', 'synonyms': ['trousers', 'pants_(clothing)'], 'def': 'a garment extending from the waist to the knee or ankle, covering each leg separately', 'name': 'trousers'}, {'frequency': 'f', 'id': 1144, 'synset': 'truck.n.01', 'synonyms': ['truck'], 'def': 'an automotive vehicle suitable for hauling', 'name': 'truck'}, {'frequency': 'r', 'id': 1145, 'synset': 'truffle.n.03', 'synonyms': ['truffle_(chocolate)', 'chocolate_truffle'], 'def': 'creamy chocolate candy', 'name': 'truffle_(chocolate)'}, {'frequency': 'c', 'id': 1146, 'synset': 'trunk.n.02', 'synonyms': ['trunk'], 'def': 'luggage consisting of a large strong case used when traveling or for storage', 'name': 'trunk'}, {'frequency': 'r', 'id': 1147, 'synset': 'tub.n.02', 'synonyms': ['vat'], 'def': 'a large open vessel for holding or storing liquids', 'name': 'vat'}, {'frequency': 'c', 'id': 1148, 'synset': 'turban.n.01', 'synonyms': ['turban'], 'def': 'a traditional headdress consisting of a long scarf wrapped around the head', 'name': 'turban'}, {'frequency': 'r', 'id': 1149, 'synset': 'turkey.n.01', 'synonyms': ['turkey_(bird)'], 'def': 'large gallinaceous bird with fan-shaped tail; widely domesticated for food', 'name': 'turkey_(bird)'}, {'frequency': 'c', 'id': 1150, 'synset': 'turkey.n.04', 'synonyms': ['turkey_(food)'], 'def': 'flesh of large domesticated fowl usually roasted', 'name': 'turkey_(food)'}, {'frequency': 'r', 'id': 1151, 'synset': 'turnip.n.01', 'synonyms': ['turnip'], 'def': 'widely cultivated plant having a large fleshy edible white or yellow root', 'name': 'turnip'}, {'frequency': 'c', 'id': 1152, 'synset': 'turtle.n.02', 'synonyms': ['turtle'], 'def': 'any of various aquatic and land reptiles having a bony shell and flipper-like limbs for swimming', 'name': 'turtle'}, {'frequency': 'r', 'id': 1153, 'synset': 'turtleneck.n.01', 'synonyms': ['turtleneck_(clothing)', 'polo-neck'], 'def': 'a sweater or jersey with a high close-fitting collar', 'name': 'turtleneck_(clothing)'}, {'frequency': 'r', 'id': 1154, 'synset': 'typewriter.n.01', 'synonyms': ['typewriter'], 'def': 'hand-operated character printer for printing written messages one character at a time', 'name': 'typewriter'}, {'frequency': 'f', 'id': 1155, 'synset': 'umbrella.n.01', 'synonyms': ['umbrella'], 'def': 'a lightweight handheld collapsible canopy', 'name': 'umbrella'}, {'frequency': 'c', 'id': 1156, 'synset': 'underwear.n.01', 'synonyms': ['underwear', 'underclothes', 'underclothing', 'underpants'], 'def': 'undergarment worn next to the skin and under the outer garments', 'name': 'underwear'}, {'frequency': 'r', 'id': 1157, 'synset': 'unicycle.n.01', 'synonyms': ['unicycle'], 'def': 'a vehicle with a single wheel that is driven by pedals', 'name': 'unicycle'}, {'frequency': 'c', 'id': 1158, 'synset': 'urinal.n.01', 'synonyms': ['urinal'], 'def': 'a plumbing fixture (usually attached to the wall) used by men to urinate', 'name': 'urinal'}, {'frequency': 'r', 'id': 1159, 'synset': 'urn.n.01', 'synonyms': ['urn'], 'def': 'a large vase that usually has a pedestal or feet', 'name': 'urn'}, {'frequency': 'c', 'id': 1160, 'synset': 'vacuum.n.04', 'synonyms': ['vacuum_cleaner'], 'def': 'an electrical home appliance that cleans by suction', 'name': 'vacuum_cleaner'}, {'frequency': 'c', 'id': 1161, 'synset': 'valve.n.03', 'synonyms': ['valve'], 'def': 'control consisting of a mechanical device for controlling the flow of a fluid', 'name': 'valve'}, {'frequency': 'f', 'id': 1162, 'synset': 'vase.n.01', 'synonyms': ['vase'], 'def': 'an open jar of glass or porcelain used as an ornament or to hold flowers', 'name': 'vase'}, {'frequency': 'c', 'id': 1163, 'synset': 'vending_machine.n.01', 'synonyms': ['vending_machine'], 'def': 'a slot machine for selling goods', 'name': 'vending_machine'}, {'frequency': 'f', 'id': 1164, 'synset': 'vent.n.01', 'synonyms': ['vent', 'blowhole', 'air_vent'], 'def': 'a hole for the escape of gas or air', 'name': 'vent'}, {'frequency': 'c', 'id': 1165, 'synset': 'videotape.n.01', 'synonyms': ['videotape'], 'def': 'a video recording made on magnetic tape', 'name': 'videotape'}, {'frequency': 'r', 'id': 1166, 'synset': 'vinegar.n.01', 'synonyms': ['vinegar'], 'def': 'sour-tasting liquid produced usually by oxidation of the alcohol in wine or cider and used as a condiment or food preservative', 'name': 'vinegar'}, {'frequency': 'r', 'id': 1167, 'synset': 'violin.n.01', 'synonyms': ['violin', 'fiddle'], 'def': 'bowed stringed instrument that is the highest member of the violin family', 'name': 'violin'}, {'frequency': 'r', 'id': 1168, 'synset': 'vodka.n.01', 'synonyms': ['vodka'], 'def': 'unaged colorless liquor originating in Russia', 'name': 'vodka'}, {'frequency': 'r', 'id': 1169, 'synset': 'volleyball.n.02', 'synonyms': ['volleyball'], 'def': 'an inflated ball used in playing volleyball', 'name': 'volleyball'}, {'frequency': 'r', 'id': 1170, 'synset': 'vulture.n.01', 'synonyms': ['vulture'], 'def': 'any of various large birds of prey having naked heads and weak claws and feeding chiefly on carrion', 'name': 'vulture'}, {'frequency': 'c', 'id': 1171, 'synset': 'waffle.n.01', 'synonyms': ['waffle'], 'def': 'pancake batter baked in a waffle iron', 'name': 'waffle'}, {'frequency': 'r', 'id': 1172, 'synset': 'waffle_iron.n.01', 'synonyms': ['waffle_iron'], 'def': 'a kitchen appliance for baking waffles', 'name': 'waffle_iron'}, {'frequency': 'c', 'id': 1173, 'synset': 'wagon.n.01', 'synonyms': ['wagon'], 'def': 'any of various kinds of wheeled vehicles drawn by an animal or a tractor', 'name': 'wagon'}, {'frequency': 'c', 'id': 1174, 'synset': 'wagon_wheel.n.01', 'synonyms': ['wagon_wheel'], 'def': 'a wheel of a wagon', 'name': 'wagon_wheel'}, {'frequency': 'c', 'id': 1175, 'synset': 'walking_stick.n.01', 'synonyms': ['walking_stick'], 'def': 'a stick carried in the hand for support in walking', 'name': 'walking_stick'}, {'frequency': 'c', 'id': 1176, 'synset': 'wall_clock.n.01', 'synonyms': ['wall_clock'], 'def': 'a clock mounted on a wall', 'name': 'wall_clock'}, {'frequency': 'f', 'id': 1177, 'synset': 'wall_socket.n.01', 'synonyms': ['wall_socket', 'wall_plug', 'electric_outlet', 'electrical_outlet', 'outlet', 'electric_receptacle'], 'def': 'receptacle providing a place in a wiring system where current can be taken to run electrical devices', 'name': 'wall_socket'}, {'frequency': 'c', 'id': 1178, 'synset': 'wallet.n.01', 'synonyms': ['wallet', 'billfold'], 'def': 'a pocket-size case for holding papers and paper money', 'name': 'wallet'}, {'frequency': 'r', 'id': 1179, 'synset': 'walrus.n.01', 'synonyms': ['walrus'], 'def': 'either of two large northern marine mammals having ivory tusks and tough hide over thick blubber', 'name': 'walrus'}, {'frequency': 'r', 'id': 1180, 'synset': 'wardrobe.n.01', 'synonyms': ['wardrobe'], 'def': 'a tall piece of furniture that provides storage space for clothes; has a door and rails or hooks for hanging clothes', 'name': 'wardrobe'}, {'frequency': 'r', 'id': 1181, 'synset': 'wasabi.n.02', 'synonyms': ['wasabi'], 'def': 'the thick green root of the wasabi plant that the Japanese use in cooking and that tastes like strong horseradish', 'name': 'wasabi'}, {'frequency': 'c', 'id': 1182, 'synset': 'washer.n.03', 'synonyms': ['automatic_washer', 'washing_machine'], 'def': 'a home appliance for washing clothes and linens automatically', 'name': 'automatic_washer'}, {'frequency': 'f', 'id': 1183, 'synset': 'watch.n.01', 'synonyms': ['watch', 'wristwatch'], 'def': 'a small, portable timepiece', 'name': 'watch'}, {'frequency': 'f', 'id': 1184, 'synset': 'water_bottle.n.01', 'synonyms': ['water_bottle'], 'def': 'a bottle for holding water', 'name': 'water_bottle'}, {'frequency': 'c', 'id': 1185, 'synset': 'water_cooler.n.01', 'synonyms': ['water_cooler'], 'def': 'a device for cooling and dispensing drinking water', 'name': 'water_cooler'}, {'frequency': 'c', 'id': 1186, 'synset': 'water_faucet.n.01', 'synonyms': ['water_faucet', 'water_tap', 'tap_(water_faucet)'], 'def': 'a faucet for drawing water from a pipe or cask', 'name': 'water_faucet'}, {'frequency': 'r', 'id': 1187, 'synset': 'water_filter.n.01', 'synonyms': ['water_filter'], 'def': 'a filter to remove impurities from the water supply', 'name': 'water_filter'}, {'frequency': 'r', 'id': 1188, 'synset': 'water_heater.n.01', 'synonyms': ['water_heater', 'hot-water_heater'], 'def': 'a heater and storage tank to supply heated water', 'name': 'water_heater'}, {'frequency': 'r', 'id': 1189, 'synset': 'water_jug.n.01', 'synonyms': ['water_jug'], 'def': 'a jug that holds water', 'name': 'water_jug'}, {'frequency': 'r', 'id': 1190, 'synset': 'water_pistol.n.01', 'synonyms': ['water_gun', 'squirt_gun'], 'def': 'plaything consisting of a toy pistol that squirts water', 'name': 'water_gun'}, {'frequency': 'c', 'id': 1191, 'synset': 'water_scooter.n.01', 'synonyms': ['water_scooter', 'sea_scooter', 'jet_ski'], 'def': 'a motorboat resembling a motor scooter (NOT A SURFBOARD OR WATER SKI)', 'name': 'water_scooter'}, {'frequency': 'c', 'id': 1192, 'synset': 'water_ski.n.01', 'synonyms': ['water_ski'], 'def': 'broad ski for skimming over water towed by a speedboat (DO NOT MARK WATER)', 'name': 'water_ski'}, {'frequency': 'c', 'id': 1193, 'synset': 'water_tower.n.01', 'synonyms': ['water_tower'], 'def': 'a large reservoir for water', 'name': 'water_tower'}, {'frequency': 'c', 'id': 1194, 'synset': 'watering_can.n.01', 'synonyms': ['watering_can'], 'def': 'a container with a handle and a spout with a perforated nozzle; used to sprinkle water over plants', 'name': 'watering_can'}, {'frequency': 'c', 'id': 1195, 'synset': 'watermelon.n.02', 'synonyms': ['watermelon'], 'def': 'large oblong or roundish melon with a hard green rind and sweet watery red or occasionally yellowish pulp', 'name': 'watermelon'}, {'frequency': 'f', 'id': 1196, 'synset': 'weathervane.n.01', 'synonyms': ['weathervane', 'vane_(weathervane)', 'wind_vane'], 'def': 'mechanical device attached to an elevated structure; rotates freely to show the direction of the wind', 'name': 'weathervane'}, {'frequency': 'c', 'id': 1197, 'synset': 'webcam.n.01', 'synonyms': ['webcam'], 'def': 'a digital camera designed to take digital photographs and transmit them over the internet', 'name': 'webcam'}, {'frequency': 'c', 'id': 1198, 'synset': 'wedding_cake.n.01', 'synonyms': ['wedding_cake', 'bridecake'], 'def': 'a rich cake with two or more tiers and covered with frosting and decorations; served at a wedding reception', 'name': 'wedding_cake'}, {'frequency': 'c', 'id': 1199, 'synset': 'wedding_ring.n.01', 'synonyms': ['wedding_ring', 'wedding_band'], 'def': 'a ring given to the bride and/or groom at the wedding', 'name': 'wedding_ring'}, {'frequency': 'f', 'id': 1200, 'synset': 'wet_suit.n.01', 'synonyms': ['wet_suit'], 'def': 'a close-fitting garment made of a permeable material; worn in cold water to retain body heat', 'name': 'wet_suit'}, {'frequency': 'f', 'id': 1201, 'synset': 'wheel.n.01', 'synonyms': ['wheel'], 'def': 'a circular frame with spokes (or a solid disc) that can rotate on a shaft or axle', 'name': 'wheel'}, {'frequency': 'c', 'id': 1202, 'synset': 'wheelchair.n.01', 'synonyms': ['wheelchair'], 'def': 'a movable chair mounted on large wheels', 'name': 'wheelchair'}, {'frequency': 'c', 'id': 1203, 'synset': 'whipped_cream.n.01', 'synonyms': ['whipped_cream'], 'def': 'cream that has been beaten until light and fluffy', 'name': 'whipped_cream'}, {'frequency': 'r', 'id': 1204, 'synset': 'whiskey.n.01', 'synonyms': ['whiskey'], 'def': 'a liquor made from fermented mash of grain', 'name': 'whiskey'}, {'frequency': 'r', 'id': 1205, 'synset': 'whistle.n.03', 'synonyms': ['whistle'], 'def': 'a small wind instrument that produces a whistling sound by blowing into it', 'name': 'whistle'}, {'frequency': 'r', 'id': 1206, 'synset': 'wick.n.02', 'synonyms': ['wick'], 'def': 'a loosely woven cord in a candle or oil lamp that is lit on fire', 'name': 'wick'}, {'frequency': 'c', 'id': 1207, 'synset': 'wig.n.01', 'synonyms': ['wig'], 'def': 'hairpiece covering the head and made of real or synthetic hair', 'name': 'wig'}, {'frequency': 'c', 'id': 1208, 'synset': 'wind_chime.n.01', 'synonyms': ['wind_chime'], 'def': 'a decorative arrangement of pieces of metal or glass or pottery that hang together loosely so the wind can cause them to tinkle', 'name': 'wind_chime'}, {'frequency': 'c', 'id': 1209, 'synset': 'windmill.n.01', 'synonyms': ['windmill'], 'def': 'a mill that is powered by the wind', 'name': 'windmill'}, {'frequency': 'c', 'id': 1210, 'synset': 'window_box.n.01', 'synonyms': ['window_box_(for_plants)'], 'def': 'a container for growing plants on a windowsill', 'name': 'window_box_(for_plants)'}, {'frequency': 'f', 'id': 1211, 'synset': 'windshield_wiper.n.01', 'synonyms': ['windshield_wiper', 'windscreen_wiper', 'wiper_(for_windshield/screen)'], 'def': 'a mechanical device that cleans the windshield', 'name': 'windshield_wiper'}, {'frequency': 'c', 'id': 1212, 'synset': 'windsock.n.01', 'synonyms': ['windsock', 'air_sock', 'air-sleeve', 'wind_sleeve', 'wind_cone'], 'def': 'a truncated cloth cone mounted on a mast/pole; shows wind direction', 'name': 'windsock'}, {'frequency': 'f', 'id': 1213, 'synset': 'wine_bottle.n.01', 'synonyms': ['wine_bottle'], 'def': 'a bottle for holding wine', 'name': 'wine_bottle'}, {'frequency': 'r', 'id': 1214, 'synset': 'wine_bucket.n.01', 'synonyms': ['wine_bucket', 'wine_cooler'], 'def': 'a bucket of ice used to chill a bottle of wine', 'name': 'wine_bucket'}, {'frequency': 'f', 'id': 1215, 'synset': 'wineglass.n.01', 'synonyms': ['wineglass'], 'def': 'a glass that has a stem and in which wine is served', 'name': 'wineglass'}, {'frequency': 'r', 'id': 1216, 'synset': 'wing_chair.n.01', 'synonyms': ['wing_chair'], 'def': 'easy chair having wings on each side of a high back', 'name': 'wing_chair'}, {'frequency': 'c', 'id': 1217, 'synset': 'winker.n.02', 'synonyms': ['blinder_(for_horses)'], 'def': 'blinds that prevent a horse from seeing something on either side', 'name': 'blinder_(for_horses)'}, {'frequency': 'c', 'id': 1218, 'synset': 'wok.n.01', 'synonyms': ['wok'], 'def': 'pan with a convex bottom; used for frying in Chinese cooking', 'name': 'wok'}, {'frequency': 'r', 'id': 1219, 'synset': 'wolf.n.01', 'synonyms': ['wolf'], 'def': 'a wild carnivorous mammal of the dog family, living and hunting in packs', 'name': 'wolf'}, {'frequency': 'c', 'id': 1220, 'synset': 'wooden_spoon.n.02', 'synonyms': ['wooden_spoon'], 'def': 'a spoon made of wood', 'name': 'wooden_spoon'}, {'frequency': 'c', 'id': 1221, 'synset': 'wreath.n.01', 'synonyms': ['wreath'], 'def': 'an arrangement of flowers, leaves, or stems fastened in a ring', 'name': 'wreath'}, {'frequency': 'c', 'id': 1222, 'synset': 'wrench.n.03', 'synonyms': ['wrench', 'spanner'], 'def': 'a hand tool that is used to hold or twist a nut or bolt', 'name': 'wrench'}, {'frequency': 'c', 'id': 1223, 'synset': 'wristband.n.01', 'synonyms': ['wristband'], 'def': 'band consisting of a part of a sleeve that covers the wrist', 'name': 'wristband'}, {'frequency': 'f', 'id': 1224, 'synset': 'wristlet.n.01', 'synonyms': ['wristlet', 'wrist_band'], 'def': 'a band or bracelet worn around the wrist', 'name': 'wristlet'}, {'frequency': 'r', 'id': 1225, 'synset': 'yacht.n.01', 'synonyms': ['yacht'], 'def': 'an expensive vessel propelled by sail or power and used for cruising or racing', 'name': 'yacht'}, {'frequency': 'r', 'id': 1226, 'synset': 'yak.n.02', 'synonyms': ['yak'], 'def': 'large long-haired wild ox of Tibet often domesticated', 'name': 'yak'}, {'frequency': 'c', 'id': 1227, 'synset': 'yogurt.n.01', 'synonyms': ['yogurt', 'yoghurt', 'yoghourt'], 'def': 'a custard-like food made from curdled milk', 'name': 'yogurt'}, {'frequency': 'r', 'id': 1228, 'synset': 'yoke.n.07', 'synonyms': ['yoke_(animal_equipment)'], 'def': 'gear joining two animals at the neck; NOT egg yolk', 'name': 'yoke_(animal_equipment)'}, {'frequency': 'f', 'id': 1229, 'synset': 'zebra.n.01', 'synonyms': ['zebra'], 'def': 'any of several fleet black-and-white striped African equines', 'name': 'zebra'}, {'frequency': 'c', 'id': 1230, 'synset': 'zucchini.n.02', 'synonyms': ['zucchini', 'courgette'], 'def': 'small cucumber-shaped vegetable marrow; typically dark green', 'name': 'zucchini'}] # noqa
+# fmt: on
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/pascal_voc.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/pascal_voc.py
new file mode 100644
index 0000000000000000000000000000000000000000..5872d96575b428e90b29a7759a2f7b32dcc15d25
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/pascal_voc.py
@@ -0,0 +1,80 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import numpy as np
+import os
+import xml.etree.ElementTree as ET
+from fvcore.common.file_io import PathManager
+
+from detectron2.data import DatasetCatalog, MetadataCatalog
+from detectron2.structures import BoxMode
+
+__all__ = ["register_pascal_voc"]
+
+
+# fmt: off
+CLASS_NAMES = [
+ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
+ "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
+ "pottedplant", "sheep", "sofa", "train", "tvmonitor",
+]
+# fmt: on
+
+
+def load_voc_instances(dirname: str, split: str):
+ """
+ Load Pascal VOC detection annotations to Detectron2 format.
+
+ Args:
+ dirname: Contain "Annotations", "ImageSets", "JPEGImages"
+ split (str): one of "train", "test", "val", "trainval"
+ """
+ with PathManager.open(os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f:
+ fileids = np.loadtxt(f, dtype=np.str)
+
+ # Needs to read many small annotation files. Makes sense at local
+ annotation_dirname = PathManager.get_local_path(os.path.join(dirname, "Annotations/"))
+ dicts = []
+ for fileid in fileids:
+ anno_file = os.path.join(annotation_dirname, fileid + ".xml")
+ jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ".jpg")
+
+ with PathManager.open(anno_file) as f:
+ tree = ET.parse(f)
+
+ r = {
+ "file_name": jpeg_file,
+ "image_id": fileid,
+ "height": int(tree.findall("./size/height")[0].text),
+ "width": int(tree.findall("./size/width")[0].text),
+ }
+ instances = []
+
+ for obj in tree.findall("object"):
+ cls = obj.find("name").text
+ # We include "difficult" samples in training.
+ # Based on limited experiments, they don't hurt accuracy.
+ # difficult = int(obj.find("difficult").text)
+ # if difficult == 1:
+ # continue
+ bbox = obj.find("bndbox")
+ bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]]
+ # Original annotations are integers in the range [1, W or H]
+ # Assuming they mean 1-based pixel indices (inclusive),
+ # a box with annotation (xmin=1, xmax=W) covers the whole image.
+ # In coordinate space this is represented by (xmin=0, xmax=W)
+ bbox[0] -= 1.0
+ bbox[1] -= 1.0
+ instances.append(
+ {"category_id": CLASS_NAMES.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS}
+ )
+ r["annotations"] = instances
+ dicts.append(r)
+ return dicts
+
+
+def register_pascal_voc(name, dirname, split, year):
+ DatasetCatalog.register(name, lambda: load_voc_instances(dirname, split))
+ MetadataCatalog.get(name).set(
+ thing_classes=CLASS_NAMES, dirname=dirname, year=year, split=split
+ )
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/register_coco.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/register_coco.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0a4db66f23ffbf42f551bf56e18c7acbfe3f71e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/datasets/register_coco.py
@@ -0,0 +1,129 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import os
+
+from detectron2.data import DatasetCatalog, MetadataCatalog
+
+from .coco import load_coco_json, load_sem_seg
+
+"""
+This file contains functions to register a COCO-format dataset to the DatasetCatalog.
+"""
+
+__all__ = ["register_coco_instances", "register_coco_panoptic_separated"]
+
+
+def register_coco_instances(name, metadata, json_file, image_root):
+ """
+ Register a dataset in COCO's json annotation format for
+ instance detection, instance segmentation and keypoint detection.
+ (i.e., Type 1 and 2 in http://cocodataset.org/#format-data.
+ `instances*.json` and `person_keypoints*.json` in the dataset).
+
+ This is an example of how to register a new dataset.
+ You can do something similar to this function, to register new data.
+
+ Args:
+ name (str): the name that identifies a dataset, e.g. "coco_2014_train".
+ metadata (dict): extra metadata associated with this dataset. You can
+ leave it as an empty dict.
+ json_file (str): path to the json instance annotation file.
+ image_root (str or path-like): directory which contains all the images.
+ """
+ assert isinstance(name, str), name
+ assert isinstance(json_file, (str, os.PathLike)), json_file
+ assert isinstance(image_root, (str, os.PathLike)), image_root
+ # 1. register a function which returns dicts
+ DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))
+
+ # 2. Optionally, add metadata about this dataset,
+ # since they might be useful in evaluation, visualization or logging
+ MetadataCatalog.get(name).set(
+ json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata
+ )
+
+
+def register_coco_panoptic_separated(
+ name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json
+):
+ """
+ Register a COCO panoptic segmentation dataset named `name`.
+ The annotations in this registered dataset will contain both instance annotations and
+ semantic annotations, each with its own contiguous ids. Hence it's called "separated".
+
+ It follows the setting used by the PanopticFPN paper:
+
+ 1. The instance annotations directly come from polygons in the COCO
+ instances annotation task, rather than from the masks in the COCO panoptic annotations.
+
+ The two format have small differences:
+ Polygons in the instance annotations may have overlaps.
+ The mask annotations are produced by labeling the overlapped polygons
+ with depth ordering.
+
+ 2. The semantic annotations are converted from panoptic annotations, where
+ all "things" are assigned a semantic id of 0.
+ All semantic categories will therefore have ids in contiguous
+ range [1, #stuff_categories].
+
+ This function will also register a pure semantic segmentation dataset
+ named ``name + '_stuffonly'``.
+
+ Args:
+ name (str): the name that identifies a dataset,
+ e.g. "coco_2017_train_panoptic"
+ metadata (dict): extra metadata associated with this dataset.
+ image_root (str): directory which contains all the images
+ panoptic_root (str): directory which contains panoptic annotation images
+ panoptic_json (str): path to the json panoptic annotation file
+ sem_seg_root (str): directory which contains all the ground truth segmentation annotations.
+ instances_json (str): path to the json instance annotation file
+ """
+ panoptic_name = name + "_separated"
+ DatasetCatalog.register(
+ panoptic_name,
+ lambda: merge_to_panoptic(
+ load_coco_json(instances_json, image_root, panoptic_name),
+ load_sem_seg(sem_seg_root, image_root),
+ ),
+ )
+ MetadataCatalog.get(panoptic_name).set(
+ panoptic_root=panoptic_root,
+ image_root=image_root,
+ panoptic_json=panoptic_json,
+ sem_seg_root=sem_seg_root,
+ json_file=instances_json, # TODO rename
+ evaluator_type="coco_panoptic_seg",
+ **metadata
+ )
+
+ semantic_name = name + "_stuffonly"
+ DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root))
+ MetadataCatalog.get(semantic_name).set(
+ sem_seg_root=sem_seg_root, image_root=image_root, evaluator_type="sem_seg", **metadata
+ )
+
+
+def merge_to_panoptic(detection_dicts, sem_seg_dicts):
+ """
+ Create dataset dicts for panoptic segmentation, by
+ merging two dicts using "file_name" field to match their entries.
+
+ Args:
+ detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation.
+ sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation.
+
+ Returns:
+ list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in
+ both detection_dicts and sem_seg_dicts that correspond to the same image.
+ The function assumes that the same key in different dicts has the same value.
+ """
+ results = []
+ sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts}
+ assert len(sem_seg_file_to_entry) > 0
+
+ for det_dict in detection_dicts:
+ dic = copy.copy(det_dict)
+ dic.update(sem_seg_file_to_entry[dic["file_name"]])
+ results.append(dic)
+ return results
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/detection_utils.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/detection_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e19c7e2f2b4600b77923141ccd04693d4086562f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/detection_utils.py
@@ -0,0 +1,516 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+"""
+Common data processing utilities that are used in a
+typical object detection data pipeline.
+"""
+import logging
+import numpy as np
+import pycocotools.mask as mask_util
+import torch
+from fvcore.common.file_io import PathManager
+from PIL import Image, ImageOps
+
+from detectron2.structures import (
+ BitMasks,
+ Boxes,
+ BoxMode,
+ Instances,
+ Keypoints,
+ PolygonMasks,
+ RotatedBoxes,
+ polygons_to_bitmask,
+)
+
+from . import transforms as T
+from .catalog import MetadataCatalog
+
+
+class SizeMismatchError(ValueError):
+ """
+ When loaded image has difference width/height compared with annotation.
+ """
+
+
+# https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601
+_M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]]
+_M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]]
+
+
+def convert_PIL_to_numpy(image, format):
+ """
+ Convert PIL image to numpy array of target format.
+
+ Args:
+ image (PIL.Image): a PIL image
+ format (str): the format of output image
+
+ Returns:
+ (np.ndarray): also see `read_image`
+ """
+ if format is not None:
+ # PIL only supports RGB, so convert to RGB and flip channels over below
+ conversion_format = format
+ if format in ["BGR", "YUV-BT.601"]:
+ conversion_format = "RGB"
+ image = image.convert(conversion_format)
+ image = np.asarray(image)
+ # PIL squeezes out the channel dimension for "L", so make it HWC
+ if format == "L":
+ image = np.expand_dims(image, -1)
+
+ # handle formats not supported by PIL
+ elif format == "BGR":
+ # flip channels if needed
+ image = image[:, :, ::-1]
+ elif format == "YUV-BT.601":
+ image = image / 255.0
+ image = np.dot(image, np.array(_M_RGB2YUV).T)
+
+ return image
+
+
+def convert_image_to_rgb(image, format):
+ """
+ Convert numpy image from given format to RGB.
+
+ Args:
+ image (np.ndarray): a numpy image
+ format (str): the format of input image, also see `read_image`
+
+ Returns:
+ (np.ndarray): HWC RGB image in 0-255 range, can be either float or uint8
+ """
+ if format == "BGR":
+ image = image[:, :, [2, 1, 0]]
+ elif format == "YUV-BT.601":
+ image = np.dot(image, np.array(_M_YUV2RGB).T)
+ image = image * 255.0
+ else:
+ if format == "L":
+ image = image[:, :, 0]
+ image = image.astype(np.uint8)
+ image = np.asarray(Image.fromarray(image, mode=format).convert("RGB"))
+ return image
+
+
+def read_image(file_name, format=None):
+ """
+ Read an image into the given format.
+ Will apply rotation and flipping if the image has such exif information.
+
+ Args:
+ file_name (str): image file path
+ format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601"
+
+ Returns:
+ image (np.ndarray): an HWC image in the given format, which is 0-255, uint8 for
+ supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601.
+ """
+ with PathManager.open(file_name, "rb") as f:
+ image = Image.open(f)
+
+ # capture and ignore this bug: https://github.com/python-pillow/Pillow/issues/3973
+ try:
+ image = ImageOps.exif_transpose(image)
+ except Exception:
+ pass
+
+ return convert_PIL_to_numpy(image, format)
+
+
+def check_image_size(dataset_dict, image):
+ """
+ Raise an error if the image does not match the size specified in the dict.
+ """
+ if "width" in dataset_dict or "height" in dataset_dict:
+ image_wh = (image.shape[1], image.shape[0])
+ expected_wh = (dataset_dict["width"], dataset_dict["height"])
+ if not image_wh == expected_wh:
+ raise SizeMismatchError(
+ "Mismatched (W,H){}, got {}, expect {}".format(
+ " for image " + dataset_dict["file_name"]
+ if "file_name" in dataset_dict
+ else "",
+ image_wh,
+ expected_wh,
+ )
+ )
+
+ # To ensure bbox always remap to original image size
+ if "width" not in dataset_dict:
+ dataset_dict["width"] = image.shape[1]
+ if "height" not in dataset_dict:
+ dataset_dict["height"] = image.shape[0]
+
+
+def transform_proposals(dataset_dict, image_shape, transforms, min_box_side_len, proposal_topk):
+ """
+ Apply transformations to the proposals in dataset_dict, if any.
+
+ Args:
+ dataset_dict (dict): a dict read from the dataset, possibly
+ contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode"
+ image_shape (tuple): height, width
+ transforms (TransformList):
+ min_box_side_len (int): keep proposals with at least this size
+ proposal_topk (int): only keep top-K scoring proposals
+
+ The input dict is modified in-place, with abovementioned keys removed. A new
+ key "proposals" will be added. Its value is an `Instances`
+ object which contains the transformed proposals in its field
+ "proposal_boxes" and "objectness_logits".
+ """
+ if "proposal_boxes" in dataset_dict:
+ # Transform proposal boxes
+ boxes = transforms.apply_box(
+ BoxMode.convert(
+ dataset_dict.pop("proposal_boxes"),
+ dataset_dict.pop("proposal_bbox_mode"),
+ BoxMode.XYXY_ABS,
+ )
+ )
+ boxes = Boxes(boxes)
+ objectness_logits = torch.as_tensor(
+ dataset_dict.pop("proposal_objectness_logits").astype("float32")
+ )
+
+ boxes.clip(image_shape)
+ keep = boxes.nonempty(threshold=min_box_side_len)
+ boxes = boxes[keep]
+ objectness_logits = objectness_logits[keep]
+
+ proposals = Instances(image_shape)
+ proposals.proposal_boxes = boxes[:proposal_topk]
+ proposals.objectness_logits = objectness_logits[:proposal_topk]
+ dataset_dict["proposals"] = proposals
+
+
+def transform_instance_annotations(
+ annotation, transforms, image_size, *, keypoint_hflip_indices=None
+):
+ """
+ Apply transforms to box, segmentation and keypoints annotations of a single instance.
+
+ It will use `transforms.apply_box` for the box, and
+ `transforms.apply_coords` for segmentation polygons & keypoints.
+ If you need anything more specially designed for each data structure,
+ you'll need to implement your own version of this function or the transforms.
+
+ Args:
+ annotation (dict): dict of instance annotations for a single instance.
+ It will be modified in-place.
+ transforms (TransformList):
+ image_size (tuple): the height, width of the transformed image
+ keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.
+
+ Returns:
+ dict:
+ the same input dict with fields "bbox", "segmentation", "keypoints"
+ transformed according to `transforms`.
+ The "bbox_mode" field will be set to XYXY_ABS.
+ """
+ bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
+ # Note that bbox is 1d (per-instance bounding box)
+ annotation["bbox"] = transforms.apply_box([bbox])[0]
+ annotation["bbox_mode"] = BoxMode.XYXY_ABS
+
+ if "segmentation" in annotation:
+ # each instance contains 1 or more polygons
+ segm = annotation["segmentation"]
+ if isinstance(segm, list):
+ # polygons
+ polygons = [np.asarray(p).reshape(-1, 2) for p in segm]
+ annotation["segmentation"] = [
+ p.reshape(-1) for p in transforms.apply_polygons(polygons)
+ ]
+ elif isinstance(segm, dict):
+ # RLE
+ mask = mask_util.decode(segm)
+ mask = transforms.apply_segmentation(mask)
+ assert tuple(mask.shape[:2]) == image_size
+ annotation["segmentation"] = mask
+ else:
+ raise ValueError(
+ "Cannot transform segmentation of type '{}'!"
+ "Supported types are: polygons as list[list[float] or ndarray],"
+ " COCO-style RLE as a dict.".format(type(segm))
+ )
+
+ if "keypoints" in annotation:
+ keypoints = transform_keypoint_annotations(
+ annotation["keypoints"], transforms, image_size, keypoint_hflip_indices
+ )
+ annotation["keypoints"] = keypoints
+
+ return annotation
+
+
+def transform_keypoint_annotations(keypoints, transforms, image_size, keypoint_hflip_indices=None):
+ """
+ Transform keypoint annotations of an image.
+
+ Args:
+ keypoints (list[float]): Nx3 float in Detectron2 Dataset format.
+ transforms (TransformList):
+ image_size (tuple): the height, width of the transformed image
+ keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.
+ """
+ # (N*3,) -> (N, 3)
+ keypoints = np.asarray(keypoints, dtype="float64").reshape(-1, 3)
+ keypoints[:, :2] = transforms.apply_coords(keypoints[:, :2])
+
+ # This assumes that HorizFlipTransform is the only one that does flip
+ do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
+
+ # Alternative way: check if probe points was horizontally flipped.
+ # probe = np.asarray([[0.0, 0.0], [image_width, 0.0]])
+ # probe_aug = transforms.apply_coords(probe.copy())
+ # do_hflip = np.sign(probe[1][0] - probe[0][0]) != np.sign(probe_aug[1][0] - probe_aug[0][0]) # noqa
+
+ # If flipped, swap each keypoint with its opposite-handed equivalent
+ if do_hflip:
+ assert keypoint_hflip_indices is not None
+ keypoints = keypoints[keypoint_hflip_indices, :]
+
+ # Maintain COCO convention that if visibility == 0, then x, y = 0
+ # TODO may need to reset visibility for cropped keypoints,
+ # but it does not matter for our existing algorithms
+ keypoints[keypoints[:, 2] == 0] = 0
+ return keypoints
+
+
+def annotations_to_instances(annos, image_size, mask_format="polygon"):
+ """
+ Create an :class:`Instances` object used by the models,
+ from instance annotations in the dataset dict.
+
+ Args:
+ annos (list[dict]): a list of instance annotations in one image, each
+ element for one instance.
+ image_size (tuple): height, width
+
+ Returns:
+ Instances:
+ It will contain fields "gt_boxes", "gt_classes",
+ "gt_masks", "gt_keypoints", if they can be obtained from `annos`.
+ This is the format that builtin models expect.
+ """
+ boxes = [BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos]
+ target = Instances(image_size)
+ boxes = target.gt_boxes = Boxes(boxes)
+ boxes.clip(image_size)
+
+ classes = [obj["category_id"] for obj in annos]
+ classes = torch.tensor(classes, dtype=torch.int64)
+ target.gt_classes = classes
+
+ if len(annos) and "segmentation" in annos[0]:
+ segms = [obj["segmentation"] for obj in annos]
+ if mask_format == "polygon":
+ masks = PolygonMasks(segms)
+ else:
+ assert mask_format == "bitmask", mask_format
+ masks = []
+ for segm in segms:
+ if isinstance(segm, list):
+ # polygon
+ masks.append(polygons_to_bitmask(segm, *image_size))
+ elif isinstance(segm, dict):
+ # COCO RLE
+ masks.append(mask_util.decode(segm))
+ elif isinstance(segm, np.ndarray):
+ assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format(
+ segm.ndim
+ )
+ # mask array
+ masks.append(segm)
+ else:
+ raise ValueError(
+ "Cannot convert segmentation of type '{}' to BitMasks!"
+ "Supported types are: polygons as list[list[float] or ndarray],"
+ " COCO-style RLE as a dict, or a full-image segmentation mask "
+ "as a 2D ndarray.".format(type(segm))
+ )
+ # torch.from_numpy does not support array with negative stride.
+ masks = BitMasks(
+ torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks])
+ )
+ target.gt_masks = masks
+
+ if len(annos) and "keypoints" in annos[0]:
+ kpts = [obj.get("keypoints", []) for obj in annos]
+ target.gt_keypoints = Keypoints(kpts)
+
+ return target
+
+
+def annotations_to_instances_rotated(annos, image_size):
+ """
+ Create an :class:`Instances` object used by the models,
+ from instance annotations in the dataset dict.
+ Compared to `annotations_to_instances`, this function is for rotated boxes only
+
+ Args:
+ annos (list[dict]): a list of instance annotations in one image, each
+ element for one instance.
+ image_size (tuple): height, width
+
+ Returns:
+ Instances:
+ Containing fields "gt_boxes", "gt_classes",
+ if they can be obtained from `annos`.
+ This is the format that builtin models expect.
+ """
+ boxes = [obj["bbox"] for obj in annos]
+ target = Instances(image_size)
+ boxes = target.gt_boxes = RotatedBoxes(boxes)
+ boxes.clip(image_size)
+
+ classes = [obj["category_id"] for obj in annos]
+ classes = torch.tensor(classes, dtype=torch.int64)
+ target.gt_classes = classes
+
+ return target
+
+
+def filter_empty_instances(instances, by_box=True, by_mask=True, box_threshold=1e-5):
+ """
+ Filter out empty instances in an `Instances` object.
+
+ Args:
+ instances (Instances):
+ by_box (bool): whether to filter out instances with empty boxes
+ by_mask (bool): whether to filter out instances with empty masks
+ box_threshold (float): minimum width and height to be considered non-empty
+
+ Returns:
+ Instances: the filtered instances.
+ """
+ assert by_box or by_mask
+ r = []
+ if by_box:
+ r.append(instances.gt_boxes.nonempty(threshold=box_threshold))
+ if instances.has("gt_masks") and by_mask:
+ r.append(instances.gt_masks.nonempty())
+
+ # TODO: can also filter visible keypoints
+
+ if not r:
+ return instances
+ m = r[0]
+ for x in r[1:]:
+ m = m & x
+ return instances[m]
+
+
+def create_keypoint_hflip_indices(dataset_names):
+ """
+ Args:
+ dataset_names (list[str]): list of dataset names
+ Returns:
+ ndarray[int]: a vector of size=#keypoints, storing the
+ horizontally-flipped keypoint indices.
+ """
+
+ check_metadata_consistency("keypoint_names", dataset_names)
+ check_metadata_consistency("keypoint_flip_map", dataset_names)
+
+ meta = MetadataCatalog.get(dataset_names[0])
+ names = meta.keypoint_names
+ # TODO flip -> hflip
+ flip_map = dict(meta.keypoint_flip_map)
+ flip_map.update({v: k for k, v in flip_map.items()})
+ flipped_names = [i if i not in flip_map else flip_map[i] for i in names]
+ flip_indices = [names.index(i) for i in flipped_names]
+ return np.asarray(flip_indices)
+
+
+def gen_crop_transform_with_instance(crop_size, image_size, instance):
+ """
+ Generate a CropTransform so that the cropping region contains
+ the center of the given instance.
+
+ Args:
+ crop_size (tuple): h, w in pixels
+ image_size (tuple): h, w
+ instance (dict): an annotation dict of one instance, in Detectron2's
+ dataset format.
+ """
+ crop_size = np.asarray(crop_size, dtype=np.int32)
+ bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS)
+ center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5
+ assert (
+ image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1]
+ ), "The annotation bounding box is outside of the image!"
+ assert (
+ image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1]
+ ), "Crop size is larger than image size!"
+
+ min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
+ max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
+ max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))
+
+ y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
+ x0 = np.random.randint(min_yx[1], max_yx[1] + 1)
+ return T.CropTransform(x0, y0, crop_size[1], crop_size[0])
+
+
+def check_metadata_consistency(key, dataset_names):
+ """
+ Check that the data have consistent metadata.
+
+ Args:
+ key (str): a metadata key
+ dataset_names (list[str]): a list of dataset names
+
+ Raises:
+ AttributeError: if the key does not exist in the metadata
+ ValueError: if the given data do not have the same metadata values defined by key
+ """
+ if len(dataset_names) == 0:
+ return
+ logger = logging.getLogger(__name__)
+ entries_per_dataset = [getattr(MetadataCatalog.get(d), key) for d in dataset_names]
+ for idx, entry in enumerate(entries_per_dataset):
+ if entry != entries_per_dataset[0]:
+ logger.error(
+ "Metadata '{}' for dataset '{}' is '{}'".format(key, dataset_names[idx], str(entry))
+ )
+ logger.error(
+ "Metadata '{}' for dataset '{}' is '{}'".format(
+ key, dataset_names[0], str(entries_per_dataset[0])
+ )
+ )
+ raise ValueError("Datasets have different metadata '{}'!".format(key))
+
+
+def build_transform_gen(cfg, is_train):
+ """
+ Create a list of :class:`TransformGen` from config.
+ Now it includes resizing and flipping.
+
+ Returns:
+ list[TransformGen]
+ """
+ if is_train:
+ min_size = cfg.INPUT.MIN_SIZE_TRAIN
+ max_size = cfg.INPUT.MAX_SIZE_TRAIN
+ sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
+ else:
+ min_size = cfg.INPUT.MIN_SIZE_TEST
+ max_size = cfg.INPUT.MAX_SIZE_TEST
+ sample_style = "choice"
+ if sample_style == "range":
+ assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(
+ len(min_size)
+ )
+
+ logger = logging.getLogger(__name__)
+ tfm_gens = []
+ tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
+ if is_train:
+ tfm_gens.append(T.RandomFlip())
+ logger.info("TransformGens used in training: " + str(tfm_gens))
+ return tfm_gens
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cfa8a65259a850b8259016d482a0eac1bbafb38
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/__init__.py
@@ -0,0 +1,10 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .distributed_sampler import InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler
+from .grouped_batch_sampler import GroupedBatchSampler
+
+__all__ = [
+ "GroupedBatchSampler",
+ "TrainingSampler",
+ "InferenceSampler",
+ "RepeatFactorTrainingSampler",
+]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/distributed_sampler.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/distributed_sampler.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ac57bbd10519be99114155d717802deac53e8fb
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/distributed_sampler.py
@@ -0,0 +1,199 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import itertools
+import math
+from collections import defaultdict
+from typing import Optional
+import torch
+from torch.utils.data.sampler import Sampler
+
+from detectron2.utils import comm
+
+
+class TrainingSampler(Sampler):
+ """
+ In training, we only care about the "infinite stream" of training data.
+ So this sampler produces an infinite stream of indices and
+ all workers cooperate to correctly shuffle the indices and sample different indices.
+
+ The samplers in each worker effectively produces `indices[worker_id::num_workers]`
+ where `indices` is an infinite stream of indices consisting of
+ `shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True)
+ or `range(size) + range(size) + ...` (if shuffle is False)
+ """
+
+ def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None):
+ """
+ Args:
+ size (int): the total number of data of the underlying dataset to sample from
+ shuffle (bool): whether to shuffle the indices or not
+ seed (int): the initial seed of the shuffle. Must be the same
+ across all workers. If None, will use a random seed shared
+ among workers (require synchronization among all workers).
+ """
+ self._size = size
+ assert size > 0
+ self._shuffle = shuffle
+ if seed is None:
+ seed = comm.shared_random_seed()
+ self._seed = int(seed)
+
+ self._rank = comm.get_rank()
+ self._world_size = comm.get_world_size()
+
+ def __iter__(self):
+ start = self._rank
+ yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
+
+ def _infinite_indices(self):
+ g = torch.Generator()
+ g.manual_seed(self._seed)
+ while True:
+ if self._shuffle:
+ yield from torch.randperm(self._size, generator=g)
+ else:
+ yield from torch.arange(self._size)
+
+
+class RepeatFactorTrainingSampler(Sampler):
+ """
+ Similar to TrainingSampler, but suitable for training on class imbalanced data
+ like LVIS. In each epoch, an image may appear multiple times based on its "repeat
+ factor". The repeat factor for an image is a function of the frequency the rarest
+ category labeled in that image. The "frequency of category c" in [0, 1] is defined
+ as the fraction of images in the training set (without repeats) in which category c
+ appears.
+
+ See :paper:`lvis` (>= v2) Appendix B.2.
+ """
+
+ def __init__(self, dataset_dicts, repeat_thresh, shuffle=True, seed=None):
+ """
+ Args:
+ dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
+ repeat_thresh (float): frequency threshold below which data is repeated.
+ shuffle (bool): whether to shuffle the indices or not
+ seed (int): the initial seed of the shuffle. Must be the same
+ across all workers. If None, will use a random seed shared
+ among workers (require synchronization among all workers).
+ """
+ self._shuffle = shuffle
+ if seed is None:
+ seed = comm.shared_random_seed()
+ self._seed = int(seed)
+
+ self._rank = comm.get_rank()
+ self._world_size = comm.get_world_size()
+
+ # Get fractional repeat factors and split into whole number (_int_part)
+ # and fractional (_frac_part) parts.
+ rep_factors = self._get_repeat_factors(dataset_dicts, repeat_thresh)
+ self._int_part = torch.trunc(rep_factors)
+ self._frac_part = rep_factors - self._int_part
+
+ def _get_repeat_factors(self, dataset_dicts, repeat_thresh):
+ """
+ Compute (fractional) per-image repeat factors.
+
+ Args:
+ See __init__.
+
+ Returns:
+ torch.Tensor: the i-th element is the repeat factor for the dataset image
+ at index i.
+ """
+ # 1. For each category c, compute the fraction of images that contain it: f(c)
+ category_freq = defaultdict(int)
+ for dataset_dict in dataset_dicts: # For each image (without repeats)
+ cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
+ for cat_id in cat_ids:
+ category_freq[cat_id] += 1
+ num_images = len(dataset_dicts)
+ for k, v in category_freq.items():
+ category_freq[k] = v / num_images
+
+ # 2. For each category c, compute the category-level repeat factor:
+ # r(c) = max(1, sqrt(t / f(c)))
+ category_rep = {
+ cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
+ for cat_id, cat_freq in category_freq.items()
+ }
+
+ # 3. For each image I, compute the image-level repeat factor:
+ # r(I) = max_{c in I} r(c)
+ rep_factors = []
+ for dataset_dict in dataset_dicts:
+ cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
+ rep_factor = max({category_rep[cat_id] for cat_id in cat_ids})
+ rep_factors.append(rep_factor)
+
+ return torch.tensor(rep_factors, dtype=torch.float32)
+
+ def _get_epoch_indices(self, generator):
+ """
+ Create a list of dataset indices (with repeats) to use for one epoch.
+
+ Args:
+ generator (torch.Generator): pseudo random number generator used for
+ stochastic rounding.
+
+ Returns:
+ torch.Tensor: list of dataset indices to use in one epoch. Each index
+ is repeated based on its calculated repeat factor.
+ """
+ # Since repeat factors are fractional, we use stochastic rounding so
+ # that the target repeat factor is achieved in expectation over the
+ # course of training
+ rands = torch.rand(len(self._frac_part), generator=generator)
+ rep_factors = self._int_part + (rands < self._frac_part).float()
+ # Construct a list of indices in which we repeat images as specified
+ indices = []
+ for dataset_index, rep_factor in enumerate(rep_factors):
+ indices.extend([dataset_index] * int(rep_factor.item()))
+ return torch.tensor(indices, dtype=torch.int64)
+
+ def __iter__(self):
+ start = self._rank
+ yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
+
+ def _infinite_indices(self):
+ g = torch.Generator()
+ g.manual_seed(self._seed)
+ while True:
+ # Sample indices with repeats determined by stochastic rounding; each
+ # "epoch" may have a slightly different size due to the rounding.
+ indices = self._get_epoch_indices(g)
+ if self._shuffle:
+ randperm = torch.randperm(len(indices), generator=g)
+ yield from indices[randperm]
+ else:
+ yield from indices
+
+
+class InferenceSampler(Sampler):
+ """
+ Produce indices for inference.
+ Inference needs to run on the __exact__ set of samples,
+ therefore when the total number of samples is not divisible by the number of workers,
+ this sampler produces different number of samples on different workers.
+ """
+
+ def __init__(self, size: int):
+ """
+ Args:
+ size (int): the total number of data of the underlying dataset to sample from
+ """
+ self._size = size
+ assert size > 0
+ self._rank = comm.get_rank()
+ self._world_size = comm.get_world_size()
+
+ shard_size = (self._size - 1) // self._world_size + 1
+ begin = shard_size * self._rank
+ end = min(shard_size * (self._rank + 1), self._size)
+ self._local_indices = range(begin, end)
+
+ def __iter__(self):
+ yield from self._local_indices
+
+ def __len__(self):
+ return len(self._local_indices)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/grouped_batch_sampler.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/grouped_batch_sampler.py
new file mode 100644
index 0000000000000000000000000000000000000000..138e106136083383d9f8729f1da930804463b297
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/samplers/grouped_batch_sampler.py
@@ -0,0 +1,47 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import numpy as np
+from torch.utils.data.sampler import BatchSampler, Sampler
+
+
+class GroupedBatchSampler(BatchSampler):
+ """
+ Wraps another sampler to yield a mini-batch of indices.
+ It enforces that the batch only contain elements from the same group.
+ It also tries to provide mini-batches which follows an ordering which is
+ as close as possible to the ordering from the original sampler.
+ """
+
+ def __init__(self, sampler, group_ids, batch_size):
+ """
+ Args:
+ sampler (Sampler): Base sampler.
+ group_ids (list[int]): If the sampler produces indices in range [0, N),
+ `group_ids` must be a list of `N` ints which contains the group id of each sample.
+ The group ids must be a set of integers in the range [0, num_groups).
+ batch_size (int): Size of mini-batch.
+ """
+ if not isinstance(sampler, Sampler):
+ raise ValueError(
+ "sampler should be an instance of "
+ "torch.utils.data.Sampler, but got sampler={}".format(sampler)
+ )
+ self.sampler = sampler
+ self.group_ids = np.asarray(group_ids)
+ assert self.group_ids.ndim == 1
+ self.batch_size = batch_size
+ groups = np.unique(self.group_ids).tolist()
+
+ # buffer the indices of each group until batch size is reached
+ self.buffer_per_group = {k: [] for k in groups}
+
+ def __iter__(self):
+ for idx in self.sampler:
+ group_id = self.group_ids[idx]
+ group_buffer = self.buffer_per_group[group_id]
+ group_buffer.append(idx)
+ if len(group_buffer) == self.batch_size:
+ yield group_buffer[:] # yield a copy of the list
+ del group_buffer[:]
+
+ def __len__(self):
+ raise NotImplementedError("len() of GroupedBatchSampler is not well-defined.")
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7638bb58009ff3e00eb1373f2faa5dc2f30100d
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .transform import *
+from fvcore.transforms.transform import *
+from .transform_gen import *
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd937538da4bed77ccb6a7ee45d7f15dc0281384
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform.py
@@ -0,0 +1,241 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+# File: transform.py
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from fvcore.transforms.transform import HFlipTransform, NoOpTransform, Transform
+from PIL import Image
+
+try:
+ import cv2 # noqa
+except ImportError:
+ # OpenCV is an optional dependency at the moment
+ pass
+
+__all__ = ["ExtentTransform", "ResizeTransform", "RotationTransform"]
+
+
+class ExtentTransform(Transform):
+ """
+ Extracts a subregion from the source image and scales it to the output size.
+
+ The fill color is used to map pixels from the source rect that fall outside
+ the source image.
+
+ See: https://pillow.readthedocs.io/en/latest/PIL.html#PIL.ImageTransform.ExtentTransform
+ """
+
+ def __init__(self, src_rect, output_size, interp=Image.LINEAR, fill=0):
+ """
+ Args:
+ src_rect (x0, y0, x1, y1): src coordinates
+ output_size (h, w): dst image size
+ interp: PIL interpolation methods
+ fill: Fill color used when src_rect extends outside image
+ """
+ super().__init__()
+ self._set_attributes(locals())
+
+ def apply_image(self, img, interp=None):
+ h, w = self.output_size
+ ret = Image.fromarray(img).transform(
+ size=(w, h),
+ method=Image.EXTENT,
+ data=self.src_rect,
+ resample=interp if interp else self.interp,
+ fill=self.fill,
+ )
+ return np.asarray(ret)
+
+ def apply_coords(self, coords):
+ # Transform image center from source coordinates into output coordinates
+ # and then map the new origin to the corner of the output image.
+ h, w = self.output_size
+ x0, y0, x1, y1 = self.src_rect
+ new_coords = coords.astype(np.float32)
+ new_coords[:, 0] -= 0.5 * (x0 + x1)
+ new_coords[:, 1] -= 0.5 * (y0 + y1)
+ new_coords[:, 0] *= w / (x1 - x0)
+ new_coords[:, 1] *= h / (y1 - y0)
+ new_coords[:, 0] += 0.5 * w
+ new_coords[:, 1] += 0.5 * h
+ return new_coords
+
+ def apply_segmentation(self, segmentation):
+ segmentation = self.apply_image(segmentation, interp=Image.NEAREST)
+ return segmentation
+
+
+class ResizeTransform(Transform):
+ """
+ Resize the image to a target size.
+ """
+
+ def __init__(self, h, w, new_h, new_w, interp=None):
+ """
+ Args:
+ h, w (int): original image size
+ new_h, new_w (int): new image size
+ interp: PIL interpolation methods, defaults to bilinear.
+ """
+ # TODO decide on PIL vs opencv
+ super().__init__()
+ if interp is None:
+ interp = Image.BILINEAR
+ self._set_attributes(locals())
+
+ def apply_image(self, img, interp=None):
+ assert img.shape[:2] == (self.h, self.w)
+ assert len(img.shape) <= 4
+
+ if img.dtype == np.uint8:
+ pil_image = Image.fromarray(img)
+ interp_method = interp if interp is not None else self.interp
+ pil_image = pil_image.resize((self.new_w, self.new_h), interp_method)
+ ret = np.asarray(pil_image)
+ else:
+ # PIL only supports uint8
+ img = torch.from_numpy(img)
+ shape = list(img.shape)
+ shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:]
+ img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw
+ _PIL_RESIZE_TO_INTERPOLATE_MODE = {Image.BILINEAR: "bilinear", Image.BICUBIC: "bicubic"}
+ mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[self.interp]
+ img = F.interpolate(img, (self.new_h, self.new_w), mode=mode, align_corners=False)
+ shape[:2] = (self.new_h, self.new_w)
+ ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c)
+
+ return ret
+
+ def apply_coords(self, coords):
+ coords[:, 0] = coords[:, 0] * (self.new_w * 1.0 / self.w)
+ coords[:, 1] = coords[:, 1] * (self.new_h * 1.0 / self.h)
+ return coords
+
+ def apply_segmentation(self, segmentation):
+ segmentation = self.apply_image(segmentation, interp=Image.NEAREST)
+ return segmentation
+
+ def inverse(self):
+ return ResizeTransform(self.new_h, self.new_w, self.h, self.w, self.interp)
+
+
+class RotationTransform(Transform):
+ """
+ This method returns a copy of this image, rotated the given
+ number of degrees counter clockwise around its center.
+ """
+
+ def __init__(self, h, w, angle, expand=True, center=None, interp=None):
+ """
+ Args:
+ h, w (int): original image size
+ angle (float): degrees for rotation
+ expand (bool): choose if the image should be resized to fit the whole
+ rotated image (default), or simply cropped
+ center (tuple (width, height)): coordinates of the rotation center
+ if left to None, the center will be fit to the center of each image
+ center has no effect if expand=True because it only affects shifting
+ interp: cv2 interpolation method, default cv2.INTER_LINEAR
+ """
+ super().__init__()
+ image_center = np.array((w / 2, h / 2))
+ if center is None:
+ center = image_center
+ if interp is None:
+ interp = cv2.INTER_LINEAR
+ abs_cos, abs_sin = abs(np.cos(np.deg2rad(angle))), abs(np.sin(np.deg2rad(angle)))
+ if expand:
+ # find the new width and height bounds
+ bound_w, bound_h = np.rint(
+ [h * abs_sin + w * abs_cos, h * abs_cos + w * abs_sin]
+ ).astype(int)
+ else:
+ bound_w, bound_h = w, h
+
+ self._set_attributes(locals())
+ self.rm_coords = self.create_rotation_matrix()
+ # Needed because of this problem https://github.com/opencv/opencv/issues/11784
+ self.rm_image = self.create_rotation_matrix(offset=-0.5)
+
+ def apply_image(self, img, interp=None):
+ """
+ demo should be a numpy array, formatted as Height * Width * Nchannels
+ """
+ if len(img) == 0 or self.angle % 360 == 0:
+ return img
+ assert img.shape[:2] == (self.h, self.w)
+ interp = interp if interp is not None else self.interp
+ return cv2.warpAffine(img, self.rm_image, (self.bound_w, self.bound_h), flags=interp)
+
+ def apply_coords(self, coords):
+ """
+ coords should be a N * 2 array-like, containing N couples of (x, y) points
+ """
+ coords = np.asarray(coords, dtype=float)
+ if len(coords) == 0 or self.angle % 360 == 0:
+ return coords
+ return cv2.transform(coords[:, np.newaxis, :], self.rm_coords)[:, 0, :]
+
+ def apply_segmentation(self, segmentation):
+ segmentation = self.apply_image(segmentation, interp=cv2.INTER_NEAREST)
+ return segmentation
+
+ def create_rotation_matrix(self, offset=0):
+ center = (self.center[0] + offset, self.center[1] + offset)
+ rm = cv2.getRotationMatrix2D(tuple(center), self.angle, 1)
+ if self.expand:
+ # Find the coordinates of the center of rotation in the new image
+ # The only point for which we know the future coordinates is the center of the image
+ rot_im_center = cv2.transform(self.image_center[None, None, :] + offset, rm)[0, 0, :]
+ new_center = np.array([self.bound_w / 2, self.bound_h / 2]) + offset - rot_im_center
+ # shift the rotation center to the new coordinates
+ rm[:, 2] += new_center
+ return rm
+
+
+def HFlip_rotated_box(transform, rotated_boxes):
+ """
+ Apply the horizontal flip transform on rotated boxes.
+
+ Args:
+ rotated_boxes (ndarray): Nx5 floating point array of
+ (x_center, y_center, width, height, angle_degrees) format
+ in absolute coordinates.
+ """
+ # Transform x_center
+ rotated_boxes[:, 0] = transform.width - rotated_boxes[:, 0]
+ # Transform angle
+ rotated_boxes[:, 4] = -rotated_boxes[:, 4]
+ return rotated_boxes
+
+
+def Resize_rotated_box(transform, rotated_boxes):
+ """
+ Apply the resizing transform on rotated boxes. For details of how these (approximation)
+ formulas are derived, please refer to :meth:`RotatedBoxes.scale`.
+
+ Args:
+ rotated_boxes (ndarray): Nx5 floating point array of
+ (x_center, y_center, width, height, angle_degrees) format
+ in absolute coordinates.
+ """
+ scale_factor_x = transform.new_w * 1.0 / transform.w
+ scale_factor_y = transform.new_h * 1.0 / transform.h
+ rotated_boxes[:, 0] *= scale_factor_x
+ rotated_boxes[:, 1] *= scale_factor_y
+ theta = rotated_boxes[:, 4] * np.pi / 180.0
+ c = np.cos(theta)
+ s = np.sin(theta)
+ rotated_boxes[:, 2] *= np.sqrt(np.square(scale_factor_x * c) + np.square(scale_factor_y * s))
+ rotated_boxes[:, 3] *= np.sqrt(np.square(scale_factor_x * s) + np.square(scale_factor_y * c))
+ rotated_boxes[:, 4] = np.arctan2(scale_factor_x * s, scale_factor_y * c) * 180 / np.pi
+
+ return rotated_boxes
+
+
+HFlipTransform.register_type("rotated_box", HFlip_rotated_box)
+NoOpTransform.register_type("rotated_box", lambda t, x: x)
+ResizeTransform.register_type("rotated_box", Resize_rotated_box)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform_gen.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform_gen.py
new file mode 100644
index 0000000000000000000000000000000000000000..197a0ebf6750a7ea459aa7e14413b4a41adcd42e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/data/transforms/transform_gen.py
@@ -0,0 +1,534 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+# File: transformer.py
+
+import inspect
+import numpy as np
+import pprint
+import sys
+from abc import ABCMeta, abstractmethod
+from fvcore.transforms.transform import (
+ BlendTransform,
+ CropTransform,
+ HFlipTransform,
+ NoOpTransform,
+ Transform,
+ TransformList,
+ VFlipTransform,
+)
+from PIL import Image
+
+from .transform import ExtentTransform, ResizeTransform, RotationTransform
+
+__all__ = [
+ "RandomApply",
+ "RandomBrightness",
+ "RandomContrast",
+ "RandomCrop",
+ "RandomExtent",
+ "RandomFlip",
+ "RandomSaturation",
+ "RandomLighting",
+ "RandomRotation",
+ "Resize",
+ "ResizeShortestEdge",
+ "TransformGen",
+ "apply_transform_gens",
+]
+
+
+def check_dtype(img):
+ assert isinstance(img, np.ndarray), "[TransformGen] Needs an numpy array, but got a {}!".format(
+ type(img)
+ )
+ assert not isinstance(img.dtype, np.integer) or (
+ img.dtype == np.uint8
+ ), "[TransformGen] Got image of type {}, use uint8 or floating points instead!".format(
+ img.dtype
+ )
+ assert img.ndim in [2, 3], img.ndim
+
+
+class TransformGen(metaclass=ABCMeta):
+ """
+ TransformGen takes an image of type uint8 in range [0, 255], or
+ floating point in range [0, 1] or [0, 255] as input.
+
+ It creates a :class:`Transform` based on the given image, sometimes with randomness.
+ The transform can then be used to transform images
+ or other data (boxes, points, annotations, etc.) associated with it.
+
+ The assumption made in this class
+ is that the image itself is sufficient to instantiate a transform.
+ When this assumption is not true, you need to create the transforms by your own.
+
+ A list of `TransformGen` can be applied with :func:`apply_transform_gens`.
+ """
+
+ def _init(self, params=None):
+ if params:
+ for k, v in params.items():
+ if k != "self" and not k.startswith("_"):
+ setattr(self, k, v)
+
+ @abstractmethod
+ def get_transform(self, img):
+ pass
+
+ def _rand_range(self, low=1.0, high=None, size=None):
+ """
+ Uniform float random number between low and high.
+ """
+ if high is None:
+ low, high = 0, low
+ if size is None:
+ size = []
+ return np.random.uniform(low, high, size)
+
+ def __repr__(self):
+ """
+ Produce something like:
+ "MyTransformGen(field1={self.field1}, field2={self.field2})"
+ """
+ try:
+ sig = inspect.signature(self.__init__)
+ classname = type(self).__name__
+ argstr = []
+ for name, param in sig.parameters.items():
+ assert (
+ param.kind != param.VAR_POSITIONAL and param.kind != param.VAR_KEYWORD
+ ), "The default __repr__ doesn't support *args or **kwargs"
+ assert hasattr(self, name), (
+ "Attribute {} not found! "
+ "Default __repr__ only works if attributes match the constructor.".format(name)
+ )
+ attr = getattr(self, name)
+ default = param.default
+ if default is attr:
+ continue
+ argstr.append("{}={}".format(name, pprint.pformat(attr)))
+ return "{}({})".format(classname, ", ".join(argstr))
+ except AssertionError:
+ return super().__repr__()
+
+ __str__ = __repr__
+
+
+class RandomApply(TransformGen):
+ """
+ Randomly apply the wrapper transformation with a given probability.
+ """
+
+ def __init__(self, transform, prob=0.5):
+ """
+ Args:
+ transform (Transform, TransformGen): the transform to be wrapped
+ by the `RandomApply`. The `transform` can either be a
+ `Transform` or `TransformGen` instance.
+ prob (float): probability between 0.0 and 1.0 that
+ the wrapper transformation is applied
+ """
+ super().__init__()
+ assert isinstance(transform, (Transform, TransformGen)), (
+ f"The given transform must either be a Transform or TransformGen instance. "
+ f"Not {type(transform)}"
+ )
+ assert 0.0 <= prob <= 1.0, f"Probablity must be between 0.0 and 1.0 (given: {prob})"
+ self.prob = prob
+ self.transform = transform
+
+ def get_transform(self, img):
+ do = self._rand_range() < self.prob
+ if do:
+ if isinstance(self.transform, TransformGen):
+ return self.transform.get_transform(img)
+ else:
+ return self.transform
+ else:
+ return NoOpTransform()
+
+
+class RandomFlip(TransformGen):
+ """
+ Flip the image horizontally or vertically with the given probability.
+ """
+
+ def __init__(self, prob=0.5, *, horizontal=True, vertical=False):
+ """
+ Args:
+ prob (float): probability of flip.
+ horizontal (boolean): whether to apply horizontal flipping
+ vertical (boolean): whether to apply vertical flipping
+ """
+ super().__init__()
+
+ if horizontal and vertical:
+ raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.")
+ if not horizontal and not vertical:
+ raise ValueError("At least one of horiz or vert has to be True!")
+ self._init(locals())
+
+ def get_transform(self, img):
+ h, w = img.shape[:2]
+ do = self._rand_range() < self.prob
+ if do:
+ if self.horizontal:
+ return HFlipTransform(w)
+ elif self.vertical:
+ return VFlipTransform(h)
+ else:
+ return NoOpTransform()
+
+
+class Resize(TransformGen):
+ """ Resize image to a target size"""
+
+ def __init__(self, shape, interp=Image.BILINEAR):
+ """
+ Args:
+ shape: (h, w) tuple or a int
+ interp: PIL interpolation method
+ """
+ if isinstance(shape, int):
+ shape = (shape, shape)
+ shape = tuple(shape)
+ self._init(locals())
+
+ def get_transform(self, img):
+ return ResizeTransform(
+ img.shape[0], img.shape[1], self.shape[0], self.shape[1], self.interp
+ )
+
+
+class ResizeShortestEdge(TransformGen):
+ """
+ Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge.
+ If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
+ """
+
+ def __init__(
+ self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR
+ ):
+ """
+ Args:
+ short_edge_length (list[int]): If ``sample_style=="range"``,
+ a [min, max] interval from which to sample the shortest edge length.
+ If ``sample_style=="choice"``, a list of shortest edge lengths to sample from.
+ max_size (int): maximum allowed longest edge length.
+ sample_style (str): either "range" or "choice".
+ """
+ super().__init__()
+ assert sample_style in ["range", "choice"], sample_style
+
+ self.is_range = sample_style == "range"
+ if isinstance(short_edge_length, int):
+ short_edge_length = (short_edge_length, short_edge_length)
+ self._init(locals())
+
+ def get_transform(self, img):
+ h, w = img.shape[:2]
+
+ if self.is_range:
+ size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
+ else:
+ size = np.random.choice(self.short_edge_length)
+ if size == 0:
+ return NoOpTransform()
+
+ scale = size * 1.0 / min(h, w)
+ if h < w:
+ newh, neww = size, scale * w
+ else:
+ newh, neww = scale * h, size
+ if max(newh, neww) > self.max_size:
+ scale = self.max_size * 1.0 / max(newh, neww)
+ newh = newh * scale
+ neww = neww * scale
+ neww = int(neww + 0.5)
+ newh = int(newh + 0.5)
+ return ResizeTransform(h, w, newh, neww, self.interp)
+
+
+class RandomRotation(TransformGen):
+ """
+ This method returns a copy of this image, rotated the given
+ number of degrees counter clockwise around the given center.
+ """
+
+ def __init__(self, angle, expand=True, center=None, sample_style="range", interp=None):
+ """
+ Args:
+ angle (list[float]): If ``sample_style=="range"``,
+ a [min, max] interval from which to sample the angle (in degrees).
+ If ``sample_style=="choice"``, a list of angles to sample from
+ expand (bool): choose if the image should be resized to fit the whole
+ rotated image (default), or simply cropped
+ center (list[[float, float]]): If ``sample_style=="range"``,
+ a [[minx, miny], [maxx, maxy]] relative interval from which to sample the center,
+ [0, 0] being the top left of the image and [1, 1] the bottom right.
+ If ``sample_style=="choice"``, a list of centers to sample from
+ Default: None, which means that the center of rotation is the center of the image
+ center has no effect if expand=True because it only affects shifting
+ """
+ super().__init__()
+ assert sample_style in ["range", "choice"], sample_style
+ self.is_range = sample_style == "range"
+ if isinstance(angle, (float, int)):
+ angle = (angle, angle)
+ if center is not None and isinstance(center[0], (float, int)):
+ center = (center, center)
+ self._init(locals())
+
+ def get_transform(self, img):
+ h, w = img.shape[:2]
+ center = None
+ if self.is_range:
+ angle = np.random.uniform(self.angle[0], self.angle[1])
+ if self.center is not None:
+ center = (
+ np.random.uniform(self.center[0][0], self.center[1][0]),
+ np.random.uniform(self.center[0][1], self.center[1][1]),
+ )
+ else:
+ angle = np.random.choice(self.angle)
+ if self.center is not None:
+ center = np.random.choice(self.center)
+
+ if center is not None:
+ center = (w * center[0], h * center[1]) # Convert to absolute coordinates
+
+ return RotationTransform(h, w, angle, expand=self.expand, center=center, interp=self.interp)
+
+
+class RandomCrop(TransformGen):
+ """
+ Randomly crop a subimage out of an image.
+ """
+
+ def __init__(self, crop_type: str, crop_size):
+ """
+ Args:
+ crop_type (str): one of "relative_range", "relative", "absolute".
+ See `config/defaults.py` for explanation.
+ crop_size (tuple[float]): the relative ratio or absolute pixels of
+ height and width
+ """
+ super().__init__()
+ assert crop_type in ["relative_range", "relative", "absolute"]
+ self._init(locals())
+
+ def get_transform(self, img):
+ h, w = img.shape[:2]
+ croph, cropw = self.get_crop_size((h, w))
+ assert h >= croph and w >= cropw, "Shape computation in {} has bugs.".format(self)
+ h0 = np.random.randint(h - croph + 1)
+ w0 = np.random.randint(w - cropw + 1)
+ return CropTransform(w0, h0, cropw, croph)
+
+ def get_crop_size(self, image_size):
+ """
+ Args:
+ image_size (tuple): height, width
+
+ Returns:
+ crop_size (tuple): height, width in absolute pixels
+ """
+ h, w = image_size
+ if self.crop_type == "relative":
+ ch, cw = self.crop_size
+ return int(h * ch + 0.5), int(w * cw + 0.5)
+ elif self.crop_type == "relative_range":
+ crop_size = np.asarray(self.crop_size, dtype=np.float32)
+ ch, cw = crop_size + np.random.rand(2) * (1 - crop_size)
+ return int(h * ch + 0.5), int(w * cw + 0.5)
+ elif self.crop_type == "absolute":
+ return (min(self.crop_size[0], h), min(self.crop_size[1], w))
+ else:
+ NotImplementedError("Unknown crop type {}".format(self.crop_type))
+
+
+class RandomExtent(TransformGen):
+ """
+ Outputs an image by cropping a random "subrect" of the source image.
+
+ The subrect can be parameterized to include pixels outside the source image,
+ in which case they will be set to zeros (i.e. black). The size of the output
+ image will vary with the size of the random subrect.
+ """
+
+ def __init__(self, scale_range, shift_range):
+ """
+ Args:
+ output_size (h, w): Dimensions of output image
+ scale_range (l, h): Range of input-to-output size scaling factor
+ shift_range (x, y): Range of shifts of the cropped subrect. The rect
+ is shifted by [w / 2 * Uniform(-x, x), h / 2 * Uniform(-y, y)],
+ where (w, h) is the (width, height) of the input image. Set each
+ component to zero to crop at the image's center.
+ """
+ super().__init__()
+ self._init(locals())
+
+ def get_transform(self, img):
+ img_h, img_w = img.shape[:2]
+
+ # Initialize src_rect to fit the input image.
+ src_rect = np.array([-0.5 * img_w, -0.5 * img_h, 0.5 * img_w, 0.5 * img_h])
+
+ # Apply a random scaling to the src_rect.
+ src_rect *= np.random.uniform(self.scale_range[0], self.scale_range[1])
+
+ # Apply a random shift to the coordinates origin.
+ src_rect[0::2] += self.shift_range[0] * img_w * (np.random.rand() - 0.5)
+ src_rect[1::2] += self.shift_range[1] * img_h * (np.random.rand() - 0.5)
+
+ # Map src_rect coordinates into image coordinates (center at corner).
+ src_rect[0::2] += 0.5 * img_w
+ src_rect[1::2] += 0.5 * img_h
+
+ return ExtentTransform(
+ src_rect=(src_rect[0], src_rect[1], src_rect[2], src_rect[3]),
+ output_size=(int(src_rect[3] - src_rect[1]), int(src_rect[2] - src_rect[0])),
+ )
+
+
+class RandomContrast(TransformGen):
+ """
+ Randomly transforms image contrast.
+
+ Contrast intensity is uniformly sampled in (intensity_min, intensity_max).
+ - intensity < 1 will reduce contrast
+ - intensity = 1 will preserve the input image
+ - intensity > 1 will increase contrast
+
+ See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
+ """
+
+ def __init__(self, intensity_min, intensity_max):
+ """
+ Args:
+ intensity_min (float): Minimum augmentation
+ intensity_max (float): Maximum augmentation
+ """
+ super().__init__()
+ self._init(locals())
+
+ def get_transform(self, img):
+ w = np.random.uniform(self.intensity_min, self.intensity_max)
+ return BlendTransform(src_image=img.mean(), src_weight=1 - w, dst_weight=w)
+
+
+class RandomBrightness(TransformGen):
+ """
+ Randomly transforms image brightness.
+
+ Brightness intensity is uniformly sampled in (intensity_min, intensity_max).
+ - intensity < 1 will reduce brightness
+ - intensity = 1 will preserve the input image
+ - intensity > 1 will increase brightness
+
+ See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
+ """
+
+ def __init__(self, intensity_min, intensity_max):
+ """
+ Args:
+ intensity_min (float): Minimum augmentation
+ intensity_max (float): Maximum augmentation
+ """
+ super().__init__()
+ self._init(locals())
+
+ def get_transform(self, img):
+ w = np.random.uniform(self.intensity_min, self.intensity_max)
+ return BlendTransform(src_image=0, src_weight=1 - w, dst_weight=w)
+
+
+class RandomSaturation(TransformGen):
+ """
+ Randomly transforms image saturation.
+
+ Saturation intensity is uniformly sampled in (intensity_min, intensity_max).
+ - intensity < 1 will reduce saturation (make the image more grayscale)
+ - intensity = 1 will preserve the input image
+ - intensity > 1 will increase saturation
+
+ See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html
+ """
+
+ def __init__(self, intensity_min, intensity_max):
+ """
+ Args:
+ intensity_min (float): Minimum augmentation (1 preserves input).
+ intensity_max (float): Maximum augmentation (1 preserves input).
+ """
+ super().__init__()
+ self._init(locals())
+
+ def get_transform(self, img):
+ assert img.shape[-1] == 3, "Saturation only works on RGB images"
+ w = np.random.uniform(self.intensity_min, self.intensity_max)
+ grayscale = img.dot([0.299, 0.587, 0.114])[:, :, np.newaxis]
+ return BlendTransform(src_image=grayscale, src_weight=1 - w, dst_weight=w)
+
+
+class RandomLighting(TransformGen):
+ """
+ Randomly transforms image color using fixed PCA over ImageNet.
+
+ The degree of color jittering is randomly sampled via a normal distribution,
+ with standard deviation given by the scale parameter.
+ """
+
+ def __init__(self, scale):
+ """
+ Args:
+ scale (float): Standard deviation of principal component weighting.
+ """
+ super().__init__()
+ self._init(locals())
+ self.eigen_vecs = np.array(
+ [[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]
+ )
+ self.eigen_vals = np.array([0.2175, 0.0188, 0.0045])
+
+ def get_transform(self, img):
+ assert img.shape[-1] == 3, "Saturation only works on RGB images"
+ weights = np.random.normal(scale=self.scale, size=3)
+ return BlendTransform(
+ src_image=self.eigen_vecs.dot(weights * self.eigen_vals), src_weight=1.0, dst_weight=1.0
+ )
+
+
+def apply_transform_gens(transform_gens, img):
+ """
+ Apply a list of :class:`TransformGen` or :class:`Transform` on the input image, and
+ returns the transformed image and a list of transforms.
+
+ We cannot simply create and return all transforms without
+ applying it to the image, because a subsequent transform may
+ need the output of the previous one.
+
+ Args:
+ transform_gens (list): list of :class:`TransformGen` or :class:`Transform` instance to
+ be applied.
+ img (ndarray): uint8 or floating point images with 1 or 3 channels.
+
+ Returns:
+ ndarray: the transformed image
+ TransformList: contain the transforms that's used.
+ """
+ for g in transform_gens:
+ assert isinstance(g, (Transform, TransformGen)), g
+
+ check_dtype(img)
+
+ tfms = []
+ for g in transform_gens:
+ tfm = g.get_transform(img) if isinstance(g, TransformGen) else g
+ assert isinstance(
+ tfm, Transform
+ ), "TransformGen {} must return an instance of Transform! Got {} instead".format(g, tfm)
+ img = tfm.apply_image(img)
+ tfms.append(tfm)
+ return img, TransformList(tfms)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a4538da3e66593e4ef8916cd9cbca3c83b8c14e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+
+from .launch import *
+from .train_loop import *
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
+
+
+# prefer to let hooks and defaults live in separate namespaces (therefore not in __all__)
+# but still make them available here
+from .hooks import *
+from .defaults import *
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/defaults.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/defaults.py
new file mode 100644
index 0000000000000000000000000000000000000000..db9ab68f21d77b9e3be730c4784abe665df3d96a
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/defaults.py
@@ -0,0 +1,531 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+"""
+This file contains components with some default boilerplate logic user may need
+in training / testing. They will not work for everyone, but many users may find them useful.
+
+The behavior of functions/classes in this file is subject to change,
+since they are meant to represent the "common default behavior" people need in their projects.
+"""
+
+import argparse
+import logging
+import os
+import sys
+from collections import OrderedDict
+import torch
+from fvcore.common.file_io import PathManager
+from fvcore.nn.precise_bn import get_bn_modules
+from torch.nn.parallel import DistributedDataParallel
+
+import detectron2.data.transforms as T
+from detectron2.checkpoint import DetectionCheckpointer
+from detectron2.data import (
+ MetadataCatalog,
+ build_detection_test_loader,
+ build_detection_train_loader,
+)
+from detectron2.evaluation import (
+ DatasetEvaluator,
+ inference_on_dataset,
+ print_csv_format,
+ verify_results,
+)
+from detectron2.modeling import build_model
+from detectron2.solver import build_lr_scheduler, build_optimizer
+from detectron2.utils import comm
+from detectron2.utils.collect_env import collect_env_info
+from detectron2.utils.env import seed_all_rng
+from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter
+from detectron2.utils.logger import setup_logger
+
+from . import hooks
+from .train_loop import SimpleTrainer
+
+__all__ = ["default_argument_parser", "default_setup", "DefaultPredictor", "DefaultTrainer"]
+
+
+def default_argument_parser(epilog=None):
+ """
+ Create a parser with some common arguments used by detectron2 users.
+
+ Args:
+ epilog (str): epilog passed to ArgumentParser describing the usage.
+
+ Returns:
+ argparse.ArgumentParser:
+ """
+ parser = argparse.ArgumentParser(
+ epilog=epilog
+ or f"""
+Examples:
+
+Run on single machine:
+ $ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth
+
+Run on multiple machines:
+ (machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url [--other-flags]
+ (machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url [--other-flags]
+""",
+ formatter_class=argparse.RawDescriptionHelpFormatter,
+ )
+ parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
+ parser.add_argument(
+ "--resume",
+ action="store_true",
+ help="whether to attempt to resume from the checkpoint directory",
+ )
+ parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
+ parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
+ parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
+ parser.add_argument(
+ "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
+ )
+
+ # PyTorch still may leave orphan processes in multi-gpu training.
+ # Therefore we use a deterministic way to obtain port,
+ # so that users are aware of orphan processes by seeing the port occupied.
+ port = 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14
+ parser.add_argument(
+ "--dist-url",
+ default="tcp://127.0.0.1:{}".format(port),
+ help="initialization URL for pytorch distributed backend. See "
+ "https://pytorch.org/docs/stable/distributed.html for details.",
+ )
+ parser.add_argument(
+ "opts",
+ help="Modify config options using the command-line",
+ default=None,
+ nargs=argparse.REMAINDER,
+ )
+ return parser
+
+
+def default_setup(cfg, args):
+ """
+ Perform some basic common setups at the beginning of a job, including:
+
+ 1. Set up the detectron2 logger
+ 2. Log basic information about environment, cmdline arguments, and config
+ 3. Backup the config to the output directory
+
+ Args:
+ cfg (CfgNode): the full config to be used
+ args (argparse.NameSpace): the command line arguments to be logged
+ """
+ output_dir = cfg.OUTPUT_DIR
+ if comm.is_main_process() and output_dir:
+ PathManager.mkdirs(output_dir)
+
+ rank = comm.get_rank()
+ setup_logger(output_dir, distributed_rank=rank, name="fvcore")
+ logger = setup_logger(output_dir, distributed_rank=rank)
+
+ logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
+ logger.info("Environment info:\n" + collect_env_info())
+
+ logger.info("Command line arguments: " + str(args))
+ if hasattr(args, "config_file") and args.config_file != "":
+ logger.info(
+ "Contents of args.config_file={}:\n{}".format(
+ args.config_file, PathManager.open(args.config_file, "r").read()
+ )
+ )
+
+ logger.info("Running with full config:\n{}".format(cfg))
+ if comm.is_main_process() and output_dir:
+ # Note: some of our scripts may expect the existence of
+ # config.yaml in output directory
+ path = os.path.join(output_dir, "config.yaml")
+ with PathManager.open(path, "w") as f:
+ f.write(cfg.dump())
+ logger.info("Full config saved to {}".format(path))
+
+ # make sure each worker has a different, yet deterministic seed if specified
+ seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)
+
+ # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
+ # typical validation set.
+ if not (hasattr(args, "eval_only") and args.eval_only):
+ torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK
+
+
+class DefaultPredictor:
+ """
+ Create a simple end-to-end predictor with the given config that runs on
+ single device for a single input image.
+
+ Compared to using the model directly, this class does the following additions:
+
+ 1. Load checkpoint from `cfg.MODEL.WEIGHTS`.
+ 2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`.
+ 3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`.
+ 4. Take one input image and produce a single output, instead of a batch.
+
+ If you'd like to do anything more fancy, please refer to its source code
+ as examples to build and use the model manually.
+
+ Attributes:
+ metadata (Metadata): the metadata of the underlying dataset, obtained from
+ cfg.DATASETS.TEST.
+
+ Examples:
+
+ .. code-block:: python
+
+ pred = DefaultPredictor(cfg)
+ inputs = cv2.imread("input.jpg")
+ outputs = pred(inputs)
+ """
+
+ def __init__(self, cfg):
+ self.cfg = cfg.clone() # cfg can be modified by model
+ self.model = build_model(self.cfg)
+ self.model.eval()
+ self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])
+
+ checkpointer = DetectionCheckpointer(self.model)
+ checkpointer.load(cfg.MODEL.WEIGHTS)
+
+ self.transform_gen = T.ResizeShortestEdge(
+ [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
+ )
+
+ self.input_format = cfg.INPUT.FORMAT
+ assert self.input_format in ["RGB", "BGR"], self.input_format
+
+ def __call__(self, original_image):
+ """
+ Args:
+ original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
+
+ Returns:
+ predictions (dict):
+ the output of the model for one image only.
+ See :doc:`/tutorials/models` for details about the format.
+ """
+ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
+ # Apply pre-processing to image.
+ if self.input_format == "RGB":
+ # whether the model expects BGR inputs or RGB
+ original_image = original_image[:, :, ::-1]
+ height, width = original_image.shape[:2]
+ image = self.transform_gen.get_transform(original_image).apply_image(original_image)
+ image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
+
+ inputs = {"image": image, "height": height, "width": width}
+ predictions = self.model([inputs])[0]
+ return predictions
+
+
+class DefaultTrainer(SimpleTrainer):
+ """
+ A trainer with default training logic. Compared to `SimpleTrainer`, it
+ contains the following logic in addition:
+
+ 1. Create model, optimizer, scheduler, dataloader from the given config.
+ 2. Load a checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when
+ `resume_or_load` is called.
+ 3. Register a few common hooks.
+
+ It is created to simplify the **standard model training workflow** and reduce code boilerplate
+ for users who only need the standard training workflow, with standard features.
+ It means this class makes *many assumptions* about your training logic that
+ may easily become invalid in a new research. In fact, any assumptions beyond those made in the
+ :class:`SimpleTrainer` are too much for research.
+
+ The code of this class has been annotated about restrictive assumptions it mades.
+ When they do not work for you, you're encouraged to:
+
+ 1. Overwrite methods of this class, OR:
+ 2. Use :class:`SimpleTrainer`, which only does minimal SGD training and
+ nothing else. You can then add your own hooks if needed. OR:
+ 3. Write your own training loop similar to `tools/plain_train_net.py`.
+
+ Also note that the behavior of this class, like other functions/classes in
+ this file, is not stable, since it is meant to represent the "common default behavior".
+ It is only guaranteed to work well with the standard models and training workflow in detectron2.
+ To obtain more stable behavior, write your own training logic with other public APIs.
+
+ Examples:
+
+ .. code-block:: python
+
+ trainer = DefaultTrainer(cfg)
+ trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS
+ trainer.train()
+
+ Attributes:
+ scheduler:
+ checkpointer (DetectionCheckpointer):
+ cfg (CfgNode):
+ """
+
+ def __init__(self, cfg):
+ """
+ Args:
+ cfg (CfgNode):
+ """
+ logger = logging.getLogger("detectron2")
+ if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
+ setup_logger()
+ # Assume these objects must be constructed in this order.
+ model = self.build_model(cfg)
+ optimizer = self.build_optimizer(cfg, model)
+ data_loader = self.build_train_loader(cfg)
+
+ # For training, wrap with DDP. But don't need this for inference.
+ if comm.get_world_size() > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
+ )
+ super().__init__(model, data_loader, optimizer)
+
+ self.scheduler = self.build_lr_scheduler(cfg, optimizer)
+ # Assume no other objects need to be checkpointed.
+ # We can later make it checkpoint the stateful hooks
+ self.checkpointer = DetectionCheckpointer(
+ # Assume you want to save checkpoints together with logs/statistics
+ model,
+ cfg.OUTPUT_DIR,
+ optimizer=optimizer,
+ scheduler=self.scheduler,
+ )
+ self.start_iter = 0
+ self.max_iter = cfg.SOLVER.MAX_ITER
+ self.cfg = cfg
+
+ self.register_hooks(self.build_hooks())
+
+ def resume_or_load(self, resume=True):
+ """
+ If `resume==True`, and last checkpoint exists, resume from it and load all
+ checkpointables (eg. optimizer and scheduler).
+
+ Otherwise, load the model specified by the config (skip all checkpointables).
+
+ Args:
+ resume (bool): whether to do resume or not
+ """
+ checkpoint = self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume)
+ self.start_iter = checkpoint.get("iteration", -1) if resume else -1
+ # The checkpoint stores the training iteration that just finished, thus we start
+ # at the next iteration (or iter zero if there's no checkpoint).
+ self.start_iter += 1
+
+ def build_hooks(self):
+ """
+ Build a list of default hooks, including timing, evaluation,
+ checkpointing, lr scheduling, precise BN, writing events.
+
+ Returns:
+ list[HookBase]:
+ """
+ cfg = self.cfg.clone()
+ cfg.defrost()
+ cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
+
+ ret = [
+ hooks.IterationTimer(),
+ hooks.LRScheduler(self.optimizer, self.scheduler),
+ hooks.PreciseBN(
+ # Run at the same freq as (but before) evaluation.
+ cfg.TEST.EVAL_PERIOD,
+ self.model,
+ # Build a new data loader to not affect training
+ self.build_train_loader(cfg),
+ cfg.TEST.PRECISE_BN.NUM_ITER,
+ )
+ if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
+ else None,
+ ]
+
+ # Do PreciseBN before checkpointer, because it updates the model and need to
+ # be saved by checkpointer.
+ # This is not always the best: if checkpointing has a different frequency,
+ # some checkpoints may have more precise statistics than others.
+ if comm.is_main_process():
+ ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
+
+ def test_and_save_results():
+ self._last_eval_results = self.test(self.cfg, self.model)
+ return self._last_eval_results
+
+ # Do evaluation after checkpointer, because then if it fails,
+ # we can use the saved checkpoint to debug.
+ ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
+
+ if comm.is_main_process():
+ # run writers in the end, so that evaluation metrics are written
+ ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
+ return ret
+
+ def build_writers(self):
+ """
+ Build a list of writers to be used. By default it contains
+ writers that write metrics to the screen,
+ a json file, and a tensorboard event file respectively.
+ If you'd like a different list of writers, you can overwrite it in
+ your trainer.
+
+ Returns:
+ list[EventWriter]: a list of :class:`EventWriter` objects.
+
+ It is now implemented by:
+
+ .. code-block:: python
+
+ return [
+ CommonMetricPrinter(self.max_iter),
+ JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
+ TensorboardXWriter(self.cfg.OUTPUT_DIR),
+ ]
+
+ """
+ # Here the default print/log frequency of each writer is used.
+ return [
+ # It may not always print what you want to see, since it prints "common" metrics only.
+ CommonMetricPrinter(self.max_iter),
+ JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
+ TensorboardXWriter(self.cfg.OUTPUT_DIR),
+ ]
+
+ def train(self):
+ """
+ Run training.
+
+ Returns:
+ OrderedDict of results, if evaluation is enabled. Otherwise None.
+ """
+ super().train(self.start_iter, self.max_iter)
+ if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process():
+ assert hasattr(
+ self, "_last_eval_results"
+ ), "No evaluation results obtained during training!"
+ verify_results(self.cfg, self._last_eval_results)
+ return self._last_eval_results
+
+ @classmethod
+ def build_model(cls, cfg):
+ """
+ Returns:
+ torch.nn.Module:
+
+ It now calls :func:`detectron2.modeling.build_model`.
+ Overwrite it if you'd like a different model.
+ """
+ model = build_model(cfg)
+ logger = logging.getLogger(__name__)
+ logger.info("Model:\n{}".format(model))
+ return model
+
+ @classmethod
+ def build_optimizer(cls, cfg, model):
+ """
+ Returns:
+ torch.optim.Optimizer:
+
+ It now calls :func:`detectron2.solver.build_optimizer`.
+ Overwrite it if you'd like a different optimizer.
+ """
+ return build_optimizer(cfg, model)
+
+ @classmethod
+ def build_lr_scheduler(cls, cfg, optimizer):
+ """
+ It now calls :func:`detectron2.solver.build_lr_scheduler`.
+ Overwrite it if you'd like a different scheduler.
+ """
+ return build_lr_scheduler(cfg, optimizer)
+
+ @classmethod
+ def build_train_loader(cls, cfg):
+ """
+ Returns:
+ iterable
+
+ It now calls :func:`detectron2.data.build_detection_train_loader`.
+ Overwrite it if you'd like a different data loader.
+ """
+ return build_detection_train_loader(cfg)
+
+ @classmethod
+ def build_test_loader(cls, cfg, dataset_name):
+ """
+ Returns:
+ iterable
+
+ It now calls :func:`detectron2.data.build_detection_test_loader`.
+ Overwrite it if you'd like a different data loader.
+ """
+ return build_detection_test_loader(cfg, dataset_name)
+
+ @classmethod
+ def build_evaluator(cls, cfg, dataset_name):
+ """
+ Returns:
+ DatasetEvaluator or None
+
+ It is not implemented by default.
+ """
+ raise NotImplementedError(
+ """
+If you want DefaultTrainer to automatically run evaluation,
+please implement `build_evaluator()` in subclasses (see train_net.py for example).
+Alternatively, you can call evaluation functions yourself (see Colab balloon tutorial for example).
+"""
+ )
+
+ @classmethod
+ def test(cls, cfg, model, evaluators=None):
+ """
+ Args:
+ cfg (CfgNode):
+ model (nn.Module):
+ evaluators (list[DatasetEvaluator] or None): if None, will call
+ :meth:`build_evaluator`. Otherwise, must have the same length as
+ `cfg.DATASETS.TEST`.
+
+ Returns:
+ dict: a dict of result metrics
+ """
+ logger = logging.getLogger(__name__)
+ if isinstance(evaluators, DatasetEvaluator):
+ evaluators = [evaluators]
+ if evaluators is not None:
+ assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
+ len(cfg.DATASETS.TEST), len(evaluators)
+ )
+
+ results = OrderedDict()
+ for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
+ data_loader = cls.build_test_loader(cfg, dataset_name)
+ # When evaluators are passed in as arguments,
+ # implicitly assume that evaluators can be created before data_loader.
+ if evaluators is not None:
+ evaluator = evaluators[idx]
+ else:
+ try:
+ evaluator = cls.build_evaluator(cfg, dataset_name)
+ except NotImplementedError:
+ logger.warn(
+ "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
+ "or implement its `build_evaluator` method."
+ )
+ results[dataset_name] = {}
+ continue
+ results_i = inference_on_dataset(model, data_loader, evaluator)
+ results[dataset_name] = results_i
+ if comm.is_main_process():
+ assert isinstance(
+ results_i, dict
+ ), "Evaluator must return a dict on the main process. Got {} instead.".format(
+ results_i
+ )
+ logger.info("Evaluation results for {} in csv format:".format(dataset_name))
+ print_csv_format(results_i)
+
+ if len(results) == 1:
+ results = list(results.values())[0]
+ return results
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/hooks.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/hooks.py
new file mode 100644
index 0000000000000000000000000000000000000000..e5085b4561302d2328ab505568dec4e9fc5ee0ad
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/hooks.py
@@ -0,0 +1,427 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import datetime
+import itertools
+import logging
+import os
+import tempfile
+import time
+from collections import Counter
+import torch
+from fvcore.common.checkpoint import PeriodicCheckpointer as _PeriodicCheckpointer
+from fvcore.common.file_io import PathManager
+from fvcore.common.timer import Timer
+from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats
+
+import detectron2.utils.comm as comm
+from detectron2.evaluation.testing import flatten_results_dict
+from detectron2.utils.events import EventStorage, EventWriter
+
+from .train_loop import HookBase
+
+__all__ = [
+ "CallbackHook",
+ "IterationTimer",
+ "PeriodicWriter",
+ "PeriodicCheckpointer",
+ "LRScheduler",
+ "AutogradProfiler",
+ "EvalHook",
+ "PreciseBN",
+]
+
+
+"""
+Implement some common hooks.
+"""
+
+
+class CallbackHook(HookBase):
+ """
+ Create a hook using callback functions provided by the user.
+ """
+
+ def __init__(self, *, before_train=None, after_train=None, before_step=None, after_step=None):
+ """
+ Each argument is a function that takes one argument: the trainer.
+ """
+ self._before_train = before_train
+ self._before_step = before_step
+ self._after_step = after_step
+ self._after_train = after_train
+
+ def before_train(self):
+ if self._before_train:
+ self._before_train(self.trainer)
+
+ def after_train(self):
+ if self._after_train:
+ self._after_train(self.trainer)
+ # The functions may be closures that hold reference to the trainer
+ # Therefore, delete them to avoid circular reference.
+ del self._before_train, self._after_train
+ del self._before_step, self._after_step
+
+ def before_step(self):
+ if self._before_step:
+ self._before_step(self.trainer)
+
+ def after_step(self):
+ if self._after_step:
+ self._after_step(self.trainer)
+
+
+class IterationTimer(HookBase):
+ """
+ Track the time spent for each iteration (each run_step call in the trainer).
+ Print a summary in the end of training.
+
+ This hook uses the time between the call to its :meth:`before_step`
+ and :meth:`after_step` methods.
+ Under the convention that :meth:`before_step` of all hooks should only
+ take negligible amount of time, the :class:`IterationTimer` hook should be
+ placed at the beginning of the list of hooks to obtain accurate timing.
+ """
+
+ def __init__(self, warmup_iter=3):
+ """
+ Args:
+ warmup_iter (int): the number of iterations at the beginning to exclude
+ from timing.
+ """
+ self._warmup_iter = warmup_iter
+ self._step_timer = Timer()
+ self._start_time = time.perf_counter()
+ self._total_timer = Timer()
+
+ def before_train(self):
+ self._start_time = time.perf_counter()
+ self._total_timer.reset()
+ self._total_timer.pause()
+
+ def after_train(self):
+ logger = logging.getLogger(__name__)
+ total_time = time.perf_counter() - self._start_time
+ total_time_minus_hooks = self._total_timer.seconds()
+ hook_time = total_time - total_time_minus_hooks
+
+ num_iter = self.trainer.iter + 1 - self.trainer.start_iter - self._warmup_iter
+
+ if num_iter > 0 and total_time_minus_hooks > 0:
+ # Speed is meaningful only after warmup
+ # NOTE this format is parsed by grep in some scripts
+ logger.info(
+ "Overall training speed: {} iterations in {} ({:.4f} s / it)".format(
+ num_iter,
+ str(datetime.timedelta(seconds=int(total_time_minus_hooks))),
+ total_time_minus_hooks / num_iter,
+ )
+ )
+
+ logger.info(
+ "Total training time: {} ({} on hooks)".format(
+ str(datetime.timedelta(seconds=int(total_time))),
+ str(datetime.timedelta(seconds=int(hook_time))),
+ )
+ )
+
+ def before_step(self):
+ self._step_timer.reset()
+ self._total_timer.resume()
+
+ def after_step(self):
+ # +1 because we're in after_step
+ iter_done = self.trainer.iter - self.trainer.start_iter + 1
+ if iter_done >= self._warmup_iter:
+ sec = self._step_timer.seconds()
+ self.trainer.storage.put_scalars(time=sec)
+ else:
+ self._start_time = time.perf_counter()
+ self._total_timer.reset()
+
+ self._total_timer.pause()
+
+
+class PeriodicWriter(HookBase):
+ """
+ Write events to EventStorage periodically.
+
+ It is executed every ``period`` iterations and after the last iteration.
+ """
+
+ def __init__(self, writers, period=20):
+ """
+ Args:
+ writers (list[EventWriter]): a list of EventWriter objects
+ period (int):
+ """
+ self._writers = writers
+ for w in writers:
+ assert isinstance(w, EventWriter), w
+ self._period = period
+
+ def after_step(self):
+ if (self.trainer.iter + 1) % self._period == 0 or (
+ self.trainer.iter == self.trainer.max_iter - 1
+ ):
+ for writer in self._writers:
+ writer.write()
+
+ def after_train(self):
+ for writer in self._writers:
+ writer.close()
+
+
+class PeriodicCheckpointer(_PeriodicCheckpointer, HookBase):
+ """
+ Same as :class:`detectron2.checkpoint.PeriodicCheckpointer`, but as a hook.
+
+ Note that when used as a hook,
+ it is unable to save additional data other than what's defined
+ by the given `checkpointer`.
+
+ It is executed every ``period`` iterations and after the last iteration.
+ """
+
+ def before_train(self):
+ self.max_iter = self.trainer.max_iter
+
+ def after_step(self):
+ # No way to use **kwargs
+ self.step(self.trainer.iter)
+
+
+class LRScheduler(HookBase):
+ """
+ A hook which executes a torch builtin LR scheduler and summarizes the LR.
+ It is executed after every iteration.
+ """
+
+ def __init__(self, optimizer, scheduler):
+ """
+ Args:
+ optimizer (torch.optim.Optimizer):
+ scheduler (torch.optim._LRScheduler)
+ """
+ self._optimizer = optimizer
+ self._scheduler = scheduler
+
+ # NOTE: some heuristics on what LR to summarize
+ # summarize the param group with most parameters
+ largest_group = max(len(g["params"]) for g in optimizer.param_groups)
+
+ if largest_group == 1:
+ # If all groups have one parameter,
+ # then find the most common initial LR, and use it for summary
+ lr_count = Counter([g["lr"] for g in optimizer.param_groups])
+ lr = lr_count.most_common()[0][0]
+ for i, g in enumerate(optimizer.param_groups):
+ if g["lr"] == lr:
+ self._best_param_group_id = i
+ break
+ else:
+ for i, g in enumerate(optimizer.param_groups):
+ if len(g["params"]) == largest_group:
+ self._best_param_group_id = i
+ break
+
+ def after_step(self):
+ lr = self._optimizer.param_groups[self._best_param_group_id]["lr"]
+ self.trainer.storage.put_scalar("lr", lr, smoothing_hint=False)
+ self._scheduler.step()
+
+
+class AutogradProfiler(HookBase):
+ """
+ A hook which runs `torch.autograd.profiler.profile`.
+
+ Examples:
+
+ .. code-block:: python
+
+ hooks.AutogradProfiler(
+ lambda trainer: trainer.iter > 10 and trainer.iter < 20, self.cfg.OUTPUT_DIR
+ )
+
+ The above example will run the profiler for iteration 10~20 and dump
+ results to ``OUTPUT_DIR``. We did not profile the first few iterations
+ because they are typically slower than the rest.
+ The result files can be loaded in the ``chrome://tracing`` page in chrome browser.
+
+ Note:
+ When used together with NCCL on older version of GPUs,
+ autograd profiler may cause deadlock because it unnecessarily allocates
+ memory on every device it sees. The memory management calls, if
+ interleaved with NCCL calls, lead to deadlock on GPUs that do not
+ support `cudaLaunchCooperativeKernelMultiDevice`.
+ """
+
+ def __init__(self, enable_predicate, output_dir, *, use_cuda=True):
+ """
+ Args:
+ enable_predicate (callable[trainer -> bool]): a function which takes a trainer,
+ and returns whether to enable the profiler.
+ It will be called once every step, and can be used to select which steps to profile.
+ output_dir (str): the output directory to dump tracing files.
+ use_cuda (bool): same as in `torch.autograd.profiler.profile`.
+ """
+ self._enable_predicate = enable_predicate
+ self._use_cuda = use_cuda
+ self._output_dir = output_dir
+
+ def before_step(self):
+ if self._enable_predicate(self.trainer):
+ self._profiler = torch.autograd.profiler.profile(use_cuda=self._use_cuda)
+ self._profiler.__enter__()
+ else:
+ self._profiler = None
+
+ def after_step(self):
+ if self._profiler is None:
+ return
+ self._profiler.__exit__(None, None, None)
+ PathManager.mkdirs(self._output_dir)
+ out_file = os.path.join(
+ self._output_dir, "profiler-trace-iter{}.json".format(self.trainer.iter)
+ )
+ if "://" not in out_file:
+ self._profiler.export_chrome_trace(out_file)
+ else:
+ # Support non-posix filesystems
+ with tempfile.TemporaryDirectory(prefix="detectron2_profiler") as d:
+ tmp_file = os.path.join(d, "tmp.json")
+ self._profiler.export_chrome_trace(tmp_file)
+ with open(tmp_file) as f:
+ content = f.read()
+ with PathManager.open(out_file, "w") as f:
+ f.write(content)
+
+
+class EvalHook(HookBase):
+ """
+ Run an evaluation function periodically, and at the end of training.
+
+ It is executed every ``eval_period`` iterations and after the last iteration.
+ """
+
+ def __init__(self, eval_period, eval_function):
+ """
+ Args:
+ eval_period (int): the period to run `eval_function`.
+ eval_function (callable): a function which takes no arguments, and
+ returns a nested dict of evaluation metrics.
+
+ Note:
+ This hook must be enabled in all or none workers.
+ If you would like only certain workers to perform evaluation,
+ give other workers a no-op function (`eval_function=lambda: None`).
+ """
+ self._period = eval_period
+ self._func = eval_function
+
+ def _do_eval(self):
+ results = self._func()
+
+ if results:
+ assert isinstance(
+ results, dict
+ ), "Eval function must return a dict. Got {} instead.".format(results)
+
+ flattened_results = flatten_results_dict(results)
+ for k, v in flattened_results.items():
+ try:
+ v = float(v)
+ except Exception:
+ raise ValueError(
+ "[EvalHook] eval_function should return a nested dict of float. "
+ "Got '{}: {}' instead.".format(k, v)
+ )
+ self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False)
+
+ # Evaluation may take different time among workers.
+ # A barrier make them start the next iteration together.
+ comm.synchronize()
+
+ def after_step(self):
+ next_iter = self.trainer.iter + 1
+ is_final = next_iter == self.trainer.max_iter
+ if is_final or (self._period > 0 and next_iter % self._period == 0):
+ self._do_eval()
+
+ def after_train(self):
+ # func is likely a closure that holds reference to the trainer
+ # therefore we clean it to avoid circular reference in the end
+ del self._func
+
+
+class PreciseBN(HookBase):
+ """
+ The standard implementation of BatchNorm uses EMA in inference, which is
+ sometimes suboptimal.
+ This class computes the true average of statistics rather than the moving average,
+ and put true averages to every BN layer in the given model.
+
+ It is executed every ``period`` iterations and after the last iteration.
+ """
+
+ def __init__(self, period, model, data_loader, num_iter):
+ """
+ Args:
+ period (int): the period this hook is run, or 0 to not run during training.
+ The hook will always run in the end of training.
+ model (nn.Module): a module whose all BN layers in training mode will be
+ updated by precise BN.
+ Note that user is responsible for ensuring the BN layers to be
+ updated are in training mode when this hook is triggered.
+ data_loader (iterable): it will produce data to be run by `model(data)`.
+ num_iter (int): number of iterations used to compute the precise
+ statistics.
+ """
+ self._logger = logging.getLogger(__name__)
+ if len(get_bn_modules(model)) == 0:
+ self._logger.info(
+ "PreciseBN is disabled because model does not contain BN layers in training mode."
+ )
+ self._disabled = True
+ return
+
+ self._model = model
+ self._data_loader = data_loader
+ self._num_iter = num_iter
+ self._period = period
+ self._disabled = False
+
+ self._data_iter = None
+
+ def after_step(self):
+ next_iter = self.trainer.iter + 1
+ is_final = next_iter == self.trainer.max_iter
+ if is_final or (self._period > 0 and next_iter % self._period == 0):
+ self.update_stats()
+
+ def update_stats(self):
+ """
+ Update the model with precise statistics. Users can manually call this method.
+ """
+ if self._disabled:
+ return
+
+ if self._data_iter is None:
+ self._data_iter = iter(self._data_loader)
+
+ def data_loader():
+ for num_iter in itertools.count(1):
+ if num_iter % 100 == 0:
+ self._logger.info(
+ "Running precise-BN ... {}/{} iterations.".format(num_iter, self._num_iter)
+ )
+ # This way we can reuse the same iterator
+ yield next(self._data_iter)
+
+ with EventStorage(): # capture events in a new storage to discard them
+ self._logger.info(
+ "Running precise-BN for {} iterations... ".format(self._num_iter)
+ + "Note that this could produce different statistics every time."
+ )
+ update_bn_stats(self._model, data_loader(), self._num_iter)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/launch.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/launch.py
new file mode 100644
index 0000000000000000000000000000000000000000..9efbb0395d2c788d8cfe2cbbf66cde6ddc053585
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/launch.py
@@ -0,0 +1,89 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import logging
+import torch
+import torch.distributed as dist
+import torch.multiprocessing as mp
+
+from detectron2.utils import comm
+
+__all__ = ["launch"]
+
+
+def _find_free_port():
+ import socket
+
+ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ # Binding to port 0 will cause the OS to find an available port for us
+ sock.bind(("", 0))
+ port = sock.getsockname()[1]
+ sock.close()
+ # NOTE: there is still a chance the port could be taken by other processes.
+ return port
+
+
+def launch(main_func, num_gpus_per_machine, num_machines=1, machine_rank=0, dist_url=None, args=()):
+ """
+ Args:
+ main_func: a function that will be called by `main_func(*args)`
+ num_machines (int): the total number of machines
+ machine_rank (int): the rank of this machine (one per machine)
+ dist_url (str): url to connect to for distributed jobs, including protocol
+ e.g. "tcp://127.0.0.1:8686".
+ Can be set to "auto" to automatically select a free port on localhost
+ args (tuple): arguments passed to main_func
+ """
+ world_size = num_machines * num_gpus_per_machine
+ if world_size > 1:
+ # https://github.com/pytorch/pytorch/pull/14391
+ # TODO prctl in spawned processes
+
+ if dist_url == "auto":
+ assert num_machines == 1, "dist_url=auto not supported in multi-machine jobs."
+ port = _find_free_port()
+ dist_url = f"tcp://127.0.0.1:{port}"
+ if num_machines > 1 and dist_url.startswith("file://"):
+ logger = logging.getLogger(__name__)
+ logger.warning(
+ "file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://"
+ )
+
+ mp.spawn(
+ _distributed_worker,
+ nprocs=num_gpus_per_machine,
+ args=(main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args),
+ daemon=False,
+ )
+ else:
+ main_func(*args)
+
+
+def _distributed_worker(
+ local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args
+):
+ assert torch.cuda.is_available(), "cuda is not available. Please check your installation."
+ global_rank = machine_rank * num_gpus_per_machine + local_rank
+ try:
+ dist.init_process_group(
+ backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank
+ )
+ except Exception as e:
+ logger = logging.getLogger(__name__)
+ logger.error("Process group URL: {}".format(dist_url))
+ raise e
+ # synchronize is needed here to prevent a possible timeout after calling init_process_group
+ # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172
+ comm.synchronize()
+
+ assert num_gpus_per_machine <= torch.cuda.device_count()
+ torch.cuda.set_device(local_rank)
+
+ # Setup the local process group (which contains ranks within the same machine)
+ assert comm._LOCAL_PROCESS_GROUP is None
+ num_machines = world_size // num_gpus_per_machine
+ for i in range(num_machines):
+ ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine))
+ pg = dist.new_group(ranks_on_i)
+ if i == machine_rank:
+ comm._LOCAL_PROCESS_GROUP = pg
+
+ main_func(*args)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/train_loop.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/train_loop.py
new file mode 100644
index 0000000000000000000000000000000000000000..453c9acfde2d65a182fbf18a6bce4b4583df5ca5
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/engine/train_loop.py
@@ -0,0 +1,273 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import logging
+import numpy as np
+import time
+import weakref
+import torch
+
+import detectron2.utils.comm as comm
+from detectron2.utils.events import EventStorage
+
+__all__ = ["HookBase", "TrainerBase", "SimpleTrainer"]
+
+
+class HookBase:
+ """
+ Base class for hooks that can be registered with :class:`TrainerBase`.
+
+ Each hook can implement 4 methods. The way they are called is demonstrated
+ in the following snippet:
+
+ .. code-block:: python
+
+ hook.before_train()
+ for iter in range(start_iter, max_iter):
+ hook.before_step()
+ trainer.run_step()
+ hook.after_step()
+ hook.after_train()
+
+ Notes:
+ 1. In the hook method, users can access `self.trainer` to access more
+ properties about the context (e.g., current iteration).
+
+ 2. A hook that does something in :meth:`before_step` can often be
+ implemented equivalently in :meth:`after_step`.
+ If the hook takes non-trivial time, it is strongly recommended to
+ implement the hook in :meth:`after_step` instead of :meth:`before_step`.
+ The convention is that :meth:`before_step` should only take negligible time.
+
+ Following this convention will allow hooks that do care about the difference
+ between :meth:`before_step` and :meth:`after_step` (e.g., timer) to
+ function properly.
+
+ Attributes:
+ trainer: A weak reference to the trainer object. Set by the trainer when the hook is
+ registered.
+ """
+
+ def before_train(self):
+ """
+ Called before the first iteration.
+ """
+ pass
+
+ def after_train(self):
+ """
+ Called after the last iteration.
+ """
+ pass
+
+ def before_step(self):
+ """
+ Called before each iteration.
+ """
+ pass
+
+ def after_step(self):
+ """
+ Called after each iteration.
+ """
+ pass
+
+
+class TrainerBase:
+ """
+ Base class for iterative trainer with hooks.
+
+ The only assumption we made here is: the training runs in a loop.
+ A subclass can implement what the loop is.
+ We made no assumptions about the existence of dataloader, optimizer, model, etc.
+
+ Attributes:
+ iter(int): the current iteration.
+
+ start_iter(int): The iteration to start with.
+ By convention the minimum possible value is 0.
+
+ max_iter(int): The iteration to end training.
+
+ storage(EventStorage): An EventStorage that's opened during the course of training.
+ """
+
+ def __init__(self):
+ self._hooks = []
+
+ def register_hooks(self, hooks):
+ """
+ Register hooks to the trainer. The hooks are executed in the order
+ they are registered.
+
+ Args:
+ hooks (list[Optional[HookBase]]): list of hooks
+ """
+ hooks = [h for h in hooks if h is not None]
+ for h in hooks:
+ assert isinstance(h, HookBase)
+ # To avoid circular reference, hooks and trainer cannot own each other.
+ # This normally does not matter, but will cause memory leak if the
+ # involved objects contain __del__:
+ # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/
+ h.trainer = weakref.proxy(self)
+ self._hooks.extend(hooks)
+
+ def train(self, start_iter: int, max_iter: int):
+ """
+ Args:
+ start_iter, max_iter (int): See docs above
+ """
+ logger = logging.getLogger(__name__)
+ logger.info("Starting training from iteration {}".format(start_iter))
+
+ self.iter = self.start_iter = start_iter
+ self.max_iter = max_iter
+
+ with EventStorage(start_iter) as self.storage:
+ try:
+ self.before_train()
+ for self.iter in range(start_iter, max_iter):
+ self.before_step()
+ self.run_step()
+ self.after_step()
+ except Exception:
+ logger.exception("Exception during training:")
+ raise
+ finally:
+ self.after_train()
+
+ def before_train(self):
+ for h in self._hooks:
+ h.before_train()
+
+ def after_train(self):
+ for h in self._hooks:
+ h.after_train()
+
+ def before_step(self):
+ for h in self._hooks:
+ h.before_step()
+
+ def after_step(self):
+ for h in self._hooks:
+ h.after_step()
+ # this guarantees, that in each hook's after_step, storage.iter == trainer.iter
+ self.storage.step()
+
+ def run_step(self):
+ raise NotImplementedError
+
+
+class SimpleTrainer(TrainerBase):
+ """
+ A simple trainer for the most common type of task:
+ single-cost single-optimizer single-data-source iterative optimization.
+ It assumes that every step, you:
+
+ 1. Compute the loss with a data from the data_loader.
+ 2. Compute the gradients with the above loss.
+ 3. Update the model with the optimizer.
+
+ If you want to do anything fancier than this,
+ either subclass TrainerBase and implement your own `run_step`,
+ or write your own training loop.
+ """
+
+ def __init__(self, model, data_loader, optimizer):
+ """
+ Args:
+ model: a torch Module. Takes a data from data_loader and returns a
+ dict of losses.
+ data_loader: an iterable. Contains data to be used to call model.
+ optimizer: a torch optimizer.
+ """
+ super().__init__()
+
+ """
+ We set the model to training mode in the trainer.
+ However it's valid to train a model that's in eval mode.
+ If you want your model (or a submodule of it) to behave
+ like evaluation during training, you can overwrite its train() method.
+ """
+ model.train()
+
+ self.model = model
+ self.data_loader = data_loader
+ self._data_loader_iter = iter(data_loader)
+ self.optimizer = optimizer
+
+ def run_step(self):
+ """
+ Implement the standard training logic described above.
+ """
+ assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
+ start = time.perf_counter()
+ """
+ If you want to do something with the data, you can wrap the dataloader.
+ """
+ data = next(self._data_loader_iter)
+ data_time = time.perf_counter() - start
+
+ """
+ If you want to do something with the losses, you can wrap the model.
+ """
+ loss_dict = self.model(data)
+ losses = sum(loss_dict.values())
+ self._detect_anomaly(losses, loss_dict)
+
+ metrics_dict = loss_dict
+ metrics_dict["data_time"] = data_time
+ self._write_metrics(metrics_dict)
+
+ """
+ If you need to accumulate gradients or something similar, you can
+ wrap the optimizer with your custom `zero_grad()` method.
+ """
+ self.optimizer.zero_grad()
+ losses.backward()
+
+ """
+ If you need gradient clipping/scaling or other processing, you can
+ wrap the optimizer with your custom `step()` method.
+ """
+ self.optimizer.step()
+
+ def _detect_anomaly(self, losses, loss_dict):
+ if not torch.isfinite(losses).all():
+ raise FloatingPointError(
+ "Loss became infinite or NaN at iteration={}!\nloss_dict = {}".format(
+ self.iter, loss_dict
+ )
+ )
+
+ def _write_metrics(self, metrics_dict: dict):
+ """
+ Args:
+ metrics_dict (dict): dict of scalar metrics
+ """
+ metrics_dict = {
+ k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v)
+ for k, v in metrics_dict.items()
+ }
+ # gather metrics among all workers for logging
+ # This assumes we do DDP-style training, which is currently the only
+ # supported method in detectron2.
+ all_metrics_dict = comm.gather(metrics_dict)
+
+ if comm.is_main_process():
+ if "data_time" in all_metrics_dict[0]:
+ # data_time among workers can have high variance. The actual latency
+ # caused by data_time is the maximum among workers.
+ data_time = np.max([x.pop("data_time") for x in all_metrics_dict])
+ self.storage.put_scalar("data_time", data_time)
+
+ # average the rest metrics
+ metrics_dict = {
+ k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys()
+ }
+ total_losses_reduced = sum(loss for loss in metrics_dict.values())
+
+ self.storage.put_scalar("total_loss", total_losses_reduced)
+ if len(metrics_dict) > 1:
+ self.storage.put_scalars(**metrics_dict)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1d2f1001af2eb46060db362a94d9dae26e3fb4e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .cityscapes_evaluation import CityscapesInstanceEvaluator, CityscapesSemSegEvaluator
+from .coco_evaluation import COCOEvaluator
+from .rotated_coco_evaluation import RotatedCOCOEvaluator
+from .evaluator import DatasetEvaluator, DatasetEvaluators, inference_context, inference_on_dataset
+from .lvis_evaluation import LVISEvaluator
+from .panoptic_evaluation import COCOPanopticEvaluator
+from .pascal_voc_evaluation import PascalVOCDetectionEvaluator
+from .sem_seg_evaluation import SemSegEvaluator
+from .testing import print_csv_format, verify_results
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/cityscapes_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/cityscapes_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6287a8980b10d9d13f0f0e6a0f0e1a16ff3566c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/cityscapes_evaluation.py
@@ -0,0 +1,187 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import glob
+import logging
+import numpy as np
+import os
+import tempfile
+from collections import OrderedDict
+import torch
+from fvcore.common.file_io import PathManager
+from PIL import Image
+
+from detectron2.data import MetadataCatalog
+from detectron2.utils import comm
+
+from .evaluator import DatasetEvaluator
+
+
+class CityscapesEvaluator(DatasetEvaluator):
+ """
+ Base class for evaluation using cityscapes API.
+ """
+
+ def __init__(self, dataset_name):
+ """
+ Args:
+ dataset_name (str): the name of the dataset.
+ It must have the following metadata associated with it:
+ "thing_classes", "gt_dir".
+ """
+ self._metadata = MetadataCatalog.get(dataset_name)
+ self._cpu_device = torch.device("cpu")
+ self._logger = logging.getLogger(__name__)
+
+ def reset(self):
+ self._working_dir = tempfile.TemporaryDirectory(prefix="cityscapes_eval_")
+ self._temp_dir = self._working_dir.name
+ # All workers will write to the same results directory
+ # TODO this does not work in distributed training
+ self._temp_dir = comm.all_gather(self._temp_dir)[0]
+ if self._temp_dir != self._working_dir.name:
+ self._working_dir.cleanup()
+ self._logger.info(
+ "Writing cityscapes results to temporary directory {} ...".format(self._temp_dir)
+ )
+
+
+class CityscapesInstanceEvaluator(CityscapesEvaluator):
+ """
+ Evaluate instance segmentation results using cityscapes API.
+
+ Note:
+ * It does not work in multi-machine distributed training.
+ * It contains a synchronization, therefore has to be used on all ranks.
+ * Only the main process runs evaluation.
+ """
+
+ def process(self, inputs, outputs):
+ from cityscapesscripts.helpers.labels import name2label
+
+ for input, output in zip(inputs, outputs):
+ file_name = input["file_name"]
+ basename = os.path.splitext(os.path.basename(file_name))[0]
+ pred_txt = os.path.join(self._temp_dir, basename + "_pred.txt")
+
+ output = output["instances"].to(self._cpu_device)
+ num_instances = len(output)
+ with open(pred_txt, "w") as fout:
+ for i in range(num_instances):
+ pred_class = output.pred_classes[i]
+ classes = self._metadata.thing_classes[pred_class]
+ class_id = name2label[classes].id
+ score = output.scores[i]
+ mask = output.pred_masks[i].numpy().astype("uint8")
+ png_filename = os.path.join(
+ self._temp_dir, basename + "_{}_{}.png".format(i, classes)
+ )
+
+ Image.fromarray(mask * 255).save(png_filename)
+ fout.write("{} {} {}\n".format(os.path.basename(png_filename), class_id, score))
+
+ def evaluate(self):
+ """
+ Returns:
+ dict: has a key "segm", whose value is a dict of "AP" and "AP50".
+ """
+ comm.synchronize()
+ if comm.get_rank() > 0:
+ return
+ import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval
+
+ self._logger.info("Evaluating results under {} ...".format(self._temp_dir))
+
+ # set some global states in cityscapes evaluation API, before evaluating
+ cityscapes_eval.args.predictionPath = os.path.abspath(self._temp_dir)
+ cityscapes_eval.args.predictionWalk = None
+ cityscapes_eval.args.JSONOutput = False
+ cityscapes_eval.args.colorized = False
+ cityscapes_eval.args.gtInstancesFile = os.path.join(self._temp_dir, "gtInstances.json")
+
+ # These lines are adopted from
+ # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa
+ gt_dir = PathManager.get_local_path(self._metadata.gt_dir)
+ groundTruthImgList = glob.glob(os.path.join(gt_dir, "*", "*_gtFine_instanceIds.png"))
+ assert len(
+ groundTruthImgList
+ ), "Cannot find any ground truth images to use for evaluation. Searched for: {}".format(
+ cityscapes_eval.args.groundTruthSearch
+ )
+ predictionImgList = []
+ for gt in groundTruthImgList:
+ predictionImgList.append(cityscapes_eval.getPrediction(gt, cityscapes_eval.args))
+ results = cityscapes_eval.evaluateImgLists(
+ predictionImgList, groundTruthImgList, cityscapes_eval.args
+ )["averages"]
+
+ ret = OrderedDict()
+ ret["segm"] = {"AP": results["allAp"] * 100, "AP50": results["allAp50%"] * 100}
+ self._working_dir.cleanup()
+ return ret
+
+
+class CityscapesSemSegEvaluator(CityscapesEvaluator):
+ """
+ Evaluate semantic segmentation results using cityscapes API.
+
+ Note:
+ * It does not work in multi-machine distributed training.
+ * It contains a synchronization, therefore has to be used on all ranks.
+ * Only the main process runs evaluation.
+ """
+
+ def process(self, inputs, outputs):
+ from cityscapesscripts.helpers.labels import trainId2label
+
+ for input, output in zip(inputs, outputs):
+ file_name = input["file_name"]
+ basename = os.path.splitext(os.path.basename(file_name))[0]
+ pred_filename = os.path.join(self._temp_dir, basename + "_pred.png")
+
+ output = output["sem_seg"].argmax(dim=0).to(self._cpu_device).numpy()
+ pred = 255 * np.ones(output.shape, dtype=np.uint8)
+ for train_id, label in trainId2label.items():
+ if label.ignoreInEval:
+ continue
+ pred[output == train_id] = label.id
+ Image.fromarray(pred).save(pred_filename)
+
+ def evaluate(self):
+ comm.synchronize()
+ if comm.get_rank() > 0:
+ return
+ # Load the Cityscapes eval script *after* setting the required env var,
+ # since the script reads CITYSCAPES_DATASET into global variables at load time.
+ import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as cityscapes_eval
+
+ self._logger.info("Evaluating results under {} ...".format(self._temp_dir))
+
+ # set some global states in cityscapes evaluation API, before evaluating
+ cityscapes_eval.args.predictionPath = os.path.abspath(self._temp_dir)
+ cityscapes_eval.args.predictionWalk = None
+ cityscapes_eval.args.JSONOutput = False
+ cityscapes_eval.args.colorized = False
+
+ # These lines are adopted from
+ # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalPixelLevelSemanticLabeling.py # noqa
+ gt_dir = PathManager.get_local_path(self._metadata.gt_dir)
+ groundTruthImgList = glob.glob(os.path.join(gt_dir, "*", "*_gtFine_labelIds.png"))
+ assert len(
+ groundTruthImgList
+ ), "Cannot find any ground truth images to use for evaluation. Searched for: {}".format(
+ cityscapes_eval.args.groundTruthSearch
+ )
+ predictionImgList = []
+ for gt in groundTruthImgList:
+ predictionImgList.append(cityscapes_eval.getPrediction(cityscapes_eval.args, gt))
+ results = cityscapes_eval.evaluateImgLists(
+ predictionImgList, groundTruthImgList, cityscapes_eval.args
+ )
+ ret = OrderedDict()
+ ret["sem_seg"] = {
+ "IoU": 100.0 * results["averageScoreClasses"],
+ "iIoU": 100.0 * results["averageScoreInstClasses"],
+ "IoU_sup": 100.0 * results["averageScoreCategories"],
+ "iIoU_sup": 100.0 * results["averageScoreInstCategories"],
+ }
+ self._working_dir.cleanup()
+ return ret
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/coco_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/coco_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..64b0903a43187db785113267ed16e82be6f5b28c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/coco_evaluation.py
@@ -0,0 +1,512 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import contextlib
+import copy
+import io
+import itertools
+import json
+import logging
+import numpy as np
+import os
+import pickle
+from collections import OrderedDict
+import pycocotools.mask as mask_util
+import torch
+from fvcore.common.file_io import PathManager
+from pycocotools.coco import COCO
+from pycocotools.cocoeval import COCOeval
+from tabulate import tabulate
+
+import detectron2.utils.comm as comm
+from detectron2.data import MetadataCatalog
+from detectron2.data.datasets.coco import convert_to_coco_json
+from detectron2.structures import Boxes, BoxMode, pairwise_iou
+from detectron2.utils.logger import create_small_table
+
+from .evaluator import DatasetEvaluator
+
+
+class COCOEvaluator(DatasetEvaluator):
+ """
+ Evaluate object proposal, instance detection/segmentation, keypoint detection
+ outputs using COCO's metrics and APIs.
+ """
+
+ def __init__(self, dataset_name, cfg, distributed, output_dir=None):
+ """
+ Args:
+ dataset_name (str): name of the dataset to be evaluated.
+ It must have either the following corresponding metadata:
+
+ "json_file": the path to the COCO format annotation
+
+ Or it must be in detectron2's standard dataset format
+ so it can be converted to COCO format automatically.
+ cfg (CfgNode): config instance
+ distributed (True): if True, will collect results from all ranks and run evaluation
+ in the main process.
+ Otherwise, will evaluate the results in the current process.
+ output_dir (str): optional, an output directory to dump all
+ results predicted on the dataset. The dump contains two files:
+
+ 1. "instance_predictions.pth" a file in torch serialization
+ format that contains all the raw original predictions.
+ 2. "coco_instances_results.json" a json file in COCO's result
+ format.
+ """
+ self._tasks = self._tasks_from_config(cfg)
+ self._distributed = distributed
+ self._output_dir = output_dir
+
+ self._cpu_device = torch.device("cpu")
+ self._logger = logging.getLogger(__name__)
+
+ self._metadata = MetadataCatalog.get(dataset_name)
+ if not hasattr(self._metadata, "json_file"):
+ self._logger.warning(
+ f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
+ " Trying to convert it to COCO format ..."
+ )
+
+ cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json")
+ self._metadata.json_file = cache_path
+ convert_to_coco_json(dataset_name, cache_path)
+
+ json_file = PathManager.get_local_path(self._metadata.json_file)
+ with contextlib.redirect_stdout(io.StringIO()):
+ self._coco_api = COCO(json_file)
+
+ self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
+ # Test set json files do not contain annotations (evaluation must be
+ # performed using the COCO evaluation server).
+ self._do_evaluation = "annotations" in self._coco_api.split_name
+
+ def reset(self):
+ self._predictions = []
+
+ def _tasks_from_config(self, cfg):
+ """
+ Returns:
+ tuple[str]: tasks that can be evaluated under the given configuration.
+ """
+ tasks = ("bbox",)
+ if cfg.MODEL.MASK_ON:
+ tasks = tasks + ("segm",)
+ if cfg.MODEL.KEYPOINT_ON:
+ tasks = tasks + ("keypoints",)
+ return tasks
+
+ def process(self, inputs, outputs):
+ """
+ Args:
+ inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
+ It is a list of dict. Each dict corresponds to an image and
+ contains keys like "height", "width", "file_name", "image_id".
+ outputs: the outputs of a COCO model. It is a list of dicts with key
+ "instances" that contains :class:`Instances`.
+ """
+ for input, output in zip(inputs, outputs):
+ prediction = {"image_id": input["image_id"]}
+
+ # TODO this is ugly
+ if "instances" in output:
+ instances = output["instances"].to(self._cpu_device)
+ prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
+ if "proposals" in output:
+ prediction["proposals"] = output["proposals"].to(self._cpu_device)
+ self._predictions.append(prediction)
+
+ def evaluate(self):
+ if self._distributed:
+ comm.synchronize()
+ predictions = comm.gather(self._predictions, dst=0)
+ predictions = list(itertools.chain(*predictions))
+
+ if not comm.is_main_process():
+ return {}
+ else:
+ predictions = self._predictions
+
+ if len(predictions) == 0:
+ self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
+ return {}
+
+ if self._output_dir:
+ PathManager.mkdirs(self._output_dir)
+ file_path = os.path.join(self._output_dir, "instances_predictions.pth")
+ with PathManager.open(file_path, "wb") as f:
+ torch.save(predictions, f)
+
+ self._results = OrderedDict()
+ if "proposals" in predictions[0]:
+ self._eval_box_proposals(predictions)
+ if "instances" in predictions[0]:
+ self._eval_predictions(set(self._tasks), predictions)
+ # Copy so the caller can do whatever with results
+ return copy.deepcopy(self._results)
+
+ def _eval_predictions(self, tasks, predictions):
+ """
+ Evaluate predictions on the given tasks.
+ Fill self._results with the metrics of the tasks.
+ """
+ self._logger.info("Preparing results for COCO format ...")
+ coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
+
+ # unmap the category ids for COCO
+ if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
+ reverse_id_mapping = {
+ v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
+ }
+ for result in coco_results:
+ category_id = result["category_id"]
+ assert (
+ category_id in reverse_id_mapping
+ ), "A prediction has category_id={}, which is not available in the dataset.".format(
+ category_id
+ )
+ result["category_id"] = reverse_id_mapping[category_id]
+
+ if self._output_dir:
+ file_path = os.path.join(self._output_dir, "coco_instances_results.json")
+ self._logger.info("Saving results to {}".format(file_path))
+ with PathManager.open(file_path, "w") as f:
+ f.write(json.dumps(coco_results))
+ f.flush()
+
+ if not self._do_evaluation:
+ self._logger.info("Annotations are not available for evaluation.")
+ return
+
+ self._logger.info("Evaluating predictions ...")
+ for task in sorted(tasks):
+ coco_eval = (
+ _evaluate_predictions_on_coco(
+ self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas
+ )
+ if len(coco_results) > 0
+ else None # cocoapi does not handle empty results very well
+ )
+
+ res = self._derive_coco_results(
+ coco_eval, task, class_names=self._metadata.get("thing_classes")
+ )
+ self._results[task] = res
+
+ def _eval_box_proposals(self, predictions):
+ """
+ Evaluate the box proposals in predictions.
+ Fill self._results with the metrics for "box_proposals" task.
+ """
+ if self._output_dir:
+ # Saving generated box proposals to file.
+ # Predicted box_proposals are in XYXY_ABS mode.
+ bbox_mode = BoxMode.XYXY_ABS.value
+ ids, boxes, objectness_logits = [], [], []
+ for prediction in predictions:
+ ids.append(prediction["image_id"])
+ boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy())
+ objectness_logits.append(prediction["proposals"].objectness_logits.numpy())
+
+ proposal_data = {
+ "boxes": boxes,
+ "objectness_logits": objectness_logits,
+ "ids": ids,
+ "bbox_mode": bbox_mode,
+ }
+ with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f:
+ pickle.dump(proposal_data, f)
+
+ if not self._do_evaluation:
+ self._logger.info("Annotations are not available for evaluation.")
+ return
+
+ self._logger.info("Evaluating bbox proposals ...")
+ res = {}
+ areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
+ for limit in [100, 1000]:
+ for area, suffix in areas.items():
+ stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit)
+ key = "AR{}@{:d}".format(suffix, limit)
+ res[key] = float(stats["ar"].item() * 100)
+ self._logger.info("Proposal metrics: \n" + create_small_table(res))
+ self._results["box_proposals"] = res
+
+ def _derive_coco_results(self, coco_eval, iou_type, class_names=None):
+ """
+ Derive the desired score numbers from summarized COCOeval.
+
+ Args:
+ coco_eval (None or COCOEval): None represents no predictions from model.
+ iou_type (str):
+ class_names (None or list[str]): if provided, will use it to predict
+ per-category AP.
+
+ Returns:
+ a dict of {metric name: score}
+ """
+
+ metrics = {
+ "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
+ "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
+ "keypoints": ["AP", "AP50", "AP75", "APm", "APl"],
+ }[iou_type]
+
+ if coco_eval is None:
+ self._logger.warn("No predictions from the model!")
+ return {metric: float("nan") for metric in metrics}
+
+ # the standard metrics
+ results = {
+ metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan")
+ for idx, metric in enumerate(metrics)
+ }
+ self._logger.info(
+ "Evaluation results for {}: \n".format(iou_type) + create_small_table(results)
+ )
+ if not np.isfinite(sum(results.values())):
+ self._logger.info("Note that some metrics cannot be computed.")
+
+ if class_names is None or len(class_names) <= 1:
+ return results
+ # Compute per-category AP
+ # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa
+ precisions = coco_eval.eval["precision"]
+ # precision has dims (iou, recall, cls, area range, max dets)
+ assert len(class_names) == precisions.shape[2]
+
+ results_per_category = []
+ for idx, name in enumerate(class_names):
+ # area range index 0: all area ranges
+ # max dets index -1: typically 100 per image
+ precision = precisions[:, :, idx, 0, -1]
+ precision = precision[precision > -1]
+ ap = np.mean(precision) if precision.size else float("nan")
+ results_per_category.append(("{}".format(name), float(ap * 100)))
+
+ # tabulate it
+ N_COLS = min(6, len(results_per_category) * 2)
+ results_flatten = list(itertools.chain(*results_per_category))
+ results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
+ table = tabulate(
+ results_2d,
+ tablefmt="pipe",
+ floatfmt=".3f",
+ headers=["category", "AP"] * (N_COLS // 2),
+ numalign="left",
+ )
+ self._logger.info("Per-category {} AP: \n".format(iou_type) + table)
+
+ results.update({"AP-" + name: ap for name, ap in results_per_category})
+ return results
+
+
+def instances_to_coco_json(instances, img_id):
+ """
+ Dump an "Instances" object to a COCO-format json that's used for evaluation.
+
+ Args:
+ instances (Instances):
+ img_id (int): the image id
+
+ Returns:
+ list[dict]: list of json annotations in COCO format.
+ """
+ num_instance = len(instances)
+ if num_instance == 0:
+ return []
+
+ boxes = instances.pred_boxes.tensor.numpy()
+ boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
+ boxes = boxes.tolist()
+ scores = instances.scores.tolist()
+ classes = instances.pred_classes.tolist()
+
+ has_mask = instances.has("pred_masks")
+ if has_mask:
+ # use RLE to encode the masks, because they are too large and takes memory
+ # since this evaluator stores outputs of the entire dataset
+ rles = [
+ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
+ for mask in instances.pred_masks
+ ]
+ for rle in rles:
+ # "counts" is an array encoded by mask_util as a byte-stream. Python3's
+ # json writer which always produces strings cannot serialize a bytestream
+ # unless you decode it. Thankfully, utf-8 works out (which is also what
+ # the pycocotools/_mask.pyx does).
+ rle["counts"] = rle["counts"].decode("utf-8")
+
+ has_keypoints = instances.has("pred_keypoints")
+ if has_keypoints:
+ keypoints = instances.pred_keypoints
+
+ results = []
+ for k in range(num_instance):
+ result = {
+ "image_id": img_id,
+ "category_id": classes[k],
+ "bbox": boxes[k],
+ "score": scores[k],
+ }
+ if has_mask:
+ result["segmentation"] = rles[k]
+ if has_keypoints:
+ # In COCO annotations,
+ # keypoints coordinates are pixel indices.
+ # However our predictions are floating point coordinates.
+ # Therefore we subtract 0.5 to be consistent with the annotation format.
+ # This is the inverse of data loading logic in `data/coco.py`.
+ keypoints[k][:, :2] -= 0.5
+ result["keypoints"] = keypoints[k].flatten().tolist()
+ results.append(result)
+ return results
+
+
+# inspired from Detectron:
+# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa
+def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None):
+ """
+ Evaluate detection proposal recall metrics. This function is a much
+ faster alternative to the official COCO API recall evaluation code. However,
+ it produces slightly different results.
+ """
+ # Record max overlap value for each gt box
+ # Return vector of overlap values
+ areas = {
+ "all": 0,
+ "small": 1,
+ "medium": 2,
+ "large": 3,
+ "96-128": 4,
+ "128-256": 5,
+ "256-512": 6,
+ "512-inf": 7,
+ }
+ area_ranges = [
+ [0 ** 2, 1e5 ** 2], # all
+ [0 ** 2, 32 ** 2], # small
+ [32 ** 2, 96 ** 2], # medium
+ [96 ** 2, 1e5 ** 2], # large
+ [96 ** 2, 128 ** 2], # 96-128
+ [128 ** 2, 256 ** 2], # 128-256
+ [256 ** 2, 512 ** 2], # 256-512
+ [512 ** 2, 1e5 ** 2],
+ ] # 512-inf
+ assert area in areas, "Unknown area range: {}".format(area)
+ area_range = area_ranges[areas[area]]
+ gt_overlaps = []
+ num_pos = 0
+
+ for prediction_dict in dataset_predictions:
+ predictions = prediction_dict["proposals"]
+
+ # sort predictions in descending order
+ # TODO maybe remove this and make it explicit in the documentation
+ inds = predictions.objectness_logits.sort(descending=True)[1]
+ predictions = predictions[inds]
+
+ ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"])
+ anno = coco_api.loadAnns(ann_ids)
+ gt_boxes = [
+ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
+ for obj in anno
+ if obj["iscrowd"] == 0
+ ]
+ gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes
+ gt_boxes = Boxes(gt_boxes)
+ gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0])
+
+ if len(gt_boxes) == 0 or len(predictions) == 0:
+ continue
+
+ valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
+ gt_boxes = gt_boxes[valid_gt_inds]
+
+ num_pos += len(gt_boxes)
+
+ if len(gt_boxes) == 0:
+ continue
+
+ if limit is not None and len(predictions) > limit:
+ predictions = predictions[:limit]
+
+ overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)
+
+ _gt_overlaps = torch.zeros(len(gt_boxes))
+ for j in range(min(len(predictions), len(gt_boxes))):
+ # find which proposal box maximally covers each gt box
+ # and get the iou amount of coverage for each gt box
+ max_overlaps, argmax_overlaps = overlaps.max(dim=0)
+
+ # find which gt box is 'best' covered (i.e. 'best' = most iou)
+ gt_ovr, gt_ind = max_overlaps.max(dim=0)
+ assert gt_ovr >= 0
+ # find the proposal box that covers the best covered gt box
+ box_ind = argmax_overlaps[gt_ind]
+ # record the iou coverage of this gt box
+ _gt_overlaps[j] = overlaps[box_ind, gt_ind]
+ assert _gt_overlaps[j] == gt_ovr
+ # mark the proposal box and the gt box as used
+ overlaps[box_ind, :] = -1
+ overlaps[:, gt_ind] = -1
+
+ # append recorded iou coverage level
+ gt_overlaps.append(_gt_overlaps)
+ gt_overlaps = (
+ torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32)
+ )
+ gt_overlaps, _ = torch.sort(gt_overlaps)
+
+ if thresholds is None:
+ step = 0.05
+ thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
+ recalls = torch.zeros_like(thresholds)
+ # compute recall for each iou threshold
+ for i, t in enumerate(thresholds):
+ recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
+ # ar = 2 * np.trapz(recalls, thresholds)
+ ar = recalls.mean()
+ return {
+ "ar": ar,
+ "recalls": recalls,
+ "thresholds": thresholds,
+ "gt_overlaps": gt_overlaps,
+ "num_pos": num_pos,
+ }
+
+
+def _evaluate_predictions_on_coco(coco_gt, coco_results, iou_type, kpt_oks_sigmas=None):
+ """
+ Evaluate the coco results using COCOEval API.
+ """
+ assert len(coco_results) > 0
+
+ if iou_type == "segm":
+ coco_results = copy.deepcopy(coco_results)
+ # When evaluating mask AP, if the results contain bbox, cocoapi will
+ # use the box area as the area of the instance, instead of the mask area.
+ # This leads to a different definition of small/medium/large.
+ # We remove the bbox field to let mask AP use mask area.
+ for c in coco_results:
+ c.pop("bbox", None)
+
+ coco_dt = coco_gt.loadRes(coco_results)
+ coco_eval = COCOeval(coco_gt, coco_dt, iou_type)
+ # Use the COCO default keypoint OKS sigmas unless overrides are specified
+ if kpt_oks_sigmas:
+ coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas)
+
+ if iou_type == "keypoints":
+ num_keypoints = len(coco_results[0]["keypoints"]) // 3
+ assert len(coco_eval.params.kpt_oks_sigmas) == num_keypoints, (
+ "[COCOEvaluator] The length of cfg.TEST.KEYPOINT_OKS_SIGMAS (default: 17) "
+ "must be equal to the number of keypoints. However the prediction has {} "
+ "keypoints! For more information please refer to "
+ "http://cocodataset.org/#keypoints-eval.".format(num_keypoints)
+ )
+
+ coco_eval.evaluate()
+ coco_eval.accumulate()
+ coco_eval.summarize()
+
+ return coco_eval
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/evaluator.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/evaluator.py
new file mode 100644
index 0000000000000000000000000000000000000000..dcb98043a1ededb3925d0ecbba3914d6409dc022
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/evaluator.py
@@ -0,0 +1,196 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import datetime
+import logging
+import time
+from collections import OrderedDict
+from contextlib import contextmanager
+import torch
+
+from detectron2.utils.comm import get_world_size, is_main_process
+from detectron2.utils.logger import log_every_n_seconds
+
+
+class DatasetEvaluator:
+ """
+ Base class for a dataset evaluator.
+
+ The function :func:`inference_on_dataset` runs the model over
+ all samples in the dataset, and have a DatasetEvaluator to process the inputs/outputs.
+
+ This class will accumulate information of the inputs/outputs (by :meth:`process`),
+ and produce evaluation results in the end (by :meth:`evaluate`).
+ """
+
+ def reset(self):
+ """
+ Preparation for a new round of evaluation.
+ Should be called before starting a round of evaluation.
+ """
+ pass
+
+ def process(self, inputs, outputs):
+ """
+ Process the pair of inputs and outputs.
+ If they contain batches, the pairs can be consumed one-by-one using `zip`:
+
+ .. code-block:: python
+
+ for input_, output in zip(inputs, outputs):
+ # do evaluation on single input/output pair
+ ...
+
+ Args:
+ inputs (list): the inputs that's used to call the model.
+ outputs (list): the return value of `model(inputs)`
+ """
+ pass
+
+ def evaluate(self):
+ """
+ Evaluate/summarize the performance, after processing all input/output pairs.
+
+ Returns:
+ dict:
+ A new evaluator class can return a dict of arbitrary format
+ as long as the user can process the results.
+ In our train_net.py, we expect the following format:
+
+ * key: the name of the task (e.g., bbox)
+ * value: a dict of {metric name: score}, e.g.: {"AP50": 80}
+ """
+ pass
+
+
+class DatasetEvaluators(DatasetEvaluator):
+ """
+ Wrapper class to combine multiple :class:`DatasetEvaluator` instances.
+
+ This class dispatches every evaluation call to
+ all of its :class:`DatasetEvaluator`.
+ """
+
+ def __init__(self, evaluators):
+ """
+ Args:
+ evaluators (list): the evaluators to combine.
+ """
+ super().__init__()
+ self._evaluators = evaluators
+
+ def reset(self):
+ for evaluator in self._evaluators:
+ evaluator.reset()
+
+ def process(self, inputs, outputs):
+ for evaluator in self._evaluators:
+ evaluator.process(inputs, outputs)
+
+ def evaluate(self):
+ results = OrderedDict()
+ for evaluator in self._evaluators:
+ result = evaluator.evaluate()
+ if is_main_process() and result is not None:
+ for k, v in result.items():
+ assert (
+ k not in results
+ ), "Different evaluators produce results with the same key {}".format(k)
+ results[k] = v
+ return results
+
+
+def inference_on_dataset(model, data_loader, evaluator):
+ """
+ Run model on the data_loader and evaluate the metrics with evaluator.
+ Also benchmark the inference speed of `model.forward` accurately.
+ The model will be used in eval mode.
+
+ Args:
+ model (nn.Module): a module which accepts an object from
+ `data_loader` and returns some outputs. It will be temporarily set to `eval` mode.
+
+ If you wish to evaluate a model in `training` mode instead, you can
+ wrap the given model and override its behavior of `.eval()` and `.train()`.
+ data_loader: an iterable object with a length.
+ The elements it generates will be the inputs to the model.
+ evaluator (DatasetEvaluator): the evaluator to run. Use `None` if you only want
+ to benchmark, but don't want to do any evaluation.
+
+ Returns:
+ The return value of `evaluator.evaluate()`
+ """
+ num_devices = get_world_size()
+ logger = logging.getLogger(__name__)
+ logger.info("Start inference on {} images".format(len(data_loader)))
+
+ total = len(data_loader) # inference data loader must have a fixed length
+ if evaluator is None:
+ # create a no-op evaluator
+ evaluator = DatasetEvaluators([])
+ evaluator.reset()
+
+ num_warmup = min(5, total - 1)
+ start_time = time.perf_counter()
+ total_compute_time = 0
+ with inference_context(model), torch.no_grad():
+ for idx, inputs in enumerate(data_loader):
+ if idx == num_warmup:
+ start_time = time.perf_counter()
+ total_compute_time = 0
+
+ start_compute_time = time.perf_counter()
+ outputs = model(inputs)
+ if torch.cuda.is_available():
+ torch.cuda.synchronize()
+ total_compute_time += time.perf_counter() - start_compute_time
+ evaluator.process(inputs, outputs)
+
+ iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
+ seconds_per_img = total_compute_time / iters_after_start
+ if idx >= num_warmup * 2 or seconds_per_img > 5:
+ total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start
+ eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1)))
+ log_every_n_seconds(
+ logging.INFO,
+ "Inference done {}/{}. {:.4f} s / demo. ETA={}".format(
+ idx + 1, total, seconds_per_img, str(eta)
+ ),
+ n=5,
+ )
+
+ # Measure the time only for this worker (before the synchronization barrier)
+ total_time = time.perf_counter() - start_time
+ total_time_str = str(datetime.timedelta(seconds=total_time))
+ # NOTE this format is parsed by grep
+ logger.info(
+ "Total inference time: {} ({:.6f} s / demo per device, on {} devices)".format(
+ total_time_str, total_time / (total - num_warmup), num_devices
+ )
+ )
+ total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time)))
+ logger.info(
+ "Total inference pure compute time: {} ({:.6f} s / demo per device, on {} devices)".format(
+ total_compute_time_str, total_compute_time / (total - num_warmup), num_devices
+ )
+ )
+
+ results = evaluator.evaluate()
+ # An evaluator may return None when not in main process.
+ # Replace it by an empty dict instead to make it easier for downstream code to handle
+ if results is None:
+ results = {}
+ return results
+
+
+@contextmanager
+def inference_context(model):
+ """
+ A context where the model is temporarily changed to eval mode,
+ and restored to previous mode afterwards.
+
+ Args:
+ model: a torch Module
+ """
+ training_mode = model.training
+ model.eval()
+ yield
+ model.train(training_mode)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/lvis_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/lvis_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..e55f50fb9d1fa7ccb685f812b603c10f9a1ffea0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/lvis_evaluation.py
@@ -0,0 +1,350 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import copy
+import itertools
+import json
+import logging
+import os
+import pickle
+from collections import OrderedDict
+import torch
+from fvcore.common.file_io import PathManager
+
+import detectron2.utils.comm as comm
+from detectron2.data import MetadataCatalog
+from detectron2.structures import Boxes, BoxMode, pairwise_iou
+from detectron2.utils.logger import create_small_table
+
+from .coco_evaluation import instances_to_coco_json
+from .evaluator import DatasetEvaluator
+
+
+class LVISEvaluator(DatasetEvaluator):
+ """
+ Evaluate object proposal and instance detection/segmentation outputs using
+ LVIS's metrics and evaluation API.
+ """
+
+ def __init__(self, dataset_name, cfg, distributed, output_dir=None):
+ """
+ Args:
+ dataset_name (str): name of the dataset to be evaluated.
+ It must have the following corresponding metadata:
+ "json_file": the path to the LVIS format annotation
+ cfg (CfgNode): config instance
+ distributed (True): if True, will collect results from all ranks for evaluation.
+ Otherwise, will evaluate the results in the current process.
+ output_dir (str): optional, an output directory to dump results.
+ """
+ from lvis import LVIS
+
+ self._tasks = self._tasks_from_config(cfg)
+ self._distributed = distributed
+ self._output_dir = output_dir
+
+ self._cpu_device = torch.device("cpu")
+ self._logger = logging.getLogger(__name__)
+
+ self._metadata = MetadataCatalog.get(dataset_name)
+ json_file = PathManager.get_local_path(self._metadata.json_file)
+ self._lvis_api = LVIS(json_file)
+ # Test set json files do not contain annotations (evaluation must be
+ # performed using the LVIS evaluation server).
+ self._do_evaluation = len(self._lvis_api.get_ann_ids()) > 0
+
+ def reset(self):
+ self._predictions = []
+
+ def _tasks_from_config(self, cfg):
+ """
+ Returns:
+ tuple[str]: tasks that can be evaluated under the given configuration.
+ """
+ tasks = ("bbox",)
+ if cfg.MODEL.MASK_ON:
+ tasks = tasks + ("segm",)
+ return tasks
+
+ def process(self, inputs, outputs):
+ """
+ Args:
+ inputs: the inputs to a LVIS model (e.g., GeneralizedRCNN).
+ It is a list of dict. Each dict corresponds to an image and
+ contains keys like "height", "width", "file_name", "image_id".
+ outputs: the outputs of a LVIS model. It is a list of dicts with key
+ "instances" that contains :class:`Instances`.
+ """
+ for input, output in zip(inputs, outputs):
+ prediction = {"image_id": input["image_id"]}
+
+ if "instances" in output:
+ instances = output["instances"].to(self._cpu_device)
+ prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
+ if "proposals" in output:
+ prediction["proposals"] = output["proposals"].to(self._cpu_device)
+ self._predictions.append(prediction)
+
+ def evaluate(self):
+ if self._distributed:
+ comm.synchronize()
+ predictions = comm.gather(self._predictions, dst=0)
+ predictions = list(itertools.chain(*predictions))
+
+ if not comm.is_main_process():
+ return
+ else:
+ predictions = self._predictions
+
+ if len(predictions) == 0:
+ self._logger.warning("[LVISEvaluator] Did not receive valid predictions.")
+ return {}
+
+ if self._output_dir:
+ PathManager.mkdirs(self._output_dir)
+ file_path = os.path.join(self._output_dir, "instances_predictions.pth")
+ with PathManager.open(file_path, "wb") as f:
+ torch.save(predictions, f)
+
+ self._results = OrderedDict()
+ if "proposals" in predictions[0]:
+ self._eval_box_proposals(predictions)
+ if "instances" in predictions[0]:
+ self._eval_predictions(set(self._tasks), predictions)
+ # Copy so the caller can do whatever with results
+ return copy.deepcopy(self._results)
+
+ def _eval_predictions(self, tasks, predictions):
+ """
+ Evaluate predictions on the given tasks.
+ Fill self._results with the metrics of the tasks.
+
+ Args:
+ predictions (list[dict]): list of outputs from the model
+ """
+ self._logger.info("Preparing results in the LVIS format ...")
+ lvis_results = list(itertools.chain(*[x["instances"] for x in predictions]))
+
+ # LVIS evaluator can be used to evaluate results for COCO dataset categories.
+ # In this case `_metadata` variable will have a field with COCO-specific category mapping.
+ if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
+ reverse_id_mapping = {
+ v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
+ }
+ for result in lvis_results:
+ result["category_id"] = reverse_id_mapping[result["category_id"]]
+ else:
+ # unmap the category ids for LVIS (from 0-indexed to 1-indexed)
+ for result in lvis_results:
+ result["category_id"] += 1
+
+ if self._output_dir:
+ file_path = os.path.join(self._output_dir, "lvis_instances_results.json")
+ self._logger.info("Saving results to {}".format(file_path))
+ with PathManager.open(file_path, "w") as f:
+ f.write(json.dumps(lvis_results))
+ f.flush()
+
+ if not self._do_evaluation:
+ self._logger.info("Annotations are not available for evaluation.")
+ return
+
+ self._logger.info("Evaluating predictions ...")
+ for task in sorted(tasks):
+ res = _evaluate_predictions_on_lvis(
+ self._lvis_api, lvis_results, task, class_names=self._metadata.get("thing_classes")
+ )
+ self._results[task] = res
+
+ def _eval_box_proposals(self, predictions):
+ """
+ Evaluate the box proposals in predictions.
+ Fill self._results with the metrics for "box_proposals" task.
+ """
+ if self._output_dir:
+ # Saving generated box proposals to file.
+ # Predicted box_proposals are in XYXY_ABS mode.
+ bbox_mode = BoxMode.XYXY_ABS.value
+ ids, boxes, objectness_logits = [], [], []
+ for prediction in predictions:
+ ids.append(prediction["image_id"])
+ boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy())
+ objectness_logits.append(prediction["proposals"].objectness_logits.numpy())
+
+ proposal_data = {
+ "boxes": boxes,
+ "objectness_logits": objectness_logits,
+ "ids": ids,
+ "bbox_mode": bbox_mode,
+ }
+ with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f:
+ pickle.dump(proposal_data, f)
+
+ if not self._do_evaluation:
+ self._logger.info("Annotations are not available for evaluation.")
+ return
+
+ self._logger.info("Evaluating bbox proposals ...")
+ res = {}
+ areas = {"all": "", "small": "s", "medium": "m", "large": "l"}
+ for limit in [100, 1000]:
+ for area, suffix in areas.items():
+ stats = _evaluate_box_proposals(predictions, self._lvis_api, area=area, limit=limit)
+ key = "AR{}@{:d}".format(suffix, limit)
+ res[key] = float(stats["ar"].item() * 100)
+ self._logger.info("Proposal metrics: \n" + create_small_table(res))
+ self._results["box_proposals"] = res
+
+
+# inspired from Detectron:
+# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa
+def _evaluate_box_proposals(dataset_predictions, lvis_api, thresholds=None, area="all", limit=None):
+ """
+ Evaluate detection proposal recall metrics. This function is a much
+ faster alternative to the official LVIS API recall evaluation code. However,
+ it produces slightly different results.
+ """
+ # Record max overlap value for each gt box
+ # Return vector of overlap values
+ areas = {
+ "all": 0,
+ "small": 1,
+ "medium": 2,
+ "large": 3,
+ "96-128": 4,
+ "128-256": 5,
+ "256-512": 6,
+ "512-inf": 7,
+ }
+ area_ranges = [
+ [0 ** 2, 1e5 ** 2], # all
+ [0 ** 2, 32 ** 2], # small
+ [32 ** 2, 96 ** 2], # medium
+ [96 ** 2, 1e5 ** 2], # large
+ [96 ** 2, 128 ** 2], # 96-128
+ [128 ** 2, 256 ** 2], # 128-256
+ [256 ** 2, 512 ** 2], # 256-512
+ [512 ** 2, 1e5 ** 2],
+ ] # 512-inf
+ assert area in areas, "Unknown area range: {}".format(area)
+ area_range = area_ranges[areas[area]]
+ gt_overlaps = []
+ num_pos = 0
+
+ for prediction_dict in dataset_predictions:
+ predictions = prediction_dict["proposals"]
+
+ # sort predictions in descending order
+ # TODO maybe remove this and make it explicit in the documentation
+ inds = predictions.objectness_logits.sort(descending=True)[1]
+ predictions = predictions[inds]
+
+ ann_ids = lvis_api.get_ann_ids(img_ids=[prediction_dict["image_id"]])
+ anno = lvis_api.load_anns(ann_ids)
+ gt_boxes = [
+ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno
+ ]
+ gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes
+ gt_boxes = Boxes(gt_boxes)
+ gt_areas = torch.as_tensor([obj["area"] for obj in anno])
+
+ if len(gt_boxes) == 0 or len(predictions) == 0:
+ continue
+
+ valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
+ gt_boxes = gt_boxes[valid_gt_inds]
+
+ num_pos += len(gt_boxes)
+
+ if len(gt_boxes) == 0:
+ continue
+
+ if limit is not None and len(predictions) > limit:
+ predictions = predictions[:limit]
+
+ overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)
+
+ _gt_overlaps = torch.zeros(len(gt_boxes))
+ for j in range(min(len(predictions), len(gt_boxes))):
+ # find which proposal box maximally covers each gt box
+ # and get the iou amount of coverage for each gt box
+ max_overlaps, argmax_overlaps = overlaps.max(dim=0)
+
+ # find which gt box is 'best' covered (i.e. 'best' = most iou)
+ gt_ovr, gt_ind = max_overlaps.max(dim=0)
+ assert gt_ovr >= 0
+ # find the proposal box that covers the best covered gt box
+ box_ind = argmax_overlaps[gt_ind]
+ # record the iou coverage of this gt box
+ _gt_overlaps[j] = overlaps[box_ind, gt_ind]
+ assert _gt_overlaps[j] == gt_ovr
+ # mark the proposal box and the gt box as used
+ overlaps[box_ind, :] = -1
+ overlaps[:, gt_ind] = -1
+
+ # append recorded iou coverage level
+ gt_overlaps.append(_gt_overlaps)
+ gt_overlaps = (
+ torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32)
+ )
+ gt_overlaps, _ = torch.sort(gt_overlaps)
+
+ if thresholds is None:
+ step = 0.05
+ thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
+ recalls = torch.zeros_like(thresholds)
+ # compute recall for each iou threshold
+ for i, t in enumerate(thresholds):
+ recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
+ # ar = 2 * np.trapz(recalls, thresholds)
+ ar = recalls.mean()
+ return {
+ "ar": ar,
+ "recalls": recalls,
+ "thresholds": thresholds,
+ "gt_overlaps": gt_overlaps,
+ "num_pos": num_pos,
+ }
+
+
+def _evaluate_predictions_on_lvis(lvis_gt, lvis_results, iou_type, class_names=None):
+ """
+ Args:
+ iou_type (str):
+ kpt_oks_sigmas (list[float]):
+ class_names (None or list[str]): if provided, will use it to predict
+ per-category AP.
+
+ Returns:
+ a dict of {metric name: score}
+ """
+ metrics = {
+ "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
+ "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
+ }[iou_type]
+
+ logger = logging.getLogger(__name__)
+
+ if len(lvis_results) == 0: # TODO: check if needed
+ logger.warn("No predictions from the model!")
+ return {metric: float("nan") for metric in metrics}
+
+ if iou_type == "segm":
+ lvis_results = copy.deepcopy(lvis_results)
+ # When evaluating mask AP, if the results contain bbox, LVIS API will
+ # use the box area as the area of the instance, instead of the mask area.
+ # This leads to a different definition of small/medium/large.
+ # We remove the bbox field to let mask AP use mask area.
+ for c in lvis_results:
+ c.pop("bbox", None)
+
+ from lvis import LVISEval, LVISResults
+
+ lvis_results = LVISResults(lvis_gt, lvis_results)
+ lvis_eval = LVISEval(lvis_gt, lvis_results, iou_type)
+ lvis_eval.run()
+ lvis_eval.print_results()
+
+ # Pull the standard metrics from the LVIS results
+ results = lvis_eval.get_results()
+ results = {metric: float(results[metric] * 100) for metric in metrics}
+ logger.info("Evaluation results for {}: \n".format(iou_type) + create_small_table(results))
+ return results
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/panoptic_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/panoptic_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb5e7ab87b1dd5bb3e0c5d1e405e321c48d9e6a0
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/panoptic_evaluation.py
@@ -0,0 +1,167 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import contextlib
+import io
+import itertools
+import json
+import logging
+import os
+import tempfile
+from collections import OrderedDict
+from fvcore.common.file_io import PathManager
+from PIL import Image
+from tabulate import tabulate
+
+from detectron2.data import MetadataCatalog
+from detectron2.utils import comm
+
+from .evaluator import DatasetEvaluator
+
+logger = logging.getLogger(__name__)
+
+
+class COCOPanopticEvaluator(DatasetEvaluator):
+ """
+ Evaluate Panoptic Quality metrics on COCO using PanopticAPI.
+ It saves panoptic segmentation prediction in `output_dir`
+
+ It contains a synchronize call and has to be called from all workers.
+ """
+
+ def __init__(self, dataset_name, output_dir):
+ """
+ Args:
+ dataset_name (str): name of the dataset
+ output_dir (str): output directory to save results for evaluation
+ """
+ self._metadata = MetadataCatalog.get(dataset_name)
+ self._thing_contiguous_id_to_dataset_id = {
+ v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
+ }
+ self._stuff_contiguous_id_to_dataset_id = {
+ v: k for k, v in self._metadata.stuff_dataset_id_to_contiguous_id.items()
+ }
+
+ self._predictions_json = os.path.join(output_dir, "predictions.json")
+
+ def reset(self):
+ self._predictions = []
+
+ def _convert_category_id(self, segment_info):
+ isthing = segment_info.pop("isthing", None)
+ if isthing is None:
+ # the model produces panoptic category id directly. No more conversion needed
+ return segment_info
+ if isthing is True:
+ segment_info["category_id"] = self._thing_contiguous_id_to_dataset_id[
+ segment_info["category_id"]
+ ]
+ else:
+ segment_info["category_id"] = self._stuff_contiguous_id_to_dataset_id[
+ segment_info["category_id"]
+ ]
+ return segment_info
+
+ def process(self, inputs, outputs):
+ from panopticapi.utils import id2rgb
+
+ for input, output in zip(inputs, outputs):
+ panoptic_img, segments_info = output["panoptic_seg"]
+ panoptic_img = panoptic_img.cpu().numpy()
+
+ file_name = os.path.basename(input["file_name"])
+ file_name_png = os.path.splitext(file_name)[0] + ".png"
+ with io.BytesIO() as out:
+ Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG")
+ segments_info = [self._convert_category_id(x) for x in segments_info]
+ self._predictions.append(
+ {
+ "image_id": input["image_id"],
+ "file_name": file_name_png,
+ "png_string": out.getvalue(),
+ "segments_info": segments_info,
+ }
+ )
+
+ def evaluate(self):
+ comm.synchronize()
+
+ self._predictions = comm.gather(self._predictions)
+ self._predictions = list(itertools.chain(*self._predictions))
+ if not comm.is_main_process():
+ return
+
+ # PanopticApi requires local files
+ gt_json = PathManager.get_local_path(self._metadata.panoptic_json)
+ gt_folder = PathManager.get_local_path(self._metadata.panoptic_root)
+
+ with tempfile.TemporaryDirectory(prefix="panoptic_eval") as pred_dir:
+ logger.info("Writing all panoptic predictions to {} ...".format(pred_dir))
+ for p in self._predictions:
+ with open(os.path.join(pred_dir, p["file_name"]), "wb") as f:
+ f.write(p.pop("png_string"))
+
+ with open(gt_json, "r") as f:
+ json_data = json.load(f)
+ json_data["annotations"] = self._predictions
+ with PathManager.open(self._predictions_json, "w") as f:
+ f.write(json.dumps(json_data))
+
+ from panopticapi.evaluation import pq_compute
+
+ with contextlib.redirect_stdout(io.StringIO()):
+ pq_res = pq_compute(
+ gt_json,
+ PathManager.get_local_path(self._predictions_json),
+ gt_folder=gt_folder,
+ pred_folder=pred_dir,
+ )
+
+ res = {}
+ res["PQ"] = 100 * pq_res["All"]["pq"]
+ res["SQ"] = 100 * pq_res["All"]["sq"]
+ res["RQ"] = 100 * pq_res["All"]["rq"]
+ res["PQ_th"] = 100 * pq_res["Things"]["pq"]
+ res["SQ_th"] = 100 * pq_res["Things"]["sq"]
+ res["RQ_th"] = 100 * pq_res["Things"]["rq"]
+ res["PQ_st"] = 100 * pq_res["Stuff"]["pq"]
+ res["SQ_st"] = 100 * pq_res["Stuff"]["sq"]
+ res["RQ_st"] = 100 * pq_res["Stuff"]["rq"]
+
+ results = OrderedDict({"panoptic_seg": res})
+ _print_panoptic_results(pq_res)
+
+ return results
+
+
+def _print_panoptic_results(pq_res):
+ headers = ["", "PQ", "SQ", "RQ", "#categories"]
+ data = []
+ for name in ["All", "Things", "Stuff"]:
+ row = [name] + [pq_res[name][k] * 100 for k in ["pq", "sq", "rq"]] + [pq_res[name]["n"]]
+ data.append(row)
+ table = tabulate(
+ data, headers=headers, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center"
+ )
+ logger.info("Panoptic Evaluation Results:\n" + table)
+
+
+if __name__ == "__main__":
+ from detectron2.utils.logger import setup_logger
+
+ logger = setup_logger()
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--gt-json")
+ parser.add_argument("--gt-dir")
+ parser.add_argument("--pred-json")
+ parser.add_argument("--pred-dir")
+ args = parser.parse_args()
+
+ from panopticapi.evaluation import pq_compute
+
+ with contextlib.redirect_stdout(io.StringIO()):
+ pq_res = pq_compute(
+ args.gt_json, args.pred_json, gt_folder=args.gt_dir, pred_folder=args.pred_dir
+ )
+ _print_panoptic_results(pq_res)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/pascal_voc_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/pascal_voc_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..22d2e523d23c695e06e5da5cb3a210a6d1945dfb
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/pascal_voc_evaluation.py
@@ -0,0 +1,294 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import logging
+import numpy as np
+import os
+import tempfile
+import xml.etree.ElementTree as ET
+from collections import OrderedDict, defaultdict
+from functools import lru_cache
+import torch
+from fvcore.common.file_io import PathManager
+
+from detectron2.data import MetadataCatalog
+from detectron2.utils import comm
+
+from .evaluator import DatasetEvaluator
+
+
+class PascalVOCDetectionEvaluator(DatasetEvaluator):
+ """
+ Evaluate Pascal VOC AP.
+ It contains a synchronization, therefore has to be called from all ranks.
+
+ Note that this is a rewrite of the official Matlab API.
+ The results should be similar, but not identical to the one produced by
+ the official API.
+ """
+
+ def __init__(self, dataset_name):
+ """
+ Args:
+ dataset_name (str): name of the dataset, e.g., "voc_2007_test"
+ """
+ self._dataset_name = dataset_name
+ meta = MetadataCatalog.get(dataset_name)
+ self._anno_file_template = os.path.join(meta.dirname, "Annotations", "{}.xml")
+ self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt")
+ self._class_names = meta.thing_classes
+ assert meta.year in [2007, 2012], meta.year
+ self._is_2007 = meta.year == 2007
+ self._cpu_device = torch.device("cpu")
+ self._logger = logging.getLogger(__name__)
+
+ def reset(self):
+ self._predictions = defaultdict(list) # class name -> list of prediction strings
+
+ def process(self, inputs, outputs):
+ for input, output in zip(inputs, outputs):
+ image_id = input["image_id"]
+ instances = output["instances"].to(self._cpu_device)
+ boxes = instances.pred_boxes.tensor.numpy()
+ scores = instances.scores.tolist()
+ classes = instances.pred_classes.tolist()
+ for box, score, cls in zip(boxes, scores, classes):
+ xmin, ymin, xmax, ymax = box
+ # The inverse of data loading logic in `data/pascal_voc.py`
+ xmin += 1
+ ymin += 1
+ self._predictions[cls].append(
+ f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}"
+ )
+
+ def evaluate(self):
+ """
+ Returns:
+ dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75".
+ """
+ all_predictions = comm.gather(self._predictions, dst=0)
+ if not comm.is_main_process():
+ return
+ predictions = defaultdict(list)
+ for predictions_per_rank in all_predictions:
+ for clsid, lines in predictions_per_rank.items():
+ predictions[clsid].extend(lines)
+ del all_predictions
+
+ self._logger.info(
+ "Evaluating {} using {} metric. "
+ "Note that results do not use the official Matlab API.".format(
+ self._dataset_name, 2007 if self._is_2007 else 2012
+ )
+ )
+
+ with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname:
+ res_file_template = os.path.join(dirname, "{}.txt")
+
+ aps = defaultdict(list) # iou -> ap per class
+ for cls_id, cls_name in enumerate(self._class_names):
+ lines = predictions.get(cls_id, [""])
+
+ with open(res_file_template.format(cls_name), "w") as f:
+ f.write("\n".join(lines))
+
+ for thresh in range(50, 100, 5):
+ rec, prec, ap = voc_eval(
+ res_file_template,
+ self._anno_file_template,
+ self._image_set_path,
+ cls_name,
+ ovthresh=thresh / 100.0,
+ use_07_metric=self._is_2007,
+ )
+ aps[thresh].append(ap * 100)
+
+ ret = OrderedDict()
+ mAP = {iou: np.mean(x) for iou, x in aps.items()}
+ ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]}
+ return ret
+
+
+##############################################################################
+#
+# Below code is modified from
+# https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py
+# --------------------------------------------------------
+# Fast/er R-CNN
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Bharath Hariharan
+# --------------------------------------------------------
+
+"""Python implementation of the PASCAL VOC devkit's AP evaluation code."""
+
+
+@lru_cache(maxsize=None)
+def parse_rec(filename):
+ """Parse a PASCAL VOC xml file."""
+ with PathManager.open(filename) as f:
+ tree = ET.parse(f)
+ objects = []
+ for obj in tree.findall("object"):
+ obj_struct = {}
+ obj_struct["name"] = obj.find("name").text
+ obj_struct["pose"] = obj.find("pose").text
+ obj_struct["truncated"] = int(obj.find("truncated").text)
+ obj_struct["difficult"] = int(obj.find("difficult").text)
+ bbox = obj.find("bndbox")
+ obj_struct["bbox"] = [
+ int(bbox.find("xmin").text),
+ int(bbox.find("ymin").text),
+ int(bbox.find("xmax").text),
+ int(bbox.find("ymax").text),
+ ]
+ objects.append(obj_struct)
+
+ return objects
+
+
+def voc_ap(rec, prec, use_07_metric=False):
+ """Compute VOC AP given precision and recall. If use_07_metric is true, uses
+ the VOC 07 11-point method (default:False).
+ """
+ if use_07_metric:
+ # 11 point metric
+ ap = 0.0
+ for t in np.arange(0.0, 1.1, 0.1):
+ if np.sum(rec >= t) == 0:
+ p = 0
+ else:
+ p = np.max(prec[rec >= t])
+ ap = ap + p / 11.0
+ else:
+ # correct AP calculation
+ # first append sentinel values at the end
+ mrec = np.concatenate(([0.0], rec, [1.0]))
+ mpre = np.concatenate(([0.0], prec, [0.0]))
+
+ # compute the precision envelope
+ for i in range(mpre.size - 1, 0, -1):
+ mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
+
+ # to calculate area under PR curve, look for points
+ # where X axis (recall) changes value
+ i = np.where(mrec[1:] != mrec[:-1])[0]
+
+ # and sum (\Delta recall) * prec
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
+ return ap
+
+
+def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False):
+ """rec, prec, ap = voc_eval(detpath,
+ annopath,
+ imagesetfile,
+ classname,
+ [ovthresh],
+ [use_07_metric])
+
+ Top level function that does the PASCAL VOC evaluation.
+
+ detpath: Path to detections
+ detpath.format(classname) should produce the detection results file.
+ annopath: Path to annotations
+ annopath.format(imagename) should be the xml annotations file.
+ imagesetfile: Text file containing the list of images, one image per line.
+ classname: Category name (duh)
+ [ovthresh]: Overlap threshold (default = 0.5)
+ [use_07_metric]: Whether to use VOC07's 11 point AP computation
+ (default False)
+ """
+ # assumes detections are in detpath.format(classname)
+ # assumes annotations are in annopath.format(imagename)
+ # assumes imagesetfile is a text file with each line an image name
+
+ # first load gt
+ # read list of images
+ with PathManager.open(imagesetfile, "r") as f:
+ lines = f.readlines()
+ imagenames = [x.strip() for x in lines]
+
+ # load annots
+ recs = {}
+ for imagename in imagenames:
+ recs[imagename] = parse_rec(annopath.format(imagename))
+
+ # extract gt objects for this class
+ class_recs = {}
+ npos = 0
+ for imagename in imagenames:
+ R = [obj for obj in recs[imagename] if obj["name"] == classname]
+ bbox = np.array([x["bbox"] for x in R])
+ difficult = np.array([x["difficult"] for x in R]).astype(np.bool)
+ # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT
+ det = [False] * len(R)
+ npos = npos + sum(~difficult)
+ class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det}
+
+ # read dets
+ detfile = detpath.format(classname)
+ with open(detfile, "r") as f:
+ lines = f.readlines()
+
+ splitlines = [x.strip().split(" ") for x in lines]
+ image_ids = [x[0] for x in splitlines]
+ confidence = np.array([float(x[1]) for x in splitlines])
+ BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4)
+
+ # sort by confidence
+ sorted_ind = np.argsort(-confidence)
+ BB = BB[sorted_ind, :]
+ image_ids = [image_ids[x] for x in sorted_ind]
+
+ # go down dets and mark TPs and FPs
+ nd = len(image_ids)
+ tp = np.zeros(nd)
+ fp = np.zeros(nd)
+ for d in range(nd):
+ R = class_recs[image_ids[d]]
+ bb = BB[d, :].astype(float)
+ ovmax = -np.inf
+ BBGT = R["bbox"].astype(float)
+
+ if BBGT.size > 0:
+ # compute overlaps
+ # intersection
+ ixmin = np.maximum(BBGT[:, 0], bb[0])
+ iymin = np.maximum(BBGT[:, 1], bb[1])
+ ixmax = np.minimum(BBGT[:, 2], bb[2])
+ iymax = np.minimum(BBGT[:, 3], bb[3])
+ iw = np.maximum(ixmax - ixmin + 1.0, 0.0)
+ ih = np.maximum(iymax - iymin + 1.0, 0.0)
+ inters = iw * ih
+
+ # union
+ uni = (
+ (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0)
+ + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0)
+ - inters
+ )
+
+ overlaps = inters / uni
+ ovmax = np.max(overlaps)
+ jmax = np.argmax(overlaps)
+
+ if ovmax > ovthresh:
+ if not R["difficult"][jmax]:
+ if not R["det"][jmax]:
+ tp[d] = 1.0
+ R["det"][jmax] = 1
+ else:
+ fp[d] = 1.0
+ else:
+ fp[d] = 1.0
+
+ # compute precision recall
+ fp = np.cumsum(fp)
+ tp = np.cumsum(tp)
+ rec = tp / float(npos)
+ # avoid divide by zero in case the first detection matches a difficult
+ # ground truth
+ prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
+ ap = voc_ap(rec, prec, use_07_metric)
+
+ return rec, prec, ap
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/rotated_coco_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/rotated_coco_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..30746e1aaac9a1feb0c7994d9229423e9f04bb51
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/rotated_coco_evaluation.py
@@ -0,0 +1,204 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import itertools
+import json
+import numpy as np
+import os
+import torch
+from fvcore.common.file_io import PathManager
+from pycocotools.cocoeval import COCOeval, maskUtils
+
+from detectron2.structures import BoxMode, RotatedBoxes, pairwise_iou_rotated
+
+from .coco_evaluation import COCOEvaluator
+
+
+class RotatedCOCOeval(COCOeval):
+ @staticmethod
+ def is_rotated(box_list):
+ if type(box_list) == np.ndarray:
+ return box_list.shape[1] == 5
+ elif type(box_list) == list:
+ if box_list == []: # cannot decide the box_dim
+ return False
+ return np.all(
+ np.array(
+ [
+ (len(obj) == 5) and ((type(obj) == list) or (type(obj) == np.ndarray))
+ for obj in box_list
+ ]
+ )
+ )
+ return False
+
+ @staticmethod
+ def boxlist_to_tensor(boxlist, output_box_dim):
+ if type(boxlist) == np.ndarray:
+ box_tensor = torch.from_numpy(boxlist)
+ elif type(boxlist) == list:
+ if boxlist == []:
+ return torch.zeros((0, output_box_dim), dtype=torch.float32)
+ else:
+ box_tensor = torch.FloatTensor(boxlist)
+ else:
+ raise Exception("Unrecognized boxlist type")
+
+ input_box_dim = box_tensor.shape[1]
+ if input_box_dim != output_box_dim:
+ if input_box_dim == 4 and output_box_dim == 5:
+ box_tensor = BoxMode.convert(box_tensor, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
+ else:
+ raise Exception(
+ "Unable to convert from {}-dim box to {}-dim box".format(
+ input_box_dim, output_box_dim
+ )
+ )
+ return box_tensor
+
+ def compute_iou_dt_gt(self, dt, gt, is_crowd):
+ if self.is_rotated(dt) or self.is_rotated(gt):
+ # TODO: take is_crowd into consideration
+ assert all(c == 0 for c in is_crowd)
+ dt = RotatedBoxes(self.boxlist_to_tensor(dt, output_box_dim=5))
+ gt = RotatedBoxes(self.boxlist_to_tensor(gt, output_box_dim=5))
+ return pairwise_iou_rotated(dt, gt)
+ else:
+ # This is the same as the classical COCO evaluation
+ return maskUtils.iou(dt, gt, is_crowd)
+
+ def computeIoU(self, imgId, catId):
+ p = self.params
+ if p.useCats:
+ gt = self._gts[imgId, catId]
+ dt = self._dts[imgId, catId]
+ else:
+ gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
+ dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
+ if len(gt) == 0 and len(dt) == 0:
+ return []
+ inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
+ dt = [dt[i] for i in inds]
+ if len(dt) > p.maxDets[-1]:
+ dt = dt[0 : p.maxDets[-1]]
+
+ assert p.iouType == "bbox", "unsupported iouType for iou computation"
+
+ g = [g["bbox"] for g in gt]
+ d = [d["bbox"] for d in dt]
+
+ # compute iou between each dt and gt region
+ iscrowd = [int(o["iscrowd"]) for o in gt]
+
+ # Note: this function is copied from cocoeval.py in cocoapi
+ # and the major difference is here.
+ ious = self.compute_iou_dt_gt(d, g, iscrowd)
+ return ious
+
+
+class RotatedCOCOEvaluator(COCOEvaluator):
+ """
+ Evaluate object proposal/instance detection outputs using COCO-like metrics and APIs,
+ with rotated boxes support.
+ Note: this uses IOU only and does not consider angle differences.
+ """
+
+ def process(self, inputs, outputs):
+ """
+ Args:
+ inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
+ It is a list of dict. Each dict corresponds to an image and
+ contains keys like "height", "width", "file_name", "image_id".
+ outputs: the outputs of a COCO model. It is a list of dicts with key
+ "instances" that contains :class:`Instances`.
+ """
+ for input, output in zip(inputs, outputs):
+ prediction = {"image_id": input["image_id"]}
+
+ if "instances" in output:
+ instances = output["instances"].to(self._cpu_device)
+
+ prediction["instances"] = self.instances_to_json(instances, input["image_id"])
+ if "proposals" in output:
+ prediction["proposals"] = output["proposals"].to(self._cpu_device)
+ self._predictions.append(prediction)
+
+ def instances_to_json(self, instances, img_id):
+ num_instance = len(instances)
+ if num_instance == 0:
+ return []
+
+ boxes = instances.pred_boxes.tensor.numpy()
+ if boxes.shape[1] == 4:
+ boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
+ boxes = boxes.tolist()
+ scores = instances.scores.tolist()
+ classes = instances.pred_classes.tolist()
+
+ results = []
+ for k in range(num_instance):
+ result = {
+ "image_id": img_id,
+ "category_id": classes[k],
+ "bbox": boxes[k],
+ "score": scores[k],
+ }
+
+ results.append(result)
+ return results
+
+ def _eval_predictions(self, tasks, predictions):
+ """
+ Evaluate predictions on the given tasks.
+ Fill self._results with the metrics of the tasks.
+ """
+ self._logger.info("Preparing results for COCO format ...")
+ coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
+
+ # unmap the category ids for COCO
+ if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
+ reverse_id_mapping = {
+ v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
+ }
+ for result in coco_results:
+ result["category_id"] = reverse_id_mapping[result["category_id"]]
+
+ if self._output_dir:
+ file_path = os.path.join(self._output_dir, "coco_instances_results.json")
+ self._logger.info("Saving results to {}".format(file_path))
+ with PathManager.open(file_path, "w") as f:
+ f.write(json.dumps(coco_results))
+ f.flush()
+
+ if not self._do_evaluation:
+ self._logger.info("Annotations are not available for evaluation.")
+ return
+
+ self._logger.info("Evaluating predictions ...")
+ for task in sorted(tasks):
+ assert task == "bbox", "Task {} is not supported".format(task)
+ coco_eval = (
+ self._evaluate_predictions_on_coco(self._coco_api, coco_results)
+ if len(coco_results) > 0
+ else None # cocoapi does not handle empty results very well
+ )
+
+ res = self._derive_coco_results(
+ coco_eval, task, class_names=self._metadata.get("thing_classes")
+ )
+ self._results[task] = res
+
+ def _evaluate_predictions_on_coco(self, coco_gt, coco_results):
+ """
+ Evaluate the coco results using COCOEval API.
+ """
+ assert len(coco_results) > 0
+
+ coco_dt = coco_gt.loadRes(coco_results)
+
+ # Only bbox is supported for now
+ coco_eval = RotatedCOCOeval(coco_gt, coco_dt, iouType="bbox")
+
+ coco_eval.evaluate()
+ coco_eval.accumulate()
+ coco_eval.summarize()
+
+ return coco_eval
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/sem_seg_evaluation.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/sem_seg_evaluation.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb3b28d79284a5eeb335fc8ee8d859b4e46510ef
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/sem_seg_evaluation.py
@@ -0,0 +1,168 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import itertools
+import json
+import logging
+import numpy as np
+import os
+from collections import OrderedDict
+import PIL.Image as Image
+import pycocotools.mask as mask_util
+import torch
+from fvcore.common.file_io import PathManager
+
+from detectron2.data import DatasetCatalog, MetadataCatalog
+from detectron2.utils.comm import all_gather, is_main_process, synchronize
+
+from .evaluator import DatasetEvaluator
+
+
+class SemSegEvaluator(DatasetEvaluator):
+ """
+ Evaluate semantic segmentation
+ """
+
+ def __init__(self, dataset_name, distributed, num_classes, ignore_label=255, output_dir=None):
+ """
+ Args:
+ dataset_name (str): name of the dataset to be evaluated.
+ distributed (True): if True, will collect results from all ranks for evaluation.
+ Otherwise, will evaluate the results in the current process.
+ num_classes (int): number of classes
+ ignore_label (int): value in semantic segmentation ground truth. Predictions for the
+ corresponding pixels should be ignored.
+ output_dir (str): an output directory to dump results.
+ """
+ self._dataset_name = dataset_name
+ self._distributed = distributed
+ self._output_dir = output_dir
+ self._num_classes = num_classes
+ self._ignore_label = ignore_label
+ self._N = num_classes + 1
+
+ self._cpu_device = torch.device("cpu")
+ self._logger = logging.getLogger(__name__)
+
+ self.input_file_to_gt_file = {
+ dataset_record["file_name"]: dataset_record["sem_seg_file_name"]
+ for dataset_record in DatasetCatalog.get(dataset_name)
+ }
+
+ meta = MetadataCatalog.get(dataset_name)
+ # Dict that maps contiguous training ids to COCO category ids
+ try:
+ c2d = meta.stuff_dataset_id_to_contiguous_id
+ self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()}
+ except AttributeError:
+ self._contiguous_id_to_dataset_id = None
+ self._class_names = meta.stuff_classes
+
+ def reset(self):
+ self._conf_matrix = np.zeros((self._N, self._N), dtype=np.int64)
+ self._predictions = []
+
+ def process(self, inputs, outputs):
+ """
+ Args:
+ inputs: the inputs to a model.
+ It is a list of dicts. Each dict corresponds to an image and
+ contains keys like "height", "width", "file_name".
+ outputs: the outputs of a model. It is either list of semantic segmentation predictions
+ (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic
+ segmentation prediction in the same format.
+ """
+ for input, output in zip(inputs, outputs):
+ output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)
+ pred = np.array(output, dtype=np.int)
+ with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f:
+ gt = np.array(Image.open(f), dtype=np.int)
+
+ gt[gt == self._ignore_label] = self._num_classes
+
+ self._conf_matrix += np.bincount(
+ self._N * pred.reshape(-1) + gt.reshape(-1), minlength=self._N ** 2
+ ).reshape(self._N, self._N)
+
+ self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"]))
+
+ def evaluate(self):
+ """
+ Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):
+
+ * Mean intersection-over-union averaged across classes (mIoU)
+ * Frequency Weighted IoU (fwIoU)
+ * Mean pixel accuracy averaged across classes (mACC)
+ * Pixel Accuracy (pACC)
+ """
+ if self._distributed:
+ synchronize()
+ conf_matrix_list = all_gather(self._conf_matrix)
+ self._predictions = all_gather(self._predictions)
+ self._predictions = list(itertools.chain(*self._predictions))
+ if not is_main_process():
+ return
+
+ self._conf_matrix = np.zeros_like(self._conf_matrix)
+ for conf_matrix in conf_matrix_list:
+ self._conf_matrix += conf_matrix
+
+ if self._output_dir:
+ PathManager.mkdirs(self._output_dir)
+ file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
+ with PathManager.open(file_path, "w") as f:
+ f.write(json.dumps(self._predictions))
+
+ acc = np.full(self._num_classes, np.nan, dtype=np.float)
+ iou = np.full(self._num_classes, np.nan, dtype=np.float)
+ tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
+ pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
+ class_weights = pos_gt / np.sum(pos_gt)
+ pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
+ acc_valid = pos_gt > 0
+ acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
+ iou_valid = (pos_gt + pos_pred) > 0
+ union = pos_gt + pos_pred - tp
+ iou[acc_valid] = tp[acc_valid] / union[acc_valid]
+ macc = np.sum(acc[acc_valid]) / np.sum(acc_valid)
+ miou = np.sum(iou[acc_valid]) / np.sum(iou_valid)
+ fiou = np.sum(iou[acc_valid] * class_weights[acc_valid])
+ pacc = np.sum(tp) / np.sum(pos_gt)
+
+ res = {}
+ res["mIoU"] = 100 * miou
+ res["fwIoU"] = 100 * fiou
+ for i, name in enumerate(self._class_names):
+ res["IoU-{}".format(name)] = 100 * iou[i]
+ res["mACC"] = 100 * macc
+ res["pACC"] = 100 * pacc
+ for i, name in enumerate(self._class_names):
+ res["ACC-{}".format(name)] = 100 * acc[i]
+
+ if self._output_dir:
+ file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth")
+ with PathManager.open(file_path, "wb") as f:
+ torch.save(res, f)
+ results = OrderedDict({"sem_seg": res})
+ self._logger.info(results)
+ return results
+
+ def encode_json_sem_seg(self, sem_seg, input_file_name):
+ """
+ Convert semantic segmentation to COCO stuff format with segments encoded as RLEs.
+ See http://cocodataset.org/#format-results
+ """
+ json_list = []
+ for label in np.unique(sem_seg):
+ if self._contiguous_id_to_dataset_id is not None:
+ assert (
+ label in self._contiguous_id_to_dataset_id
+ ), "Label {} is not in the metadata info for {}".format(label, self._dataset_name)
+ dataset_id = self._contiguous_id_to_dataset_id[label]
+ else:
+ dataset_id = int(label)
+ mask = (sem_seg == label).astype(np.uint8)
+ mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0]
+ mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
+ json_list.append(
+ {"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle}
+ )
+ return json_list
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/testing.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/testing.py
new file mode 100644
index 0000000000000000000000000000000000000000..95addebc185111c572cb19aa98f7e055b21fc74e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/evaluation/testing.py
@@ -0,0 +1,78 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import logging
+import numpy as np
+import pprint
+import sys
+from collections import OrderedDict
+from collections.abc import Mapping
+
+
+def print_csv_format(results):
+ """
+ Print main metrics in a format similar to Detectron,
+ so that they are easy to copypaste into a spreadsheet.
+
+ Args:
+ results (OrderedDict[dict]): task_name -> {metric -> score}
+ """
+ assert isinstance(results, OrderedDict), results # unordered results cannot be properly printed
+ logger = logging.getLogger(__name__)
+ for task, res in results.items():
+ # Don't print "AP-category" metrics since they are usually not tracked.
+ important_res = [(k, v) for k, v in res.items() if "-" not in k]
+ logger.info("copypaste: Task: {}".format(task))
+ logger.info("copypaste: " + ",".join([k[0] for k in important_res]))
+ logger.info("copypaste: " + ",".join(["{0:.4f}".format(k[1]) for k in important_res]))
+
+
+def verify_results(cfg, results):
+ """
+ Args:
+ results (OrderedDict[dict]): task_name -> {metric -> score}
+
+ Returns:
+ bool: whether the verification succeeds or not
+ """
+ expected_results = cfg.TEST.EXPECTED_RESULTS
+ if not len(expected_results):
+ return True
+
+ ok = True
+ for task, metric, expected, tolerance in expected_results:
+ actual = results[task][metric]
+ if not np.isfinite(actual):
+ ok = False
+ diff = abs(actual - expected)
+ if diff > tolerance:
+ ok = False
+
+ logger = logging.getLogger(__name__)
+ if not ok:
+ logger.error("Result verification failed!")
+ logger.error("Expected Results: " + str(expected_results))
+ logger.error("Actual Results: " + pprint.pformat(results))
+
+ sys.exit(1)
+ else:
+ logger.info("Results verification passed.")
+ return ok
+
+
+def flatten_results_dict(results):
+ """
+ Expand a hierarchical dict of scalars into a flat dict of scalars.
+ If results[k1][k2][k3] = v, the returned dict will have the entry
+ {"k1/k2/k3": v}.
+
+ Args:
+ results (dict):
+ """
+ r = {}
+ for k, v in results.items():
+ if isinstance(v, Mapping):
+ v = flatten_results_dict(v)
+ for kk, vv in v.items():
+ r[k + "/" + kk] = vv
+ else:
+ r[k] = v
+ return r
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/README.md b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9bd8b57c1a5f15e391eb63b690f1051b1ad79d21
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/README.md
@@ -0,0 +1,10 @@
+
+This directory contains code to prepare a detectron2 model for deployment.
+Currently it supports exporting a detectron2 model to Caffe2 format through ONNX.
+
+Please see [documentation](https://detectron2.readthedocs.io/tutorials/deployment.html) for its usage.
+
+
+### Acknowledgements
+
+Thanks to Mobile Vision team at Facebook for developing the conversion tools.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e2bf4d0670ed0ccd73dbdb7ce27a8e617bbf6aa
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/__init__.py
@@ -0,0 +1,5 @@
+# -*- coding: utf-8 -*-
+
+from .api import *
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/api.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/api.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7600714e1edb019def04f9d0d1a063668943101
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/api.py
@@ -0,0 +1,277 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+import copy
+import logging
+import os
+import torch
+from caffe2.proto import caffe2_pb2
+from torch import nn
+
+from detectron2.config import CfgNode as CN
+
+from .caffe2_export import export_caffe2_detection_model
+from .caffe2_export import export_onnx_model as export_onnx_model_impl
+from .caffe2_export import run_and_save_graph
+from .caffe2_inference import ProtobufDetectionModel
+from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format
+from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph
+
+__all__ = [
+ "add_export_config",
+ "export_caffe2_model",
+ "Caffe2Model",
+ "export_onnx_model",
+ "Caffe2Tracer",
+]
+
+
+def add_export_config(cfg):
+ """
+ Args:
+ cfg (CfgNode): a detectron2 config
+
+ Returns:
+ CfgNode: an updated config with new options that will be used
+ by :class:`Caffe2Tracer`.
+ """
+ is_frozen = cfg.is_frozen()
+ cfg.defrost()
+ cfg.EXPORT_CAFFE2 = CN()
+ cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT = False
+ if is_frozen:
+ cfg.freeze()
+ return cfg
+
+
+class Caffe2Tracer:
+ """
+ Make a detectron2 model traceable with caffe2 style.
+
+ An original detectron2 model may not be traceable, or
+ cannot be deployed directly after being traced, due to some reasons:
+ 1. control flow in some ops
+ 2. custom ops
+ 3. complicated pre/post processing
+
+ This class provides a traceable version of a detectron2 model by:
+ 1. Rewrite parts of the model using ops in caffe2. Note that some ops do
+ not have GPU implementation.
+ 2. Define the inputs "after pre-processing" as inputs to the model
+ 3. Remove post-processing and produce raw layer outputs
+
+ More specifically about inputs: all builtin models take two input tensors.
+ (1) NCHW float "data" which is an image (usually in [0, 255])
+ (2) Nx3 float "im_info", each row of which is (height, width, 1.0)
+
+ After making a traceable model, the class provide methods to export such a
+ model to different deployment formats.
+
+ The class currently only supports models using builtin meta architectures.
+ """
+
+ def __init__(self, cfg, model, inputs):
+ """
+ Args:
+ cfg (CfgNode): a detectron2 config, with extra export-related options
+ added by :func:`add_export_config`.
+ model (nn.Module): a model built by
+ :func:`detectron2.modeling.build_model`.
+ inputs: sample inputs that the given model takes for inference.
+ Will be used to trace the model.
+ """
+ assert isinstance(cfg, CN), cfg
+ assert isinstance(model, torch.nn.Module), type(model)
+ if "EXPORT_CAFFE2" not in cfg:
+ cfg = add_export_config(cfg) # will just the defaults
+
+ self.cfg = cfg
+ self.model = model
+ self.inputs = inputs
+
+ def _get_traceable(self):
+ # TODO how to make it extensible to support custom models
+ C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[self.cfg.MODEL.META_ARCHITECTURE]
+ traceable_model = C2MetaArch(self.cfg, copy.deepcopy(self.model))
+ traceable_inputs = traceable_model.get_caffe2_inputs(self.inputs)
+ return traceable_model, traceable_inputs
+
+ def export_caffe2(self):
+ """
+ Export the model to Caffe2's protobuf format.
+ The returned object can be saved with `.save_protobuf()` method.
+ The result can be loaded and executed using Caffe2 runtime.
+
+ Returns:
+ Caffe2Model
+ """
+ model, inputs = self._get_traceable()
+ predict_net, init_net = export_caffe2_detection_model(model, inputs)
+ return Caffe2Model(predict_net, init_net)
+
+ def export_onnx(self):
+ """
+ Export the model to ONNX format.
+ Note that the exported model contains custom ops only available in caffe2, therefore it
+ cannot be directly executed by other runtime. Post-processing or transformation passes
+ may be applied on the model to accommodate different runtimes.
+
+ Returns:
+ onnx.ModelProto: an onnx model.
+ """
+ model, inputs = self._get_traceable()
+ return export_onnx_model_impl(model, (inputs,))
+
+ def export_torchscript(self):
+ """
+ Export the model to a `torch.jit.TracedModule` by tracing.
+ The returned object can be saved to a file by ".save()".
+
+ Returns:
+ torch.jit.TracedModule: a torch TracedModule
+ """
+ model, inputs = self._get_traceable()
+ logger = logging.getLogger(__name__)
+ logger.info("Tracing the model with torch.jit.trace ...")
+ with torch.no_grad():
+ return torch.jit.trace(model, (inputs,), optimize=True)
+
+
+def export_caffe2_model(cfg, model, inputs):
+ """
+ Export a detectron2 model to caffe2 format.
+
+ Args:
+ cfg (CfgNode): a detectron2 config, with extra export-related options
+ added by :func:`add_export_config`.
+ model (nn.Module): a model built by
+ :func:`detectron2.modeling.build_model`.
+ It will be modified by this function.
+ inputs: sample inputs that the given model takes for inference.
+ Will be used to trace the model.
+
+ Returns:
+ Caffe2Model
+ """
+ return Caffe2Tracer(cfg, model, inputs).export_caffe2()
+
+
+def export_onnx_model(cfg, model, inputs):
+ """
+ Export a detectron2 model to ONNX format.
+ Note that the exported model contains custom ops only available in caffe2, therefore it
+ cannot be directly executed by other runtime. Post-processing or transformation passes
+ may be applied on the model to accommodate different runtimes.
+ Args:
+ cfg (CfgNode): a detectron2 config, with extra export-related options
+ added by :func:`add_export_config`.
+ model (nn.Module): a model built by
+ :func:`detectron2.modeling.build_model`.
+ It will be modified by this function.
+ inputs: sample inputs that the given model takes for inference.
+ Will be used to trace the model.
+ Returns:
+ onnx.ModelProto: an onnx model.
+ """
+ return Caffe2Tracer(cfg, model, inputs).export_onnx()
+
+
+class Caffe2Model(nn.Module):
+ """
+ A wrapper around the traced model in caffe2's pb format.
+ """
+
+ def __init__(self, predict_net, init_net):
+ super().__init__()
+ self.eval() # always in eval mode
+ self._predict_net = predict_net
+ self._init_net = init_net
+ self._predictor = None
+
+ @property
+ def predict_net(self):
+ """
+ Returns:
+ core.Net: the underlying caffe2 predict net
+ """
+ return self._predict_net
+
+ @property
+ def init_net(self):
+ """
+ Returns:
+ core.Net: the underlying caffe2 init net
+ """
+ return self._init_net
+
+ __init__.__HIDE_SPHINX_DOC__ = True
+
+ def save_protobuf(self, output_dir):
+ """
+ Save the model as caffe2's protobuf format.
+
+ Args:
+ output_dir (str): the output directory to save protobuf files.
+ """
+ logger = logging.getLogger(__name__)
+ logger.info("Saving model to {} ...".format(output_dir))
+ os.makedirs(output_dir, exist_ok=True)
+
+ with open(os.path.join(output_dir, "model.pb"), "wb") as f:
+ f.write(self._predict_net.SerializeToString())
+ with open(os.path.join(output_dir, "model.pbtxt"), "w") as f:
+ f.write(str(self._predict_net))
+ with open(os.path.join(output_dir, "model_init.pb"), "wb") as f:
+ f.write(self._init_net.SerializeToString())
+
+ def save_graph(self, output_file, inputs=None):
+ """
+ Save the graph as SVG format.
+
+ Args:
+ output_file (str): a SVG file
+ inputs: optional inputs given to the model.
+ If given, the inputs will be used to run the graph to record
+ shape of every tensor. The shape information will be
+ saved together with the graph.
+ """
+ if inputs is None:
+ save_graph(self._predict_net, output_file, op_only=False)
+ else:
+ size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0)
+ device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii")
+ inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device)
+ inputs = [x.cpu().numpy() for x in inputs]
+ run_and_save_graph(self._predict_net, self._init_net, inputs, output_file)
+
+ @staticmethod
+ def load_protobuf(dir):
+ """
+ Args:
+ dir (str): a directory used to save Caffe2Model with
+ :meth:`save_protobuf`.
+ The files "model.pb" and "model_init.pb" are needed.
+
+ Returns:
+ Caffe2Model: the caffe2 model loaded from this directory.
+ """
+ predict_net = caffe2_pb2.NetDef()
+ with open(os.path.join(dir, "model.pb"), "rb") as f:
+ predict_net.ParseFromString(f.read())
+
+ init_net = caffe2_pb2.NetDef()
+ with open(os.path.join(dir, "model_init.pb"), "rb") as f:
+ init_net.ParseFromString(f.read())
+
+ return Caffe2Model(predict_net, init_net)
+
+ def __call__(self, inputs):
+ """
+ An interface that wraps around a caffe2 model and mimics detectron2's models'
+ input & output format. This is used to compare the outputs of caffe2 model
+ with its original torch model.
+
+ Due to the extra conversion between torch/caffe2,
+ this method is not meant for benchmark.
+ """
+ if self._predictor is None:
+ self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net)
+ return self._predictor(inputs)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/c10.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/c10.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e3cbe3ce94d0c56596c645b8c85592ed5d31fe1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/c10.py
@@ -0,0 +1,503 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+
+import math
+import torch
+import torch.nn.functional as F
+
+from detectron2.layers import cat
+from detectron2.layers.roi_align_rotated import ROIAlignRotated
+from detectron2.modeling import poolers
+from detectron2.modeling.proposal_generator import rpn
+from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference
+from detectron2.structures import Boxes, ImageList, Instances, Keypoints
+
+from .shared import alias, to_device
+
+
+"""
+This file contains caffe2-compatible implementation of several detectrno2 components.
+"""
+
+
+class Caffe2Boxes(Boxes):
+ """
+ Representing a list of detectron2.structures.Boxes from minibatch, each box
+ is represented by a 5d vector (batch index + 4 coordinates), or a 6d vector
+ (batch index + 5 coordinates) for RotatedBoxes.
+ """
+
+ def __init__(self, tensor):
+ assert isinstance(tensor, torch.Tensor)
+ assert tensor.dim() == 2 and tensor.size(-1) in [4, 5, 6], tensor.size()
+ # TODO: make tensor immutable when dim is Nx5 for Boxes,
+ # and Nx6 for RotatedBoxes?
+ self.tensor = tensor
+
+
+# TODO clean up this class, maybe just extend Instances
+class InstancesList(object):
+ """
+ Tensor representation of a list of Instances object for a batch of images.
+
+ When dealing with a batch of images with Caffe2 ops, a list of bboxes
+ (instances) are usually represented by single Tensor with size
+ (sigma(Ni), 5) or (sigma(Ni), 4) plus a batch split Tensor. This class is
+ for providing common functions to convert between these two representations.
+ """
+
+ def __init__(self, im_info, indices, extra_fields=None):
+ # [N, 3] -> (H, W, Scale)
+ self.im_info = im_info
+ # [N,] -> indice of batch to which the instance belongs
+ self.indices = indices
+ # [N, ...]
+ self.batch_extra_fields = extra_fields or {}
+
+ self.image_size = self.im_info
+
+ def get_fields(self):
+ """ like `get_fields` in the Instances object,
+ but return each field in tensor representations """
+ ret = {}
+ for k, v in self.batch_extra_fields.items():
+ # if isinstance(v, torch.Tensor):
+ # tensor_rep = v
+ # elif isinstance(v, (Boxes, Keypoints)):
+ # tensor_rep = v.tensor
+ # else:
+ # raise ValueError("Can't find tensor representation for: {}".format())
+ ret[k] = v
+ return ret
+
+ def has(self, name):
+ return name in self.batch_extra_fields
+
+ def set(self, name, value):
+ data_len = len(value)
+ if len(self.batch_extra_fields):
+ assert (
+ len(self) == data_len
+ ), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self))
+ self.batch_extra_fields[name] = value
+
+ def __setattr__(self, name, val):
+ if name in ["im_info", "indices", "batch_extra_fields", "image_size"]:
+ super().__setattr__(name, val)
+ else:
+ self.set(name, val)
+
+ def __getattr__(self, name):
+ if name not in self.batch_extra_fields:
+ raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
+ return self.batch_extra_fields[name]
+
+ def __len__(self):
+ return len(self.indices)
+
+ def flatten(self):
+ ret = []
+ for _, v in self.batch_extra_fields.items():
+ if isinstance(v, (Boxes, Keypoints)):
+ ret.append(v.tensor)
+ else:
+ ret.append(v)
+ return ret
+
+ @staticmethod
+ def to_d2_instances_list(instances_list):
+ """
+ Convert InstancesList to List[Instances]. The input `instances_list` can
+ also be a List[Instances], in this case this method is a non-op.
+ """
+ if not isinstance(instances_list, InstancesList):
+ assert all(isinstance(x, Instances) for x in instances_list)
+ return instances_list
+
+ ret = []
+ for i, info in enumerate(instances_list.im_info):
+ instances = Instances(torch.Size([int(info[0].item()), int(info[1].item())]))
+
+ ids = instances_list.indices == i
+ for k, v in instances_list.batch_extra_fields.items():
+ if isinstance(v, torch.Tensor):
+ instances.set(k, v[ids])
+ continue
+ elif isinstance(v, Boxes):
+ instances.set(k, v[ids, -4:])
+ continue
+
+ target_type, tensor_source = v
+ assert isinstance(tensor_source, torch.Tensor)
+ assert tensor_source.shape[0] == instances_list.indices.shape[0]
+ tensor_source = tensor_source[ids]
+
+ if issubclass(target_type, Boxes):
+ instances.set(k, Boxes(tensor_source[:, -4:]))
+ elif issubclass(target_type, Keypoints):
+ instances.set(k, Keypoints(tensor_source))
+ elif issubclass(target_type, torch.Tensor):
+ instances.set(k, tensor_source)
+ else:
+ raise ValueError("Can't handle targe type: {}".format(target_type))
+
+ ret.append(instances)
+ return ret
+
+
+class Caffe2Compatible(object):
+ def _get_tensor_mode(self):
+ return self._tensor_mode
+
+ def _set_tensor_mode(self, v):
+ self._tensor_mode = v
+
+ tensor_mode = property(_get_tensor_mode, _set_tensor_mode)
+ """
+ If true, the model expects C2-style tensor only inputs/outputs format.
+ """
+
+
+class Caffe2RPN(Caffe2Compatible, rpn.RPN):
+ def forward(self, images, features, gt_instances=None):
+ assert not self.training
+
+ features = [features[f] for f in self.in_features]
+ objectness_logits_pred, anchor_deltas_pred = self.rpn_head(features)
+
+ assert isinstance(images, ImageList)
+ if self.tensor_mode:
+ im_info = images.image_sizes
+ else:
+ im_info = torch.Tensor(
+ [[im_sz[0], im_sz[1], torch.Tensor([1.0])] for im_sz in images.image_sizes]
+ ).to(images.tensor.device)
+ assert isinstance(im_info, torch.Tensor)
+
+ rpn_rois_list = []
+ rpn_roi_probs_list = []
+ for scores, bbox_deltas, cell_anchors_tensor, feat_stride in zip(
+ objectness_logits_pred,
+ anchor_deltas_pred,
+ iter(self.anchor_generator.cell_anchors),
+ self.anchor_generator.strides,
+ ):
+ scores = scores.detach()
+ bbox_deltas = bbox_deltas.detach()
+
+ rpn_rois, rpn_roi_probs = torch.ops._caffe2.GenerateProposals(
+ scores,
+ bbox_deltas,
+ im_info,
+ cell_anchors_tensor,
+ spatial_scale=1.0 / feat_stride,
+ pre_nms_topN=self.pre_nms_topk[self.training],
+ post_nms_topN=self.post_nms_topk[self.training],
+ nms_thresh=self.nms_thresh,
+ min_size=self.min_box_side_len,
+ # correct_transform_coords=True, # deprecated argument
+ angle_bound_on=True, # Default
+ angle_bound_lo=-180,
+ angle_bound_hi=180,
+ clip_angle_thresh=1.0, # Default
+ legacy_plus_one=False,
+ )
+ rpn_rois_list.append(rpn_rois)
+ rpn_roi_probs_list.append(rpn_roi_probs)
+
+ # For FPN in D2, in RPN all proposals from different levels are concated
+ # together, ranked and picked by top post_nms_topk. Then in ROIPooler
+ # it calculates level_assignments and calls the RoIAlign from
+ # the corresponding level.
+
+ if len(objectness_logits_pred) == 1:
+ rpn_rois = rpn_rois_list[0]
+ rpn_roi_probs = rpn_roi_probs_list[0]
+ else:
+ assert len(rpn_rois_list) == len(rpn_roi_probs_list)
+ rpn_post_nms_topN = self.post_nms_topk[self.training]
+
+ device = rpn_rois_list[0].device
+ input_list = [to_device(x, "cpu") for x in (rpn_rois_list + rpn_roi_probs_list)]
+
+ # TODO remove this after confirming rpn_max_level/rpn_min_level
+ # is not needed in CollectRpnProposals.
+ feature_strides = list(self.anchor_generator.strides)
+ rpn_min_level = int(math.log2(feature_strides[0]))
+ rpn_max_level = int(math.log2(feature_strides[-1]))
+ assert (rpn_max_level - rpn_min_level + 1) == len(
+ rpn_rois_list
+ ), "CollectRpnProposals requires continuous levels"
+
+ rpn_rois = torch.ops._caffe2.CollectRpnProposals(
+ input_list,
+ # NOTE: in current implementation, rpn_max_level and rpn_min_level
+ # are not needed, only the subtraction of two matters and it
+ # can be infer from the number of inputs. Keep them now for
+ # consistency.
+ rpn_max_level=2 + len(rpn_rois_list) - 1,
+ rpn_min_level=2,
+ rpn_post_nms_topN=rpn_post_nms_topN,
+ )
+ rpn_rois = to_device(rpn_rois, device)
+ rpn_roi_probs = []
+
+ proposals = self.c2_postprocess(im_info, rpn_rois, rpn_roi_probs, self.tensor_mode)
+ return proposals, {}
+
+ @staticmethod
+ def c2_postprocess(im_info, rpn_rois, rpn_roi_probs, tensor_mode):
+ proposals = InstancesList(
+ im_info=im_info,
+ indices=rpn_rois[:, 0],
+ extra_fields={
+ "proposal_boxes": Caffe2Boxes(rpn_rois),
+ "objectness_logits": (torch.Tensor, rpn_roi_probs),
+ },
+ )
+ if not tensor_mode:
+ proposals = InstancesList.to_d2_instances_list(proposals)
+ else:
+ proposals = [proposals]
+ return proposals
+
+
+class Caffe2ROIPooler(Caffe2Compatible, poolers.ROIPooler):
+ @staticmethod
+ def c2_preprocess(box_lists):
+ assert all(isinstance(x, Boxes) for x in box_lists)
+ if all(isinstance(x, Caffe2Boxes) for x in box_lists):
+ # input is pure-tensor based
+ assert len(box_lists) == 1
+ pooler_fmt_boxes = box_lists[0].tensor
+ else:
+ pooler_fmt_boxes = poolers.convert_boxes_to_pooler_format(box_lists)
+ return pooler_fmt_boxes
+
+ def forward(self, x, box_lists):
+ assert not self.training
+
+ pooler_fmt_boxes = self.c2_preprocess(box_lists)
+ num_level_assignments = len(self.level_poolers)
+
+ if num_level_assignments == 1:
+ if isinstance(self.level_poolers[0], ROIAlignRotated):
+ c2_roi_align = torch.ops._caffe2.RoIAlignRotated
+ aligned = True
+ else:
+ c2_roi_align = torch.ops._caffe2.RoIAlign
+ aligned = self.level_poolers[0].aligned
+
+ out = c2_roi_align(
+ x[0],
+ pooler_fmt_boxes,
+ order="NCHW",
+ spatial_scale=float(self.level_poolers[0].spatial_scale),
+ pooled_h=int(self.output_size[0]),
+ pooled_w=int(self.output_size[1]),
+ sampling_ratio=int(self.level_poolers[0].sampling_ratio),
+ aligned=aligned,
+ )
+ return out
+
+ device = pooler_fmt_boxes.device
+ assert (
+ self.max_level - self.min_level + 1 == 4
+ ), "Currently DistributeFpnProposals only support 4 levels"
+ fpn_outputs = torch.ops._caffe2.DistributeFpnProposals(
+ to_device(pooler_fmt_boxes, "cpu"),
+ roi_canonical_scale=self.canonical_box_size,
+ roi_canonical_level=self.canonical_level,
+ roi_max_level=self.max_level,
+ roi_min_level=self.min_level,
+ legacy_plus_one=False,
+ )
+ fpn_outputs = [to_device(x, device) for x in fpn_outputs]
+
+ rois_fpn_list = fpn_outputs[:-1]
+ rois_idx_restore_int32 = fpn_outputs[-1]
+
+ roi_feat_fpn_list = []
+ for roi_fpn, x_level, pooler in zip(rois_fpn_list, x, self.level_poolers):
+ if isinstance(pooler, ROIAlignRotated):
+ c2_roi_align = torch.ops._caffe2.RoIAlignRotated
+ aligned = True
+ else:
+ c2_roi_align = torch.ops._caffe2.RoIAlign
+ aligned = bool(pooler.aligned)
+
+ roi_feat_fpn = c2_roi_align(
+ x_level,
+ roi_fpn,
+ order="NCHW",
+ spatial_scale=float(pooler.spatial_scale),
+ pooled_h=int(self.output_size[0]),
+ pooled_w=int(self.output_size[1]),
+ sampling_ratio=int(pooler.sampling_ratio),
+ aligned=aligned,
+ )
+ roi_feat_fpn_list.append(roi_feat_fpn)
+
+ roi_feat_shuffled = cat(roi_feat_fpn_list, dim=0)
+ roi_feat = torch.ops._caffe2.BatchPermutation(roi_feat_shuffled, rois_idx_restore_int32)
+ return roi_feat
+
+
+class Caffe2FastRCNNOutputsInference:
+ def __init__(self, tensor_mode):
+ self.tensor_mode = tensor_mode # whether the output is caffe2 tensor mode
+
+ def __call__(self, box_predictor, predictions, proposals):
+ """ equivalent to FastRCNNOutputLayers.inference """
+ score_thresh = box_predictor.test_score_thresh
+ nms_thresh = box_predictor.test_nms_thresh
+ topk_per_image = box_predictor.test_topk_per_image
+ is_rotated = len(box_predictor.box2box_transform.weights) == 5
+
+ if is_rotated:
+ box_dim = 5
+ assert box_predictor.box2box_transform.weights[4] == 1, (
+ "The weights for Rotated BBoxTransform in C2 have only 4 dimensions,"
+ + " thus enforcing the angle weight to be 1 for now"
+ )
+ box2box_transform_weights = box_predictor.box2box_transform.weights[:4]
+ else:
+ box_dim = 4
+ box2box_transform_weights = box_predictor.box2box_transform.weights
+
+ class_logits, box_regression = predictions
+ class_prob = F.softmax(class_logits, -1)
+
+ assert box_regression.shape[1] % box_dim == 0
+ cls_agnostic_bbox_reg = box_regression.shape[1] // box_dim == 1
+
+ input_tensor_mode = proposals[0].proposal_boxes.tensor.shape[1] == box_dim + 1
+
+ rois = type(proposals[0].proposal_boxes).cat([p.proposal_boxes for p in proposals])
+ device, dtype = rois.tensor.device, rois.tensor.dtype
+ if input_tensor_mode:
+ im_info = proposals[0].image_size
+ rois = rois.tensor
+ else:
+ im_info = torch.Tensor(
+ [[sz[0], sz[1], 1.0] for sz in [x.image_size for x in proposals]]
+ )
+ batch_ids = cat(
+ [
+ torch.full((b, 1), i, dtype=dtype, device=device)
+ for i, b in enumerate(len(p) for p in proposals)
+ ],
+ dim=0,
+ )
+ rois = torch.cat([batch_ids, rois.tensor], dim=1)
+
+ roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform(
+ to_device(rois, "cpu"),
+ to_device(box_regression, "cpu"),
+ to_device(im_info, "cpu"),
+ weights=box2box_transform_weights,
+ apply_scale=True,
+ rotated=is_rotated,
+ angle_bound_on=True,
+ angle_bound_lo=-180,
+ angle_bound_hi=180,
+ clip_angle_thresh=1.0,
+ legacy_plus_one=False,
+ )
+ roi_pred_bbox = to_device(roi_pred_bbox, device)
+ roi_batch_splits = to_device(roi_batch_splits, device)
+
+ nms_outputs = torch.ops._caffe2.BoxWithNMSLimit(
+ to_device(class_prob, "cpu"),
+ to_device(roi_pred_bbox, "cpu"),
+ to_device(roi_batch_splits, "cpu"),
+ score_thresh=float(score_thresh),
+ nms=float(nms_thresh),
+ detections_per_im=int(topk_per_image),
+ soft_nms_enabled=False,
+ soft_nms_method="linear",
+ soft_nms_sigma=0.5,
+ soft_nms_min_score_thres=0.001,
+ rotated=is_rotated,
+ cls_agnostic_bbox_reg=cls_agnostic_bbox_reg,
+ input_boxes_include_bg_cls=False,
+ output_classes_include_bg_cls=False,
+ legacy_plus_one=False,
+ )
+ roi_score_nms = to_device(nms_outputs[0], device)
+ roi_bbox_nms = to_device(nms_outputs[1], device)
+ roi_class_nms = to_device(nms_outputs[2], device)
+ roi_batch_splits_nms = to_device(nms_outputs[3], device)
+ roi_keeps_nms = to_device(nms_outputs[4], device)
+ roi_keeps_size_nms = to_device(nms_outputs[5], device)
+ if not self.tensor_mode:
+ roi_class_nms = roi_class_nms.to(torch.int64)
+
+ roi_batch_ids = cat(
+ [
+ torch.full((b, 1), i, dtype=dtype, device=device)
+ for i, b in enumerate(int(x.item()) for x in roi_batch_splits_nms)
+ ],
+ dim=0,
+ )
+
+ roi_class_nms = alias(roi_class_nms, "class_nms")
+ roi_score_nms = alias(roi_score_nms, "score_nms")
+ roi_bbox_nms = alias(roi_bbox_nms, "bbox_nms")
+ roi_batch_splits_nms = alias(roi_batch_splits_nms, "batch_splits_nms")
+ roi_keeps_nms = alias(roi_keeps_nms, "keeps_nms")
+ roi_keeps_size_nms = alias(roi_keeps_size_nms, "keeps_size_nms")
+
+ results = InstancesList(
+ im_info=im_info,
+ indices=roi_batch_ids[:, 0],
+ extra_fields={
+ "pred_boxes": Caffe2Boxes(roi_bbox_nms),
+ "scores": roi_score_nms,
+ "pred_classes": roi_class_nms,
+ },
+ )
+
+ if not self.tensor_mode:
+ results = InstancesList.to_d2_instances_list(results)
+ batch_splits = roi_batch_splits_nms.int().tolist()
+ kept_indices = list(roi_keeps_nms.to(torch.int64).split(batch_splits))
+ else:
+ results = [results]
+ kept_indices = [roi_keeps_nms]
+
+ return results, kept_indices
+
+
+class Caffe2MaskRCNNInference:
+ def __call__(self, pred_mask_logits, pred_instances):
+ """ equivalent to mask_head.mask_rcnn_inference """
+ if all(isinstance(x, InstancesList) for x in pred_instances):
+ assert len(pred_instances) == 1
+ mask_probs_pred = pred_mask_logits.sigmoid()
+ mask_probs_pred = alias(mask_probs_pred, "mask_fcn_probs")
+ pred_instances[0].pred_masks = mask_probs_pred
+ else:
+ mask_rcnn_inference(pred_mask_logits, pred_instances)
+
+
+class Caffe2KeypointRCNNInference:
+ def __init__(self, use_heatmap_max_keypoint):
+ self.use_heatmap_max_keypoint = use_heatmap_max_keypoint
+
+ def __call__(self, pred_keypoint_logits, pred_instances):
+ # just return the keypoint heatmap for now,
+ # there will be option to call HeatmapMaxKeypointOp
+ output = alias(pred_keypoint_logits, "kps_score")
+ if all(isinstance(x, InstancesList) for x in pred_instances):
+ assert len(pred_instances) == 1
+ if self.use_heatmap_max_keypoint:
+ device = output.device
+ output = torch.ops._caffe2.HeatmapMaxKeypoint(
+ to_device(output, "cpu"),
+ pred_instances[0].pred_boxes.tensor,
+ should_output_softmax=True, # worth make it configerable?
+ )
+ output = to_device(output, device)
+ output = alias(output, "keypoints_out")
+ pred_instances[0].pred_keypoints = output
+ return pred_keypoint_logits
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_export.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_export.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccac809d7bf49ab144b5f0a34f57e00c3534ad60
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_export.py
@@ -0,0 +1,204 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import copy
+import io
+import logging
+import numpy as np
+from typing import List
+import onnx
+import torch
+from caffe2.proto import caffe2_pb2
+from caffe2.python import core
+from caffe2.python.onnx.backend import Caffe2Backend
+from tabulate import tabulate
+from termcolor import colored
+from torch.onnx import OperatorExportTypes
+
+from .shared import (
+ ScopedWS,
+ construct_init_net_from_params,
+ fuse_alias_placeholder,
+ fuse_copy_between_cpu_and_gpu,
+ get_params_from_init_net,
+ group_norm_replace_aten_with_caffe2,
+ infer_device_type,
+ remove_dead_end_ops,
+ remove_reshape_for_fc,
+ save_graph,
+)
+
+logger = logging.getLogger(__name__)
+
+
+def export_onnx_model(model, inputs):
+ """
+ Trace and export a model to onnx format.
+
+ Args:
+ model (nn.Module):
+ inputs (tuple[args]): the model will be called by `model(*inputs)`
+
+ Returns:
+ an onnx model
+ """
+ assert isinstance(model, torch.nn.Module)
+
+ # make sure all modules are in eval mode, onnx may change the training state
+ # of the module if the states are not consistent
+ def _check_eval(module):
+ assert not module.training
+
+ model.apply(_check_eval)
+
+ # Export the model to ONNX
+ with torch.no_grad():
+ with io.BytesIO() as f:
+ torch.onnx.export(
+ model,
+ inputs,
+ f,
+ operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK,
+ # verbose=True, # NOTE: uncomment this for debugging
+ # export_params=True,
+ )
+ onnx_model = onnx.load_from_string(f.getvalue())
+
+ # Apply ONNX's Optimization
+ all_passes = onnx.optimizer.get_available_passes()
+ passes = ["fuse_bn_into_conv"]
+ assert all(p in all_passes for p in passes)
+ onnx_model = onnx.optimizer.optimize(onnx_model, passes)
+ return onnx_model
+
+
+def _op_stats(net_def):
+ type_count = {}
+ for t in [op.type for op in net_def.op]:
+ type_count[t] = type_count.get(t, 0) + 1
+ type_count_list = sorted(type_count.items(), key=lambda kv: kv[0]) # alphabet
+ type_count_list = sorted(type_count_list, key=lambda kv: -kv[1]) # count
+ return "\n".join("{:>4}x {}".format(count, name) for name, count in type_count_list)
+
+
+def _assign_device_option(
+ predict_net: caffe2_pb2.NetDef, init_net: caffe2_pb2.NetDef, tensor_inputs: List[torch.Tensor]
+):
+ """
+ ONNX exported network doesn't have concept of device, assign necessary
+ device option for each op in order to make it runable on GPU runtime.
+ """
+
+ def _get_device_type(torch_tensor):
+ assert torch_tensor.device.type in ["cpu", "cuda"]
+ assert torch_tensor.device.index == 0
+ return torch_tensor.device.type
+
+ def _assign_op_device_option(net_proto, net_ssa, blob_device_types):
+ for op, ssa_i in zip(net_proto.op, net_ssa):
+ if op.type in ["CopyCPUToGPU", "CopyGPUToCPU"]:
+ op.device_option.CopyFrom(core.DeviceOption(caffe2_pb2.CUDA, 0))
+ else:
+ devices = [blob_device_types[b] for b in ssa_i[0] + ssa_i[1]]
+ assert all(d == devices[0] for d in devices)
+ if devices[0] == "cuda":
+ op.device_option.CopyFrom(core.DeviceOption(caffe2_pb2.CUDA, 0))
+
+ # update ops in predict_net
+ predict_net_input_device_types = {
+ (name, 0): _get_device_type(tensor)
+ for name, tensor in zip(predict_net.external_input, tensor_inputs)
+ }
+ predict_net_device_types = infer_device_type(
+ predict_net, known_status=predict_net_input_device_types, device_name_style="pytorch"
+ )
+ predict_net_ssa, _ = core.get_ssa(predict_net)
+ _assign_op_device_option(predict_net, predict_net_ssa, predict_net_device_types)
+
+ # update ops in init_net
+ init_net_ssa, versions = core.get_ssa(init_net)
+ init_net_output_device_types = {
+ (name, versions[name]): predict_net_device_types[(name, 0)]
+ for name in init_net.external_output
+ }
+ init_net_device_types = infer_device_type(
+ init_net, known_status=init_net_output_device_types, device_name_style="pytorch"
+ )
+ _assign_op_device_option(init_net, init_net_ssa, init_net_device_types)
+
+
+def export_caffe2_detection_model(model: torch.nn.Module, tensor_inputs: List[torch.Tensor]):
+ """
+ Export a caffe2-compatible Detectron2 model to caffe2 format via ONNX.
+
+ Arg:
+ model: a caffe2-compatible version of detectron2 model, defined in caffe2_modeling.py
+ tensor_inputs: a list of tensors that caffe2 model takes as input.
+ """
+ model = copy.deepcopy(model)
+ assert isinstance(model, torch.nn.Module)
+ assert hasattr(model, "encode_additional_info")
+
+ # Export via ONNX
+ logger.info("Exporting a {} model via ONNX ...".format(type(model).__name__))
+ onnx_model = export_onnx_model(model, (tensor_inputs,))
+ # Convert ONNX model to Caffe2 protobuf
+ init_net, predict_net = Caffe2Backend.onnx_graph_to_caffe2_net(onnx_model)
+ ops_table = [[op.type, op.input, op.output] for op in predict_net.op]
+ table = tabulate(ops_table, headers=["type", "input", "output"], tablefmt="pipe")
+ logger.info(
+ "ONNX export Done. Exported predict_net (before optimizations):\n" + colored(table, "cyan")
+ )
+
+ # Apply protobuf optimization
+ fuse_alias_placeholder(predict_net, init_net)
+ if any(t.device.type != "cpu" for t in tensor_inputs):
+ fuse_copy_between_cpu_and_gpu(predict_net)
+ remove_dead_end_ops(init_net)
+ _assign_device_option(predict_net, init_net, tensor_inputs)
+ params, device_options = get_params_from_init_net(init_net)
+ predict_net, params = remove_reshape_for_fc(predict_net, params)
+ init_net = construct_init_net_from_params(params, device_options)
+ group_norm_replace_aten_with_caffe2(predict_net)
+
+ # Record necessary information for running the pb model in Detectron2 system.
+ model.encode_additional_info(predict_net, init_net)
+
+ logger.info("Operators used in predict_net: \n{}".format(_op_stats(predict_net)))
+ logger.info("Operators used in init_net: \n{}".format(_op_stats(init_net)))
+
+ return predict_net, init_net
+
+
+def run_and_save_graph(predict_net, init_net, tensor_inputs, graph_save_path):
+ """
+ Run the caffe2 model on given inputs, recording the shape and draw the graph.
+
+ predict_net/init_net: caffe2 model.
+ tensor_inputs: a list of tensors that caffe2 model takes as input.
+ graph_save_path: path for saving graph of exported model.
+ """
+
+ logger.info("Saving graph of ONNX exported model to {} ...".format(graph_save_path))
+ save_graph(predict_net, graph_save_path, op_only=False)
+
+ # Run the exported Caffe2 net
+ logger.info("Running ONNX exported model ...")
+ with ScopedWS("__ws_tmp__", True) as ws:
+ ws.RunNetOnce(init_net)
+ initialized_blobs = set(ws.Blobs())
+ uninitialized = [inp for inp in predict_net.external_input if inp not in initialized_blobs]
+ for name, blob in zip(uninitialized, tensor_inputs):
+ ws.FeedBlob(name, blob)
+
+ try:
+ ws.RunNetOnce(predict_net)
+ except RuntimeError as e:
+ logger.warning("Encountered RuntimeError: \n{}".format(str(e)))
+
+ ws_blobs = {b: ws.FetchBlob(b) for b in ws.Blobs()}
+ blob_sizes = {b: ws_blobs[b].shape for b in ws_blobs if isinstance(ws_blobs[b], np.ndarray)}
+
+ logger.info("Saving graph with blob shapes to {} ...".format(graph_save_path))
+ save_graph(predict_net, graph_save_path, op_only=False, blob_sizes=blob_sizes)
+
+ return ws_blobs
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_inference.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..92718d04031b4513c2324ad596eae9cdbfa7c75e
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_inference.py
@@ -0,0 +1,136 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import collections
+import logging
+import numpy as np
+import torch
+from caffe2.proto import caffe2_pb2
+from caffe2.python import core
+
+from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format
+from .shared import ScopedWS, get_pb_arg_vali, get_pb_arg_vals, infer_device_type
+
+logger = logging.getLogger(__name__)
+
+
+class ProtobufModel(torch.nn.Module):
+ """
+ A class works just like nn.Module in terms of inference, but running
+ caffe2 model under the hood. Input/Output are Dict[str, tensor] whose keys
+ are in external_input/output.
+ """
+
+ def __init__(self, predict_net, init_net):
+ logger.info("Initializing ProtobufModel ...")
+ super().__init__()
+ assert isinstance(predict_net, caffe2_pb2.NetDef)
+ assert isinstance(init_net, caffe2_pb2.NetDef)
+ self.ws_name = "__ws_tmp__"
+ self.net = core.Net(predict_net)
+
+ with ScopedWS(self.ws_name, is_reset=True, is_cleanup=False) as ws:
+ ws.RunNetOnce(init_net)
+ for blob in self.net.Proto().external_input:
+ if blob not in ws.Blobs():
+ ws.CreateBlob(blob)
+ ws.CreateNet(self.net)
+
+ self._error_msgs = set()
+
+ def forward(self, inputs_dict):
+ assert all(inp in self.net.Proto().external_input for inp in inputs_dict)
+ with ScopedWS(self.ws_name, is_reset=False, is_cleanup=False) as ws:
+ for b, tensor in inputs_dict.items():
+ ws.FeedBlob(b, tensor)
+ try:
+ ws.RunNet(self.net.Proto().name)
+ except RuntimeError as e:
+ if not str(e) in self._error_msgs:
+ self._error_msgs.add(str(e))
+ logger.warning("Encountered new RuntimeError: \n{}".format(str(e)))
+ logger.warning("Catch the error and use partial results.")
+
+ outputs_dict = collections.OrderedDict(
+ [(b, ws.FetchBlob(b)) for b in self.net.Proto().external_output]
+ )
+ # Remove outputs of current run, this is necessary in order to
+ # prevent fetching the result from previous run if the model fails
+ # in the middle.
+ for b in self.net.Proto().external_output:
+ # Needs to create uninitialized blob to make the net runable.
+ # This is "equivalent" to: ws.RemoveBlob(b) then ws.CreateBlob(b),
+ # but there'no such API.
+ ws.FeedBlob(b, "{}, a C++ native class of type nullptr (uninitialized).".format(b))
+
+ return outputs_dict
+
+
+class ProtobufDetectionModel(torch.nn.Module):
+ """
+ A class works just like a pytorch meta arch in terms of inference, but running
+ caffe2 model under the hood.
+ """
+
+ def __init__(self, predict_net, init_net, *, convert_outputs=None):
+ """
+ Args:
+ predict_net, init_net (core.Net): caffe2 nets
+ convert_outptus (callable): a function that converts caffe2
+ outputs to the same format of the original pytorch model.
+ By default, use the one defined in the caffe2 meta_arch.
+ """
+ super().__init__()
+ self.protobuf_model = ProtobufModel(predict_net, init_net)
+ self.size_divisibility = get_pb_arg_vali(predict_net, "size_divisibility", 0)
+ self.device = get_pb_arg_vals(predict_net, "device", b"cpu").decode("ascii")
+
+ if convert_outputs is None:
+ meta_arch = get_pb_arg_vals(predict_net, "meta_architecture", b"GeneralizedRCNN")
+ meta_arch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[meta_arch.decode("ascii")]
+ self._convert_outputs = meta_arch.get_outputs_converter(predict_net, init_net)
+ else:
+ self._convert_outputs = convert_outputs
+
+ def _infer_output_devices(self, inputs_dict):
+ def _get_device_type(torch_tensor):
+ assert torch_tensor.device.type in ["cpu", "cuda"]
+ assert torch_tensor.device.index == 0
+ return torch_tensor.device.type
+
+ predict_net = self.protobuf_model.net.Proto()
+ input_device_types = {
+ (name, 0): _get_device_type(tensor) for name, tensor in inputs_dict.items()
+ }
+ device_type_map = infer_device_type(
+ predict_net, known_status=input_device_types, device_name_style="pytorch"
+ )
+ ssa, versions = core.get_ssa(predict_net)
+ versioned_outputs = [(name, versions[name]) for name in predict_net.external_output]
+ output_devices = [device_type_map[outp] for outp in versioned_outputs]
+ return output_devices
+
+ def _convert_inputs(self, batched_inputs):
+ # currently all models convert inputs in the same way
+ data, im_info = convert_batched_inputs_to_c2_format(
+ batched_inputs, self.size_divisibility, self.device
+ )
+ return {"data": data, "im_info": im_info}
+
+ def forward(self, batched_inputs):
+ c2_inputs = self._convert_inputs(batched_inputs)
+ c2_results = self.protobuf_model(c2_inputs)
+
+ if any(t.device.type != "cpu" for _, t in c2_inputs.items()):
+ output_devices = self._infer_output_devices(c2_inputs)
+ else:
+ output_devices = ["cpu" for _ in self.protobuf_model.net.Proto().external_output]
+
+ def _cast_caffe2_blob_to_torch_tensor(blob, device):
+ return torch.Tensor(blob).to(device) if isinstance(blob, np.ndarray) else None
+
+ c2_results = {
+ name: _cast_caffe2_blob_to_torch_tensor(c2_results[name], device)
+ for name, device in zip(self.protobuf_model.net.Proto().external_output, output_devices)
+ }
+
+ return self._convert_outputs(batched_inputs, c2_inputs, c2_results)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_modeling.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_modeling.py
new file mode 100644
index 0000000000000000000000000000000000000000..1732b322c75abc3ac178d61d31cdec4cdcd61dfd
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/caffe2_modeling.py
@@ -0,0 +1,493 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import functools
+import io
+import struct
+import types
+import torch
+
+from detectron2.modeling import meta_arch
+from detectron2.modeling.box_regression import Box2BoxTransform
+from detectron2.modeling.meta_arch.panoptic_fpn import combine_semantic_and_instance_outputs
+from detectron2.modeling.postprocessing import detector_postprocess, sem_seg_postprocess
+from detectron2.modeling.roi_heads import keypoint_head
+from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes
+
+from .c10 import Caffe2Compatible
+from .patcher import ROIHeadsPatcher, patch_generalized_rcnn
+from .shared import (
+ alias,
+ check_set_pb_arg,
+ get_pb_arg_floats,
+ get_pb_arg_valf,
+ get_pb_arg_vali,
+ get_pb_arg_vals,
+ mock_torch_nn_functional_interpolate,
+)
+
+
+def assemble_rcnn_outputs_by_name(image_sizes, tensor_outputs, force_mask_on=False):
+ """
+ A function to assemble caffe2 model's outputs (i.e. Dict[str, Tensor])
+ to detectron2's format (i.e. list of Instances instance).
+ This only works when the model follows the Caffe2 detectron's naming convention.
+
+ Args:
+ image_sizes (List[List[int, int]]): [H, W] of every image.
+ tensor_outputs (Dict[str, Tensor]): external_output to its tensor.
+
+ force_mask_on (Bool): if true, the it make sure there'll be pred_masks even
+ if the mask is not found from tensor_outputs (usually due to model crash)
+ """
+
+ results = [Instances(image_size) for image_size in image_sizes]
+
+ batch_splits = tensor_outputs.get("batch_splits", None)
+ if batch_splits:
+ raise NotImplementedError()
+ assert len(image_sizes) == 1
+ result = results[0]
+
+ bbox_nms = tensor_outputs["bbox_nms"]
+ score_nms = tensor_outputs["score_nms"]
+ class_nms = tensor_outputs["class_nms"]
+ # Detection will always success because Conv support 0-batch
+ assert bbox_nms is not None
+ assert score_nms is not None
+ assert class_nms is not None
+ if bbox_nms.shape[1] == 5:
+ result.pred_boxes = RotatedBoxes(bbox_nms)
+ else:
+ result.pred_boxes = Boxes(bbox_nms)
+ result.scores = score_nms
+ result.pred_classes = class_nms.to(torch.int64)
+
+ mask_fcn_probs = tensor_outputs.get("mask_fcn_probs", None)
+ if mask_fcn_probs is not None:
+ # finish the mask pred
+ mask_probs_pred = mask_fcn_probs
+ num_masks = mask_probs_pred.shape[0]
+ class_pred = result.pred_classes
+ indices = torch.arange(num_masks, device=class_pred.device)
+ mask_probs_pred = mask_probs_pred[indices, class_pred][:, None]
+ result.pred_masks = mask_probs_pred
+ elif force_mask_on:
+ # NOTE: there's no way to know the height/width of mask here, it won't be
+ # used anyway when batch size is 0, so just set them to 0.
+ result.pred_masks = torch.zeros([0, 1, 0, 0], dtype=torch.uint8)
+
+ keypoints_out = tensor_outputs.get("keypoints_out", None)
+ kps_score = tensor_outputs.get("kps_score", None)
+ if keypoints_out is not None:
+ # keypoints_out: [N, 4, #kypoints], where 4 is in order of (x, y, score, prob)
+ keypoints_tensor = keypoints_out
+ # NOTE: it's possible that prob is not calculated if "should_output_softmax"
+ # is set to False in HeatmapMaxKeypoint, so just using raw score, seems
+ # it doesn't affect mAP. TODO: check more carefully.
+ keypoint_xyp = keypoints_tensor.transpose(1, 2)[:, :, [0, 1, 2]]
+ result.pred_keypoints = keypoint_xyp
+ elif kps_score is not None:
+ # keypoint heatmap to sparse data structure
+ pred_keypoint_logits = kps_score
+ keypoint_head.keypoint_rcnn_inference(pred_keypoint_logits, [result])
+
+ return results
+
+
+def _cast_to_f32(f64):
+ return struct.unpack("f", struct.pack("f", f64))[0]
+
+
+def set_caffe2_compatible_tensor_mode(model, enable=True):
+ def _fn(m):
+ if isinstance(m, Caffe2Compatible):
+ m.tensor_mode = enable
+
+ model.apply(_fn)
+
+
+def convert_batched_inputs_to_c2_format(batched_inputs, size_divisibility, device):
+ """
+ See get_caffe2_inputs() below.
+ """
+ assert all(isinstance(x, dict) for x in batched_inputs)
+ assert all(x["image"].dim() == 3 for x in batched_inputs)
+
+ images = [x["image"] for x in batched_inputs]
+ images = ImageList.from_tensors(images, size_divisibility)
+
+ im_info = []
+ for input_per_image, image_size in zip(batched_inputs, images.image_sizes):
+ target_height = input_per_image.get("height", image_size[0])
+ target_width = input_per_image.get("width", image_size[1]) # noqa
+ # NOTE: The scale inside im_info is kept as convention and for providing
+ # post-processing information if further processing is needed. For
+ # current Caffe2 model definitions that don't include post-processing inside
+ # the model, this number is not used.
+ # NOTE: There can be a slight difference between width and height
+ # scales, using a single number can results in numerical difference
+ # compared with D2's post-processing.
+ scale = target_height / image_size[0]
+ im_info.append([image_size[0], image_size[1], scale])
+ im_info = torch.Tensor(im_info)
+
+ return images.tensor.to(device), im_info.to(device)
+
+
+class Caffe2MetaArch(Caffe2Compatible, torch.nn.Module):
+ """
+ Base class for caffe2-compatible implementation of a meta architecture.
+ The forward is traceable and its traced graph can be converted to caffe2
+ graph through ONNX.
+ """
+
+ def __init__(self, cfg, torch_model):
+ """
+ Args:
+ cfg (CfgNode):
+ torch_model (nn.Module): the detectron2 model (meta_arch) to be
+ converted.
+ """
+ super().__init__()
+ self._wrapped_model = torch_model
+ self.eval()
+ set_caffe2_compatible_tensor_mode(self, True)
+
+ def get_caffe2_inputs(self, batched_inputs):
+ """
+ Convert pytorch-style structured inputs to caffe2-style inputs that
+ are tuples of tensors.
+
+ Args:
+ batched_inputs (list[dict]): inputs to a detectron2 model
+ in its standard format. Each dict has "image" (CHW tensor), and optionally
+ "height" and "width".
+
+ Returns:
+ tuple[Tensor]:
+ tuple of tensors that will be the inputs to the
+ :meth:`forward` method. For existing models, the first
+ is an NCHW tensor (padded and batched); the second is
+ a im_info Nx3 tensor, where the rows are
+ (height, width, unused legacy parameter)
+ """
+ return convert_batched_inputs_to_c2_format(
+ batched_inputs,
+ self._wrapped_model.backbone.size_divisibility,
+ self._wrapped_model.device,
+ )
+
+ def encode_additional_info(self, predict_net, init_net):
+ """
+ Save extra metadata that will be used by inference in the output protobuf.
+ """
+ pass
+
+ def forward(self, inputs):
+ """
+ Run the forward in caffe2-style. It has to use caffe2-compatible ops
+ and the method will be used for tracing.
+
+ Args:
+ inputs (tuple[Tensor]): inputs defined by :meth:`get_caffe2_input`.
+ They will be the inputs of the converted caffe2 graph.
+
+ Returns:
+ tuple[Tensor]: output tensors. They will be the outputs of the
+ converted caffe2 graph.
+ """
+ raise NotImplementedError
+
+ def _caffe2_preprocess_image(self, inputs):
+ """
+ Caffe2 implementation of preprocess_image, which is called inside each MetaArch's forward.
+ It normalizes the input images, and the final caffe2 graph assumes the
+ inputs have been batched already.
+ """
+ data, im_info = inputs
+ data = alias(data, "data")
+ im_info = alias(im_info, "im_info")
+ mean, std = self._wrapped_model.pixel_mean, self._wrapped_model.pixel_std
+ normalized_data = (data - mean) / std
+ normalized_data = alias(normalized_data, "normalized_data")
+
+ # Pack (data, im_info) into ImageList which is recognized by self.inference.
+ images = ImageList(tensor=normalized_data, image_sizes=im_info)
+ return images
+
+ @staticmethod
+ def get_outputs_converter(predict_net, init_net):
+ """
+ Creates a function that converts outputs of the caffe2 model to
+ detectron2's standard format.
+ The function uses information in `predict_net` and `init_net` that are
+ available at inferene time. Therefore the function logic can be used in inference.
+
+ The returned function has the following signature:
+
+ def convert(batched_inputs, c2_inputs, c2_results) -> detectron2_outputs
+
+ Where
+
+ * batched_inputs (list[dict]): the original input format of the meta arch
+ * c2_inputs (dict[str, Tensor]): the caffe2 inputs.
+ * c2_results (dict[str, Tensor]): the caffe2 output format,
+ corresponding to the outputs of the :meth:`forward` function.
+ * detectron2_outputs: the original output format of the meta arch.
+
+ This function can be used to compare the outputs of the original meta arch and
+ the converted caffe2 graph.
+
+ Returns:
+ callable: a callable of the above signature.
+ """
+ raise NotImplementedError
+
+
+class Caffe2GeneralizedRCNN(Caffe2MetaArch):
+ def __init__(self, cfg, torch_model):
+ assert isinstance(torch_model, meta_arch.GeneralizedRCNN)
+ torch_model = patch_generalized_rcnn(torch_model)
+ super().__init__(cfg, torch_model)
+
+ self.roi_heads_patcher = ROIHeadsPatcher(cfg, self._wrapped_model.roi_heads)
+
+ def encode_additional_info(self, predict_net, init_net):
+ size_divisibility = self._wrapped_model.backbone.size_divisibility
+ check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility)
+ check_set_pb_arg(
+ predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii")
+ )
+ check_set_pb_arg(predict_net, "meta_architecture", "s", b"GeneralizedRCNN")
+
+ @mock_torch_nn_functional_interpolate()
+ def forward(self, inputs):
+ if not self.tensor_mode:
+ return self._wrapped_model.inference(inputs)
+ images = self._caffe2_preprocess_image(inputs)
+ features = self._wrapped_model.backbone(images.tensor)
+ proposals, _ = self._wrapped_model.proposal_generator(images, features)
+ with self.roi_heads_patcher.mock_roi_heads():
+ detector_results, _ = self._wrapped_model.roi_heads(images, features, proposals)
+ return tuple(detector_results[0].flatten())
+
+ @staticmethod
+ def get_outputs_converter(predict_net, init_net):
+ def f(batched_inputs, c2_inputs, c2_results):
+ image_sizes = [[int(im[0]), int(im[1])] for im in c2_inputs["im_info"]]
+ results = assemble_rcnn_outputs_by_name(image_sizes, c2_results)
+ return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes)
+
+ return f
+
+
+class Caffe2PanopticFPN(Caffe2MetaArch):
+ def __init__(self, cfg, torch_model):
+ assert isinstance(torch_model, meta_arch.PanopticFPN)
+ torch_model = patch_generalized_rcnn(torch_model)
+ super().__init__(cfg, torch_model)
+
+ self.roi_heads_patcher = ROIHeadsPatcher(cfg, self._wrapped_model.roi_heads)
+
+ @mock_torch_nn_functional_interpolate()
+ def forward(self, inputs):
+ assert self.tensor_mode
+ images = self._caffe2_preprocess_image(inputs)
+ features = self._wrapped_model.backbone(images.tensor)
+
+ sem_seg_results, _ = self._wrapped_model.sem_seg_head(features)
+ sem_seg_results = alias(sem_seg_results, "sem_seg")
+
+ proposals, _ = self._wrapped_model.proposal_generator(images, features)
+
+ with self.roi_heads_patcher.mock_roi_heads(self.tensor_mode):
+ detector_results, _ = self._wrapped_model.roi_heads(images, features, proposals)
+
+ return tuple(detector_results[0].flatten()) + (sem_seg_results,)
+
+ def encode_additional_info(self, predict_net, init_net):
+ size_divisibility = self._wrapped_model.backbone.size_divisibility
+ check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility)
+ check_set_pb_arg(
+ predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii")
+ )
+ check_set_pb_arg(predict_net, "meta_architecture", "s", b"PanopticFPN")
+
+ # Inference parameters:
+ check_set_pb_arg(predict_net, "combine_on", "i", self._wrapped_model.combine_on)
+ check_set_pb_arg(
+ predict_net,
+ "combine_overlap_threshold",
+ "f",
+ _cast_to_f32(self._wrapped_model.combine_overlap_threshold),
+ )
+ check_set_pb_arg(
+ predict_net,
+ "combine_stuff_area_limit",
+ "i",
+ self._wrapped_model.combine_stuff_area_limit,
+ )
+ check_set_pb_arg(
+ predict_net,
+ "combine_instances_confidence_threshold",
+ "f",
+ _cast_to_f32(self._wrapped_model.combine_instances_confidence_threshold),
+ )
+
+ @staticmethod
+ def get_outputs_converter(predict_net, init_net):
+ combine_on = get_pb_arg_vali(predict_net, "combine_on", None)
+ combine_overlap_threshold = get_pb_arg_valf(predict_net, "combine_overlap_threshold", None)
+ combine_stuff_area_limit = get_pb_arg_vali(predict_net, "combine_stuff_area_limit", None)
+ combine_instances_confidence_threshold = get_pb_arg_valf(
+ predict_net, "combine_instances_confidence_threshold", None
+ )
+
+ def f(batched_inputs, c2_inputs, c2_results):
+ image_sizes = [[int(im[0]), int(im[1])] for im in c2_inputs["im_info"]]
+ detector_results = assemble_rcnn_outputs_by_name(
+ image_sizes, c2_results, force_mask_on=True
+ )
+ sem_seg_results = c2_results["sem_seg"]
+
+ # copied from meta_arch/panoptic_fpn.py ...
+ processed_results = []
+ for sem_seg_result, detector_result, input_per_image, image_size in zip(
+ sem_seg_results, detector_results, batched_inputs, image_sizes
+ ):
+ height = input_per_image.get("height", image_size[0])
+ width = input_per_image.get("width", image_size[1])
+ sem_seg_r = sem_seg_postprocess(sem_seg_result, image_size, height, width)
+ detector_r = detector_postprocess(detector_result, height, width)
+
+ processed_results.append({"sem_seg": sem_seg_r, "instances": detector_r})
+
+ if combine_on:
+ panoptic_r = combine_semantic_and_instance_outputs(
+ detector_r,
+ sem_seg_r.argmax(dim=0),
+ combine_overlap_threshold,
+ combine_stuff_area_limit,
+ combine_instances_confidence_threshold,
+ )
+ processed_results[-1]["panoptic_seg"] = panoptic_r
+ return processed_results
+
+ return f
+
+
+class Caffe2RetinaNet(Caffe2MetaArch):
+ def __init__(self, cfg, torch_model):
+ assert isinstance(torch_model, meta_arch.RetinaNet)
+ super().__init__(cfg, torch_model)
+
+ @mock_torch_nn_functional_interpolate()
+ def forward(self, inputs):
+ assert self.tensor_mode
+ images = self._caffe2_preprocess_image(inputs)
+
+ # explicitly return the images sizes to avoid removing "im_info" by ONNX
+ # since it's not used in the forward path
+ return_tensors = [images.image_sizes]
+
+ features = self._wrapped_model.backbone(images.tensor)
+ features = [features[f] for f in self._wrapped_model.in_features]
+ for i, feature_i in enumerate(features):
+ features[i] = alias(feature_i, "feature_{}".format(i), is_backward=True)
+ return_tensors.append(features[i])
+
+ box_cls, box_delta = self._wrapped_model.head(features)
+ for i, (box_cls_i, box_delta_i) in enumerate(zip(box_cls, box_delta)):
+ return_tensors.append(alias(box_cls_i, "box_cls_{}".format(i)))
+ return_tensors.append(alias(box_delta_i, "box_delta_{}".format(i)))
+
+ return tuple(return_tensors)
+
+ def encode_additional_info(self, predict_net, init_net):
+ size_divisibility = self._wrapped_model.backbone.size_divisibility
+ check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility)
+ check_set_pb_arg(
+ predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii")
+ )
+ check_set_pb_arg(predict_net, "meta_architecture", "s", b"RetinaNet")
+
+ # Inference parameters:
+ check_set_pb_arg(
+ predict_net, "score_threshold", "f", _cast_to_f32(self._wrapped_model.score_threshold)
+ )
+ check_set_pb_arg(predict_net, "topk_candidates", "i", self._wrapped_model.topk_candidates)
+ check_set_pb_arg(
+ predict_net, "nms_threshold", "f", _cast_to_f32(self._wrapped_model.nms_threshold)
+ )
+ check_set_pb_arg(
+ predict_net,
+ "max_detections_per_image",
+ "i",
+ self._wrapped_model.max_detections_per_image,
+ )
+
+ check_set_pb_arg(
+ predict_net,
+ "bbox_reg_weights",
+ "floats",
+ [_cast_to_f32(w) for w in self._wrapped_model.box2box_transform.weights],
+ )
+ self._encode_anchor_generator_cfg(predict_net)
+
+ def _encode_anchor_generator_cfg(self, predict_net):
+ # serialize anchor_generator for future use
+ serialized_anchor_generator = io.BytesIO()
+ torch.save(self._wrapped_model.anchor_generator, serialized_anchor_generator)
+ # Ideally we can put anchor generating inside the model, then we don't
+ # need to store this information.
+ bytes = serialized_anchor_generator.getvalue()
+ check_set_pb_arg(predict_net, "serialized_anchor_generator", "s", bytes)
+
+ @staticmethod
+ def get_outputs_converter(predict_net, init_net):
+ self = types.SimpleNamespace()
+ serialized_anchor_generator = io.BytesIO(
+ get_pb_arg_vals(predict_net, "serialized_anchor_generator", None)
+ )
+ self.anchor_generator = torch.load(serialized_anchor_generator)
+ bbox_reg_weights = get_pb_arg_floats(predict_net, "bbox_reg_weights", None)
+ self.box2box_transform = Box2BoxTransform(weights=tuple(bbox_reg_weights))
+ self.score_threshold = get_pb_arg_valf(predict_net, "score_threshold", None)
+ self.topk_candidates = get_pb_arg_vali(predict_net, "topk_candidates", None)
+ self.nms_threshold = get_pb_arg_valf(predict_net, "nms_threshold", None)
+ self.max_detections_per_image = get_pb_arg_vali(
+ predict_net, "max_detections_per_image", None
+ )
+
+ # hack to reuse inference code from RetinaNet
+ self.inference = functools.partial(meta_arch.RetinaNet.inference, self)
+ self.inference_single_image = functools.partial(
+ meta_arch.RetinaNet.inference_single_image, self
+ )
+
+ def f(batched_inputs, c2_inputs, c2_results):
+ image_sizes = [[int(im[0]), int(im[1])] for im in c2_inputs["im_info"]]
+
+ num_features = len([x for x in c2_results.keys() if x.startswith("box_cls_")])
+ box_cls = [c2_results["box_cls_{}".format(i)] for i in range(num_features)]
+ box_delta = [c2_results["box_delta_{}".format(i)] for i in range(num_features)]
+
+ # For each feature level, feature should have the same batch size and
+ # spatial dimension as the box_cls and box_delta.
+ dummy_features = [box_delta[i].clone()[:, 0:0, :, :] for i in range(num_features)]
+ anchors = self.anchor_generator(dummy_features)
+
+ # self.num_classess can be inferred
+ self.num_classes = box_cls[0].shape[1] // (box_delta[0].shape[1] // 4)
+
+ results = self.inference(box_cls, box_delta, anchors, image_sizes)
+ return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes)
+
+ return f
+
+
+META_ARCH_CAFFE2_EXPORT_TYPE_MAP = {
+ "GeneralizedRCNN": Caffe2GeneralizedRCNN,
+ "PanopticFPN": Caffe2PanopticFPN,
+ "RetinaNet": Caffe2RetinaNet,
+}
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/patcher.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/patcher.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f0b0fd8122d12c10d06cfc1b0720e3c3374c737
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/patcher.py
@@ -0,0 +1,153 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import contextlib
+import mock
+import torch
+
+from detectron2.modeling import poolers
+from detectron2.modeling.proposal_generator import rpn
+from detectron2.modeling.roi_heads import keypoint_head, mask_head
+from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
+
+from .c10 import (
+ Caffe2Compatible,
+ Caffe2FastRCNNOutputsInference,
+ Caffe2KeypointRCNNInference,
+ Caffe2MaskRCNNInference,
+ Caffe2ROIPooler,
+ Caffe2RPN,
+)
+
+
+class GenericMixin(object):
+ pass
+
+
+class Caffe2CompatibleConverter(object):
+ """
+ A GenericUpdater which implements the `create_from` interface, by modifying
+ module object and assign it with another class replaceCls.
+ """
+
+ def __init__(self, replaceCls):
+ self.replaceCls = replaceCls
+
+ def create_from(self, module):
+ # update module's class to the new class
+ assert isinstance(module, torch.nn.Module)
+ if issubclass(self.replaceCls, GenericMixin):
+ # replaceCls should act as mixin, create a new class on-the-fly
+ new_class = type(
+ "{}MixedWith{}".format(self.replaceCls.__name__, module.__class__.__name__),
+ (self.replaceCls, module.__class__),
+ {}, # {"new_method": lambda self: ...},
+ )
+ module.__class__ = new_class
+ else:
+ # replaceCls is complete class, this allow arbitrary class swap
+ module.__class__ = self.replaceCls
+
+ # initialize Caffe2Compatible
+ if isinstance(module, Caffe2Compatible):
+ module.tensor_mode = False
+
+ return module
+
+
+def patch(model, target, updater, *args, **kwargs):
+ """
+ recursively (post-order) update all modules with the target type and its
+ subclasses, make a initialization/composition/inheritance/... via the
+ updater.create_from.
+ """
+ for name, module in model.named_children():
+ model._modules[name] = patch(module, target, updater, *args, **kwargs)
+ if isinstance(model, target):
+ return updater.create_from(model, *args, **kwargs)
+ return model
+
+
+def patch_generalized_rcnn(model):
+ ccc = Caffe2CompatibleConverter
+ model = patch(model, rpn.RPN, ccc(Caffe2RPN))
+ model = patch(model, poolers.ROIPooler, ccc(Caffe2ROIPooler))
+
+ return model
+
+
+@contextlib.contextmanager
+def mock_fastrcnn_outputs_inference(
+ tensor_mode, check=True, box_predictor_type=FastRCNNOutputLayers
+):
+ with mock.patch.object(
+ box_predictor_type,
+ "inference",
+ autospec=True,
+ side_effect=Caffe2FastRCNNOutputsInference(tensor_mode),
+ ) as mocked_func:
+ yield
+ if check:
+ assert mocked_func.call_count > 0
+
+
+@contextlib.contextmanager
+def mock_mask_rcnn_inference(tensor_mode, patched_module, check=True):
+ with mock.patch(
+ "{}.mask_rcnn_inference".format(patched_module), side_effect=Caffe2MaskRCNNInference()
+ ) as mocked_func:
+ yield
+ if check:
+ assert mocked_func.call_count > 0
+
+
+@contextlib.contextmanager
+def mock_keypoint_rcnn_inference(tensor_mode, patched_module, use_heatmap_max_keypoint, check=True):
+ with mock.patch(
+ "{}.keypoint_rcnn_inference".format(patched_module),
+ side_effect=Caffe2KeypointRCNNInference(use_heatmap_max_keypoint),
+ ) as mocked_func:
+ yield
+ if check:
+ assert mocked_func.call_count > 0
+
+
+class ROIHeadsPatcher:
+ def __init__(self, cfg, heads):
+ self.heads = heads
+
+ self.use_heatmap_max_keypoint = cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT
+
+ @contextlib.contextmanager
+ def mock_roi_heads(self, tensor_mode=True):
+ """
+ Patching several inference functions inside ROIHeads and its subclasses
+
+ Args:
+ tensor_mode (bool): whether the inputs/outputs are caffe2's tensor
+ format or not. Default to True.
+ """
+ # NOTE: this requries the `keypoint_rcnn_inference` and `mask_rcnn_inference`
+ # are called inside the same file as BaseXxxHead due to using mock.patch.
+ kpt_heads_mod = keypoint_head.BaseKeypointRCNNHead.__module__
+ mask_head_mod = mask_head.BaseMaskRCNNHead.__module__
+
+ mock_ctx_managers = [
+ mock_fastrcnn_outputs_inference(
+ tensor_mode=tensor_mode,
+ check=True,
+ box_predictor_type=type(self.heads.box_predictor),
+ )
+ ]
+ if getattr(self.heads, "keypoint_on", False):
+ mock_ctx_managers += [
+ mock_keypoint_rcnn_inference(
+ tensor_mode, kpt_heads_mod, self.use_heatmap_max_keypoint
+ )
+ ]
+ if getattr(self.heads, "mask_on", False):
+ mock_ctx_managers += [mock_mask_rcnn_inference(tensor_mode, mask_head_mod)]
+
+ with contextlib.ExitStack() as stack: # python 3.3+
+ for mgr in mock_ctx_managers:
+ stack.enter_context(mgr)
+ yield
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/shared.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/shared.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb7ffeb098f21178660572830164126fab63e0e1
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/export/shared.py
@@ -0,0 +1,1034 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+import collections
+import contextlib
+import copy
+import functools
+import logging
+import mock
+import numpy as np
+import os
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+import caffe2.python.utils as putils
+import torch
+import torch.nn.functional as F
+from caffe2.proto import caffe2_pb2
+from caffe2.python import core, net_drawer, workspace
+from torch.nn.functional import interpolate as interp
+
+logger = logging.getLogger(__name__)
+
+
+# ==== torch/utils_toffee/cast.py =======================================
+
+
+def to_device(t, device_str):
+ """
+ This function is a replacement of .to(another_device) such that it allows the
+ casting to be traced properly by explicitly calling the underlying copy ops.
+ It also avoids introducing unncessary op when casting to the same device.
+ """
+ src = t.device
+ dst = torch.device(device_str)
+
+ if src == dst:
+ return t
+ elif src.type == "cuda" and dst.type == "cpu":
+ return torch.ops._caffe2.CopyGPUToCPU(t)
+ elif src.type == "cpu" and dst.type == "cuda":
+ return torch.ops._caffe2.CopyCPUToGPU(t)
+ else:
+ raise RuntimeError("Can't cast tensor from device {} to device {}".format(src, dst))
+
+
+# ==== torch/utils_toffee/interpolate.py =======================================
+
+
+# Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py
+def BilinearInterpolation(tensor_in, up_scale):
+ assert up_scale % 2 == 0, "Scale should be even"
+
+ def upsample_filt(size):
+ factor = (size + 1) // 2
+ if size % 2 == 1:
+ center = factor - 1
+ else:
+ center = factor - 0.5
+
+ og = np.ogrid[:size, :size]
+ return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
+
+ kernel_size = int(up_scale) * 2
+ bil_filt = upsample_filt(kernel_size)
+
+ dim = int(tensor_in.shape[1])
+ kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32)
+ kernel[range(dim), range(dim), :, :] = bil_filt
+
+ tensor_out = F.conv_transpose2d(
+ tensor_in,
+ weight=to_device(torch.Tensor(kernel), tensor_in.device),
+ bias=None,
+ stride=int(up_scale),
+ padding=int(up_scale / 2),
+ )
+
+ return tensor_out
+
+
+# NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if
+# using dynamic `scale_factor` rather than static `size`. (T43166860)
+# NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly.
+def onnx_compatibale_interpolate(
+ input, size=None, scale_factor=None, mode="nearest", align_corners=None
+):
+ # NOTE: The input dimensions are interpreted in the form:
+ # `mini-batch x channels x [optional depth] x [optional height] x width`.
+ if size is None and scale_factor is not None:
+ if input.dim() == 4:
+ if isinstance(scale_factor, (int, float)):
+ height_scale, width_scale = (scale_factor, scale_factor)
+ else:
+ assert isinstance(scale_factor, (tuple, list))
+ assert len(scale_factor) == 2
+ height_scale, width_scale = scale_factor
+
+ assert not align_corners, "No matching C2 op for align_corners == True"
+ if mode == "nearest":
+ return torch.ops._caffe2.ResizeNearest(
+ input, order="NCHW", width_scale=width_scale, height_scale=height_scale
+ )
+ elif mode == "bilinear":
+ logger.warning(
+ "Use F.conv_transpose2d for bilinear interpolate"
+ " because there's no such C2 op, this may cause significant"
+ " slowdown and the boundary pixels won't be as same as"
+ " using F.interpolate due to padding."
+ )
+ assert height_scale == width_scale
+ return BilinearInterpolation(input, up_scale=height_scale)
+ logger.warning("Output size is not static, it might cause ONNX conversion issue")
+
+ return interp(input, size, scale_factor, mode, align_corners)
+
+
+@contextlib.contextmanager
+def mock_torch_nn_functional_interpolate():
+ if torch.onnx.is_in_onnx_export():
+ with mock.patch(
+ "torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate
+ ):
+ yield
+ else:
+ yield
+
+
+# ==== torch/utils_caffe2/ws_utils.py ==========================================
+
+
+class ScopedWS(object):
+ def __init__(self, ws_name, is_reset, is_cleanup=False):
+ self.ws_name = ws_name
+ self.is_reset = is_reset
+ self.is_cleanup = is_cleanup
+ self.org_ws = ""
+
+ def __enter__(self):
+ self.org_ws = workspace.CurrentWorkspace()
+ if self.ws_name is not None:
+ workspace.SwitchWorkspace(self.ws_name, True)
+ if self.is_reset:
+ workspace.ResetWorkspace()
+
+ return workspace
+
+ def __exit__(self, *args):
+ if self.is_cleanup:
+ workspace.ResetWorkspace()
+ if self.ws_name is not None:
+ workspace.SwitchWorkspace(self.org_ws)
+
+
+def fetch_any_blob(name):
+ bb = None
+ try:
+ bb = workspace.FetchBlob(name)
+ except TypeError:
+ bb = workspace.FetchInt8Blob(name)
+ except Exception as e:
+ logger.error("Get blob {} error: {}".format(name, e))
+
+ return bb
+
+
+# ==== torch/utils_caffe2/protobuf.py ==========================================
+
+
+def get_pb_arg(pb, arg_name):
+ for x in pb.arg:
+ if x.name == arg_name:
+ return x
+ return None
+
+
+def get_pb_arg_valf(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return arg.f if arg is not None else default_val
+
+
+def get_pb_arg_floats(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return list(map(float, arg.floats)) if arg is not None else default_val
+
+
+def get_pb_arg_ints(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return list(map(int, arg.ints)) if arg is not None else default_val
+
+
+def get_pb_arg_vali(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return arg.i if arg is not None else default_val
+
+
+def get_pb_arg_vals(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return arg.s if arg is not None else default_val
+
+
+def get_pb_arg_valstrings(pb, arg_name, default_val):
+ arg = get_pb_arg(pb, arg_name)
+ return list(arg.strings) if arg is not None else default_val
+
+
+def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False):
+ arg = get_pb_arg(pb, arg_name)
+ if arg is None:
+ arg = putils.MakeArgument(arg_name, arg_value)
+ assert hasattr(arg, arg_attr)
+ pb.arg.extend([arg])
+ if allow_override and getattr(arg, arg_attr) != arg_value:
+ logger.warning(
+ "Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value)
+ )
+ setattr(arg, arg_attr, arg_value)
+ else:
+ assert arg is not None
+ assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format(
+ getattr(arg, arg_attr), arg_value
+ )
+
+
+def _create_const_fill_op_from_numpy(name, tensor, device_option=None):
+ assert type(tensor) == np.ndarray
+ kTypeNameMapper = {
+ np.dtype("float32"): "GivenTensorFill",
+ np.dtype("int32"): "GivenTensorIntFill",
+ np.dtype("int64"): "GivenTensorInt64Fill",
+ np.dtype("uint8"): "GivenTensorStringFill",
+ }
+
+ args_dict = {}
+ if tensor.dtype == np.dtype("uint8"):
+ args_dict.update({"values": [str(tensor.data)], "shape": [1]})
+ else:
+ args_dict.update({"values": tensor, "shape": tensor.shape})
+
+ if device_option is not None:
+ args_dict["device_option"] = device_option
+
+ return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict)
+
+
+def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor):
+ assert type(int8_tensor) == workspace.Int8Tensor
+ kTypeNameMapper = {
+ np.dtype("int32"): "Int8GivenIntTensorFill",
+ np.dtype("uint8"): "Int8GivenTensorFill",
+ }
+
+ tensor = int8_tensor.data
+ assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")]
+ values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor
+
+ return core.CreateOperator(
+ kTypeNameMapper[tensor.dtype],
+ [],
+ [name],
+ values=values,
+ shape=tensor.shape,
+ Y_scale=int8_tensor.scale,
+ Y_zero_point=int8_tensor.zero_point,
+ )
+
+
+def create_const_fill_op(
+ name: str,
+ blob: Union[np.ndarray, workspace.Int8Tensor],
+ device_option: Optional[caffe2_pb2.DeviceOption] = None,
+) -> caffe2_pb2.OperatorDef:
+ """
+ Given a blob object, return the Caffe2 operator that creates this blob
+ as constant. Currently support NumPy tensor and Caffe2 Int8Tensor.
+ """
+
+ tensor_type = type(blob)
+ assert tensor_type in [
+ np.ndarray,
+ workspace.Int8Tensor,
+ ], 'Error when creating const fill op for "{}", unsupported blob type: {}'.format(
+ name, type(blob)
+ )
+
+ if tensor_type == np.ndarray:
+ return _create_const_fill_op_from_numpy(name, blob, device_option)
+ elif tensor_type == workspace.Int8Tensor:
+ assert device_option is None
+ return _create_const_fill_op_from_c2_int8_tensor(name, blob)
+
+
+def construct_init_net_from_params(
+ params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None
+) -> caffe2_pb2.NetDef:
+ """
+ Construct the init_net from params dictionary
+ """
+ init_net = caffe2_pb2.NetDef()
+ device_options = device_options or {}
+ for name, blob in params.items():
+ if isinstance(blob, str):
+ logger.warning(
+ (
+ "Blob {} with type {} is not supported in generating init net,"
+ " skipped.".format(name, type(blob))
+ )
+ )
+ continue
+ init_net.op.extend(
+ [create_const_fill_op(name, blob, device_option=device_options.get(name, None))]
+ )
+ init_net.external_output.append(name)
+ return init_net
+
+
+def get_producer_map(ssa):
+ """
+ Return dict from versioned blob to (i, j),
+ where i is index of producer op, j is the index of output of that op.
+ """
+ producer_map = {}
+ for i in range(len(ssa)):
+ outputs = ssa[i][1]
+ for j, outp in enumerate(outputs):
+ producer_map[outp] = (i, j)
+ return producer_map
+
+
+def get_consumer_map(ssa):
+ """
+ Return dict from versioned blob to list of (i, j),
+ where i is index of consumer op, j is the index of input of that op.
+ """
+ consumer_map = collections.defaultdict(list)
+ for i in range(len(ssa)):
+ inputs = ssa[i][0]
+ for j, inp in enumerate(inputs):
+ consumer_map[inp].append((i, j))
+ return consumer_map
+
+
+def get_params_from_init_net(
+ init_net: caffe2_pb2.NetDef,
+) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]:
+ """
+ Take the output blobs from init_net by running it.
+ Outputs:
+ params: dict from blob name to numpy array
+ device_options: dict from blob name to the device option of its creating op
+ """
+ # NOTE: this assumes that the params is determined by producer op with the
+ # only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor.
+ def _get_device_option(producer_op):
+ if producer_op.type == "CopyGPUToCPU":
+ return caffe2_pb2.DeviceOption()
+ else:
+ return producer_op.device_option
+
+ with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws:
+ ws.RunNetOnce(init_net)
+ params = {b: fetch_any_blob(b) for b in init_net.external_output}
+ ssa, versions = core.get_ssa(init_net)
+ producer_map = get_producer_map(ssa)
+ device_options = {
+ b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]])
+ for b in init_net.external_output
+ }
+ return params, device_options
+
+
+def _updater_raise(op, input_types, output_types):
+ raise RuntimeError(
+ "Failed to apply updater for op {} given input_types {} and"
+ " output_types {}".format(op, input_types, output_types)
+ )
+
+
+def _generic_status_identifier(
+ predict_net: caffe2_pb2.NetDef,
+ status_updater: Callable,
+ known_status: Dict[Tuple[str, int], Any],
+) -> Dict[Tuple[str, int], Any]:
+ """
+ Statically infer the status of each blob, the status can be such as device type
+ (CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here
+ is versioned blob (Tuple[str, int]) in the format compatible with ssa.
+ Inputs:
+ predict_net: the caffe2 network
+ status_updater: a callable, given an op and the status of its input/output,
+ it returns the updated status of input/output. `None` is used for
+ representing unknown status.
+ known_status: a dict containing known status, used as initialization.
+ Outputs:
+ A dict mapping from versioned blob to its status
+ """
+ ssa, versions = core.get_ssa(predict_net)
+ versioned_ext_input = [(b, 0) for b in predict_net.external_input]
+ versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output]
+ all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa])
+
+ allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union(versioned_ext_output)
+ assert all(k in allowed_vbs for k in known_status)
+ assert all(v is not None for v in known_status.values())
+ _known_status = copy.deepcopy(known_status)
+
+ def _check_and_update(key, value):
+ assert value is not None
+ if key in _known_status:
+ if not _known_status[key] == value:
+ raise RuntimeError(
+ "Confilict status for {}, existing status {}, new status {}".format(
+ key, _known_status[key], value
+ )
+ )
+ _known_status[key] = value
+
+ def _update_i(op, ssa_i):
+ versioned_inputs = ssa_i[0]
+ versioned_outputs = ssa_i[1]
+
+ inputs_status = [_known_status.get(b, None) for b in versioned_inputs]
+ outputs_status = [_known_status.get(b, None) for b in versioned_outputs]
+
+ new_inputs_status, new_outputs_status = status_updater(op, inputs_status, outputs_status)
+
+ for versioned_blob, status in zip(
+ versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status
+ ):
+ if status is not None:
+ _check_and_update(versioned_blob, status)
+
+ for op, ssa_i in zip(predict_net.op, ssa):
+ _update_i(op, ssa_i)
+ for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)):
+ _update_i(op, ssa_i)
+
+ # NOTE: This strictly checks all the blob from predict_net must be assgined
+ # a known status. However sometimes it's impossible (eg. having deadend op),
+ # we may relax this constraint if
+ for k in all_versioned_blobs:
+ if k not in _known_status:
+ raise NotImplementedError(
+ "Can not infer the status for {}. Currently only support the case where"
+ " a single forward and backward pass can identify status for all blobs.".format(k)
+ )
+
+ return _known_status
+
+
+def infer_device_type(
+ predict_net: caffe2_pb2.NetDef,
+ known_status: Dict[Tuple[str, int], Any],
+ device_name_style: str = "caffe2",
+) -> Dict[Tuple[str, int], str]:
+ """ Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob """
+
+ assert device_name_style in ["caffe2", "pytorch"]
+ _CPU_STR = "cpu"
+ _GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda"
+
+ def _copy_cpu_to_gpu_updater(op, input_types, output_types):
+ if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR:
+ _updater_raise(op, input_types, output_types)
+ return ([_CPU_STR], [_GPU_STR])
+
+ def _copy_gpu_to_cpu_updater(op, input_types, output_types):
+ if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR:
+ _updater_raise(op, input_types, output_types)
+ return ([_GPU_STR], [_CPU_STR])
+
+ def _other_ops_updater(op, input_types, output_types):
+ non_none_types = [x for x in input_types + output_types if x is not None]
+ if len(non_none_types) > 0:
+ the_type = non_none_types[0]
+ if not all(x == the_type for x in non_none_types):
+ _updater_raise(op, input_types, output_types)
+ else:
+ the_type = None
+ return ([the_type for _ in op.input], [the_type for _ in op.output])
+
+ def _device_updater(op, *args, **kwargs):
+ return {
+ "CopyCPUToGPU": _copy_cpu_to_gpu_updater,
+ "CopyGPUToCPU": _copy_gpu_to_cpu_updater,
+ }.get(op.type, _other_ops_updater)(op, *args, **kwargs)
+
+ return _generic_status_identifier(predict_net, _device_updater, known_status)
+
+
+# ==== torch/utils_caffe2/vis.py ===============================================
+
+
+def _modify_blob_names(ops, blob_rename_f):
+ ret = []
+
+ def _replace_list(blob_list, replaced_list):
+ del blob_list[:]
+ blob_list.extend(replaced_list)
+
+ for x in ops:
+ cur = copy.deepcopy(x)
+ _replace_list(cur.input, list(map(blob_rename_f, cur.input)))
+ _replace_list(cur.output, list(map(blob_rename_f, cur.output)))
+ ret.append(cur)
+
+ return ret
+
+
+def _rename_blob(name, blob_sizes, blob_ranges):
+ def _list_to_str(bsize):
+ ret = ", ".join([str(x) for x in bsize])
+ ret = "[" + ret + "]"
+ return ret
+
+ ret = name
+ if blob_sizes is not None and name in blob_sizes:
+ ret += "\n" + _list_to_str(blob_sizes[name])
+ if blob_ranges is not None and name in blob_ranges:
+ ret += "\n" + _list_to_str(blob_ranges[name])
+
+ return ret
+
+
+# graph_name could not contain word 'graph'
+def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None):
+ blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges)
+ return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f)
+
+
+def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None):
+ graph = None
+ ops = net.op
+ if blob_rename_func is not None:
+ ops = _modify_blob_names(ops, blob_rename_func)
+ if not op_only:
+ graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB")
+ else:
+ graph = net_drawer.GetPydotGraphMinimal(
+ ops, graph_name, rankdir="TB", minimal_dependency=True
+ )
+
+ try:
+ par_dir = os.path.dirname(file_name)
+ if not os.path.exists(par_dir):
+ os.makedirs(par_dir)
+
+ format = os.path.splitext(os.path.basename(file_name))[-1]
+ if format == ".png":
+ graph.write_png(file_name)
+ elif format == ".pdf":
+ graph.write_pdf(file_name)
+ elif format == ".svg":
+ graph.write_svg(file_name)
+ else:
+ print("Incorrect format {}".format(format))
+ except Exception as e:
+ print("Error when writing graph to image {}".format(e))
+
+ return graph
+
+
+# ==== torch/utils_toffee/aten_to_caffe2.py ====================================
+
+
+def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef):
+ """
+ For ONNX exported model, GroupNorm will be represented as ATen op,
+ this can be a drop in replacement from ATen to GroupNorm
+ """
+ count = 0
+ for op in predict_net.op:
+ if op.type == "ATen":
+ op_name = get_pb_arg_vals(op, "operator", None) # return byte in py3
+ if op_name and op_name.decode() == "group_norm":
+ op.arg.remove(get_pb_arg(op, "operator"))
+
+ if get_pb_arg_vali(op, "cudnn_enabled", None):
+ op.arg.remove(get_pb_arg(op, "cudnn_enabled"))
+
+ num_groups = get_pb_arg_vali(op, "num_groups", None)
+ if num_groups is not None:
+ op.arg.remove(get_pb_arg(op, "num_groups"))
+ check_set_pb_arg(op, "group", "i", num_groups)
+
+ op.type = "GroupNorm"
+ count += 1
+ if count > 1:
+ logger.info("Replaced {} ATen operator to GroupNormOp".format(count))
+
+
+# ==== torch/utils_toffee/alias.py =============================================
+
+
+def alias(x, name, is_backward=False):
+ if not torch.onnx.is_in_onnx_export():
+ return x
+ assert isinstance(x, torch.Tensor)
+ return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward)
+
+
+def fuse_alias_placeholder(predict_net, init_net):
+ """ Remove AliasWithName placeholder and rename the input/output of it """
+ # First we finish all the re-naming
+ for i, op in enumerate(predict_net.op):
+ if op.type == "AliasWithName":
+ assert len(op.input) == 1
+ assert len(op.output) == 1
+ name = get_pb_arg_vals(op, "name", None).decode()
+ is_backward = bool(get_pb_arg_vali(op, "is_backward", 0))
+ rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward)
+ rename_op_output(predict_net, i, 0, name)
+
+ # Remove AliasWithName, should be very safe since it's a non-op
+ new_ops = []
+ for op in predict_net.op:
+ if op.type != "AliasWithName":
+ new_ops.append(op)
+ else:
+ # safety check
+ assert op.input == op.output
+ assert op.input[0] == op.arg[0].s.decode()
+ del predict_net.op[:]
+ predict_net.op.extend(new_ops)
+
+
+# ==== torch/utils_caffe2/graph_transform.py ===================================
+
+
+class IllegalGraphTransformError(ValueError):
+ """ When a graph transform function call can't be executed. """
+
+
+def _rename_versioned_blob_in_proto(
+ proto: caffe2_pb2.NetDef,
+ old_name: str,
+ new_name: str,
+ version: int,
+ ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]],
+ start_versions: Dict[str, int],
+ end_versions: Dict[str, int],
+):
+ """ In given proto, rename all blobs with matched version """
+ # Operater list
+ for op, i_th_ssa in zip(proto.op, ssa):
+ versioned_inputs, versioned_outputs = i_th_ssa
+ for i in range(len(op.input)):
+ if versioned_inputs[i] == (old_name, version):
+ op.input[i] = new_name
+ for i in range(len(op.output)):
+ if versioned_outputs[i] == (old_name, version):
+ op.output[i] = new_name
+ # external_input
+ if start_versions.get(old_name, 0) == version:
+ for i in range(len(proto.external_input)):
+ if proto.external_input[i] == old_name:
+ proto.external_input[i] = new_name
+ # external_output
+ if end_versions.get(old_name, 0) == version:
+ for i in range(len(proto.external_output)):
+ if proto.external_output[i] == old_name:
+ proto.external_output[i] = new_name
+
+
+def rename_op_input(
+ predict_net: caffe2_pb2.NetDef,
+ init_net: caffe2_pb2.NetDef,
+ op_id: int,
+ input_id: int,
+ new_name: str,
+ from_producer: bool = False,
+):
+ """
+ Rename the op_id-th operator in predict_net, change it's input_id-th input's
+ name to the new_name. It also does automatic re-route and change
+ external_input and init_net if necessary.
+ - It requires the input is only consumed by this op.
+ - This function modifies predict_net and init_net in-place.
+ - When from_producer is enable, this also updates other operators that consumes
+ the same input. Be cautious because may trigger unintended behavior.
+ """
+ assert isinstance(predict_net, caffe2_pb2.NetDef)
+ assert isinstance(init_net, caffe2_pb2.NetDef)
+
+ init_net_ssa, init_net_versions = core.get_ssa(init_net)
+ predict_net_ssa, predict_net_versions = core.get_ssa(
+ predict_net, copy.deepcopy(init_net_versions)
+ )
+
+ versioned_inputs, versioned_outputs = predict_net_ssa[op_id]
+ old_name, version = versioned_inputs[input_id]
+
+ if from_producer:
+ producer_map = get_producer_map(predict_net_ssa)
+ if not (old_name, version) in producer_map:
+ raise NotImplementedError(
+ "Can't find producer, the input {} is probably from"
+ " init_net, this is not supported yet.".format(old_name)
+ )
+ producer = producer_map[(old_name, version)]
+ rename_op_output(predict_net, producer[0], producer[1], new_name)
+ return
+
+ def contain_targets(op_ssa):
+ return (old_name, version) in op_ssa[0]
+
+ is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa]
+ if sum(is_consumer) > 1:
+ raise IllegalGraphTransformError(
+ (
+ "Input '{}' of operator(#{}) are consumed by other ops, please use"
+ + " rename_op_output on the producer instead. Offending op: \n{}"
+ ).format(old_name, op_id, predict_net.op[op_id])
+ )
+
+ # update init_net
+ _rename_versioned_blob_in_proto(
+ init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions
+ )
+ # update predict_net
+ _rename_versioned_blob_in_proto(
+ predict_net,
+ old_name,
+ new_name,
+ version,
+ predict_net_ssa,
+ init_net_versions,
+ predict_net_versions,
+ )
+
+
+def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str):
+ """
+ Rename the op_id-th operator in predict_net, change it's output_id-th input's
+ name to the new_name. It also does automatic re-route and change
+ external_output and if necessary.
+ - It allows multiple consumers of its output.
+ - This function modifies predict_net in-place, doesn't need init_net.
+ """
+ assert isinstance(predict_net, caffe2_pb2.NetDef)
+
+ ssa, blob_versions = core.get_ssa(predict_net)
+
+ versioned_inputs, versioned_outputs = ssa[op_id]
+ old_name, version = versioned_outputs[output_id]
+
+ # update predict_net
+ _rename_versioned_blob_in_proto(
+ predict_net, old_name, new_name, version, ssa, {}, blob_versions
+ )
+
+
+def get_sub_graph_external_input_output(
+ predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int]
+) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]:
+ """
+ Return the list of external input/output of sub-graph,
+ each element is tuple of the name and corresponding version in predict_net.
+
+ external input/output is defined the same way as caffe2 NetDef.
+ """
+ ssa, versions = core.get_ssa(predict_net)
+
+ all_inputs = []
+ all_outputs = []
+ for op_id in sub_graph_op_indices:
+ all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs]
+ all_outputs += list(ssa[op_id][1]) # ssa output won't repeat
+
+ # for versioned blobs, external inputs are just those blob in all_inputs
+ # but not in all_outputs
+ ext_inputs = [inp for inp in all_inputs if inp not in all_outputs]
+
+ # external outputs are essentially outputs of this subgraph that are used
+ # outside of this sub-graph (including predict_net.external_output)
+ all_other_inputs = sum(
+ (ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices),
+ [(outp, versions[outp]) for outp in predict_net.external_output],
+ )
+ ext_outputs = [outp for outp in all_outputs if outp in set(all_other_inputs)]
+
+ return ext_inputs, ext_outputs
+
+
+class DiGraph:
+ """ A DAG representation of caffe2 graph, each vertice is a versioned blob. """
+
+ def __init__(self):
+ self.vertices = set()
+ self.graph = collections.defaultdict(list)
+
+ def add_edge(self, u, v):
+ self.graph[u].append(v)
+ self.vertices.add(u)
+ self.vertices.add(v)
+
+ # grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/
+ def get_all_paths(self, s, d):
+ visited = {k: False for k in self.vertices}
+ path = []
+ all_paths = []
+
+ def _get_all_paths_util(graph, u, d, visited, path):
+ visited[u] = True
+ path.append(u)
+ if u == d:
+ all_paths.append(copy.deepcopy(path))
+ else:
+ for i in graph[u]:
+ if not visited[i]:
+ _get_all_paths_util(graph, i, d, visited, path)
+ path.pop()
+ visited[u] = False
+
+ _get_all_paths_util(self.graph, s, d, visited, path)
+ return all_paths
+
+ @staticmethod
+ def from_ssa(ssa):
+ graph = DiGraph()
+ for op_id in range(len(ssa)):
+ for inp in ssa[op_id][0]:
+ for outp in ssa[op_id][1]:
+ graph.add_edge(inp, outp)
+ return graph
+
+
+def _get_dependency_chain(ssa, versioned_target, versioned_source):
+ """
+ Return the index list of relevant operator to produce target blob from source blob,
+ if there's no dependency, return empty list.
+ """
+
+ # finding all paths between nodes can be O(N!), thus we can only search
+ # in the subgraph using the op starting from the first consumer of source blob
+ # to the producer of the target blob.
+ consumer_map = get_consumer_map(ssa)
+ producer_map = get_producer_map(ssa)
+ start_op = min(x[0] for x in consumer_map[versioned_source]) - 15
+ end_op = (
+ producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op
+ )
+ sub_graph_ssa = ssa[start_op : end_op + 1]
+ if len(sub_graph_ssa) > 30:
+ logger.warning(
+ "Subgraph bebetween {} and {} is large (from op#{} to op#{}), it"
+ " might take non-trival time to find all paths between them.".format(
+ versioned_source, versioned_target, start_op, end_op
+ )
+ )
+
+ dag = DiGraph.from_ssa(sub_graph_ssa)
+ paths = dag.get_all_paths(versioned_source, versioned_target) # include two ends
+ ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths]
+ return sorted(set().union(*[set(ops) for ops in ops_in_paths]))
+
+
+def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]:
+ """
+ Idenfity the reshape sub-graph in a protobuf.
+ The reshape sub-graph is defined as matching the following pattern:
+
+ (input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐
+ └-------------------------------------------> Reshape -> (output_blob)
+
+ Return:
+ List of sub-graphs, each sub-graph is represented as a list of indices
+ of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape]
+ """
+
+ ssa, _ = core.get_ssa(predict_net)
+
+ ret = []
+ for i, op in enumerate(predict_net.op):
+ if op.type == "Reshape":
+ assert len(op.input) == 2
+ input_ssa = ssa[i][0]
+ data_source = input_ssa[0]
+ shape_source = input_ssa[1]
+ op_indices = _get_dependency_chain(ssa, shape_source, data_source)
+ ret.append(op_indices + [i])
+ return ret
+
+
+def remove_reshape_for_fc(predict_net, params):
+ """
+ In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape
+ a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping
+ doesn't work well with ONNX and Int8 tools, and cause using extra
+ ops (eg. ExpandDims) that might not be available on mobile.
+ Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape
+ after exporting ONNX model.
+ """
+ from caffe2.python import core
+
+ # find all reshape sub-graph that can be removed, which is now all Reshape
+ # sub-graph whose output is only consumed by FC.
+ # TODO: to make it safer, we may need the actually value to better determine
+ # if a Reshape before FC is removable.
+ reshape_sub_graphs = identify_reshape_sub_graph(predict_net)
+ sub_graphs_to_remove = []
+ for reshape_sub_graph in reshape_sub_graphs:
+ reshape_op_id = reshape_sub_graph[-1]
+ assert predict_net.op[reshape_op_id].type == "Reshape"
+ ssa, _ = core.get_ssa(predict_net)
+ reshape_output = ssa[reshape_op_id][1][0]
+ consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]]
+ if all(predict_net.op[consumer].type == "FC" for consumer in consumers):
+ # safety check if the sub-graph is isolated, for this reshape sub-graph,
+ # it means it has one non-param external input and one external output.
+ ext_inputs, ext_outputs = get_sub_graph_external_input_output(
+ predict_net, reshape_sub_graph
+ )
+ non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
+ if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1:
+ sub_graphs_to_remove.append(reshape_sub_graph)
+
+ # perform removing subgraph by:
+ # 1: rename the Reshape's output to its input, then the graph can be
+ # seen as in-place itentify, meaning whose external input/output are the same.
+ # 2: simply remove those ops.
+ remove_op_ids = []
+ params_to_remove = []
+ for sub_graph in sub_graphs_to_remove:
+ logger.info(
+ "Remove Reshape sub-graph:\n{}".format(
+ "".join(["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph])
+ )
+ )
+ reshape_op_id = sub_graph[-1]
+ new_reshap_output = predict_net.op[reshape_op_id].input[0]
+ rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output)
+ ext_inputs, ext_outputs = get_sub_graph_external_input_output(predict_net, sub_graph)
+ non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
+ params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0]
+ assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1
+ assert ext_outputs[0][0] == non_params_ext_inputs[0][0]
+ assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1
+ remove_op_ids.extend(sub_graph)
+ params_to_remove.extend(params_ext_inputs)
+
+ predict_net = copy.deepcopy(predict_net)
+ new_ops = [op for i, op in enumerate(predict_net.op) if i not in remove_op_ids]
+ del predict_net.op[:]
+ predict_net.op.extend(new_ops)
+ for versioned_params in params_to_remove:
+ name = versioned_params[0]
+ logger.info("Remove params: {} from init_net and predict_net.external_input".format(name))
+ del params[name]
+ predict_net.external_input.remove(name)
+
+ return predict_net, params
+
+
+def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef):
+ """
+ In-place fuse extra copy ops between cpu/gpu for the following case:
+ a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1
+ -CopyBToA> c2 -NextOp2-> d2
+ The fused network will look like:
+ a -NextOp1-> d1
+ -NextOp2-> d2
+ """
+
+ _COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"]
+
+ def _fuse_once(predict_net):
+ ssa, blob_versions = core.get_ssa(predict_net)
+ consumer_map = get_consumer_map(ssa)
+ versioned_external_output = [
+ (name, blob_versions[name]) for name in predict_net.external_output
+ ]
+
+ for op_id, op in enumerate(predict_net.op):
+ if op.type in _COPY_OPS:
+ fw_copy_versioned_output = ssa[op_id][1][0]
+ consumer_ids = [x[0] for x in consumer_map[fw_copy_versioned_output]]
+ reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)]
+
+ is_fusable = (
+ len(consumer_ids) > 0
+ and fw_copy_versioned_output not in versioned_external_output
+ and all(
+ predict_net.op[_op_id].type == reverse_op_type
+ and ssa[_op_id][1][0] not in versioned_external_output
+ for _op_id in consumer_ids
+ )
+ )
+
+ if is_fusable:
+ for rv_copy_op_id in consumer_ids:
+ # making each NextOp uses "a" directly and removing Copy ops
+ rs_copy_versioned_output = ssa[rv_copy_op_id][1][0]
+ next_op_id, inp_id = consumer_map[rs_copy_versioned_output][0]
+ predict_net.op[next_op_id].input[inp_id] = op.input[0]
+ # remove CopyOps
+ new_ops = [
+ op
+ for i, op in enumerate(predict_net.op)
+ if i != op_id and i not in consumer_ids
+ ]
+ del predict_net.op[:]
+ predict_net.op.extend(new_ops)
+ return True
+
+ return False
+
+ # _fuse_once returns False is nothing can be fused
+ while _fuse_once(predict_net):
+ pass
+
+
+def remove_dead_end_ops(net_def: caffe2_pb2.NetDef):
+ """ remove ops if its output is not used or not in external_output """
+ ssa, versions = core.get_ssa(net_def)
+ versioned_external_output = [(name, versions[name]) for name in net_def.external_output]
+ consumer_map = get_consumer_map(ssa)
+ removed_op_ids = set()
+
+ def _is_dead_end(versioned_blob):
+ return not (
+ versioned_blob in versioned_external_output
+ or (
+ len(consumer_map[versioned_blob]) > 0
+ and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob])
+ )
+ )
+
+ for i, ssa_i in reversed(list(enumerate(ssa))):
+ versioned_outputs = ssa_i[1]
+ if all(_is_dead_end(outp) for outp in versioned_outputs):
+ removed_op_ids.add(i)
+
+ # simply removing those deadend ops should have no effect to external_output
+ new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids]
+ del net_def.op[:]
+ net_def.op.extend(new_ops)
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/__init__.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..2753739a03659dff5bc5b87f8c8417056d319842
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .batch_norm import FrozenBatchNorm2d, get_norm, NaiveSyncBatchNorm
+from .deform_conv import DeformConv, ModulatedDeformConv
+from .mask_ops import paste_masks_in_image
+from .nms import batched_nms, batched_nms_rotated, nms, nms_rotated
+from .roi_align import ROIAlign, roi_align
+from .roi_align_rotated import ROIAlignRotated, roi_align_rotated
+from .shape_spec import ShapeSpec
+from .wrappers import BatchNorm2d, Conv2d, ConvTranspose2d, cat, interpolate, Linear
+from .blocks import CNNBlockBase
+
+__all__ = [k for k in globals().keys() if not k.startswith("_")]
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/batch_norm.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/batch_norm.py
new file mode 100644
index 0000000000000000000000000000000000000000..1339c6eaedfbc65c9604043234b738382d07fd40
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/batch_norm.py
@@ -0,0 +1,242 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+import logging
+import torch
+import torch.distributed as dist
+from torch import nn
+from torch.autograd.function import Function
+from torch.nn import functional as F
+
+from detectron2.utils import comm
+
+from .wrappers import BatchNorm2d
+
+TORCH_VERSION = tuple(int(x) for x in torch.__version__.split(".")[:2])
+
+
+class FrozenBatchNorm2d(nn.Module):
+ """
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
+
+ It contains non-trainable buffers called
+ "weight" and "bias", "running_mean", "running_var",
+ initialized to perform identity transformation.
+
+ The pre-trained backbone models from Caffe2 only contain "weight" and "bias",
+ which are computed from the original four parameters of BN.
+ The affine transform `x * weight + bias` will perform the equivalent
+ computation of `(x - running_mean) / sqrt(running_var) * weight + bias`.
+ When loading a backbone model from Caffe2, "running_mean" and "running_var"
+ will be left unchanged as identity transformation.
+
+ Other pre-trained backbone models may contain all 4 parameters.
+
+ The forward is implemented by `F.batch_norm(..., training=False)`.
+ """
+
+ _version = 3
+
+ def __init__(self, num_features, eps=1e-5):
+ super().__init__()
+ self.num_features = num_features
+ self.eps = eps
+ self.register_buffer("weight", torch.ones(num_features))
+ self.register_buffer("bias", torch.zeros(num_features))
+ self.register_buffer("running_mean", torch.zeros(num_features))
+ self.register_buffer("running_var", torch.ones(num_features) - eps)
+
+ def forward(self, x):
+ if x.requires_grad:
+ # When gradients are needed, F.batch_norm will use extra memory
+ # because its backward op computes gradients for weight/bias as well.
+ scale = self.weight * (self.running_var + self.eps).rsqrt()
+ bias = self.bias - self.running_mean * scale
+ scale = scale.reshape(1, -1, 1, 1)
+ bias = bias.reshape(1, -1, 1, 1)
+ return x * scale + bias
+ else:
+ # When gradients are not needed, F.batch_norm is a single fused op
+ # and provide more optimization opportunities.
+ return F.batch_norm(
+ x,
+ self.running_mean,
+ self.running_var,
+ self.weight,
+ self.bias,
+ training=False,
+ eps=self.eps,
+ )
+
+ def _load_from_state_dict(
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ ):
+ version = local_metadata.get("version", None)
+
+ if version is None or version < 2:
+ # No running_mean/var in early versions
+ # This will silent the warnings
+ if prefix + "running_mean" not in state_dict:
+ state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean)
+ if prefix + "running_var" not in state_dict:
+ state_dict[prefix + "running_var"] = torch.ones_like(self.running_var)
+
+ if version is not None and version < 3:
+ logger = logging.getLogger(__name__)
+ logger.info("FrozenBatchNorm {} is upgraded to version 3.".format(prefix.rstrip(".")))
+ # In version < 3, running_var are used without +eps.
+ state_dict[prefix + "running_var"] -= self.eps
+
+ super()._load_from_state_dict(
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ )
+
+ def __repr__(self):
+ return "FrozenBatchNorm2d(num_features={}, eps={})".format(self.num_features, self.eps)
+
+ @classmethod
+ def convert_frozen_batchnorm(cls, module):
+ """
+ Convert BatchNorm/SyncBatchNorm in module into FrozenBatchNorm.
+
+ Args:
+ module (torch.nn.Module):
+
+ Returns:
+ If module is BatchNorm/SyncBatchNorm, returns a new module.
+ Otherwise, in-place convert module and return it.
+
+ Similar to convert_sync_batchnorm in
+ https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py
+ """
+ bn_module = nn.modules.batchnorm
+ bn_module = (bn_module.BatchNorm2d, bn_module.SyncBatchNorm)
+ res = module
+ if isinstance(module, bn_module):
+ res = cls(module.num_features)
+ if module.affine:
+ res.weight.data = module.weight.data.clone().detach()
+ res.bias.data = module.bias.data.clone().detach()
+ res.running_mean.data = module.running_mean.data
+ res.running_var.data = module.running_var.data
+ res.eps = module.eps
+ else:
+ for name, child in module.named_children():
+ new_child = cls.convert_frozen_batchnorm(child)
+ if new_child is not child:
+ res.add_module(name, new_child)
+ return res
+
+
+def get_norm(norm, out_channels):
+ """
+ Args:
+ norm (str or callable): either one of BN, SyncBN, FrozenBN, GN;
+ or a callable that takes a channel number and returns
+ the normalization layer as a nn.Module.
+
+ Returns:
+ nn.Module or None: the normalization layer
+ """
+ if isinstance(norm, str):
+ if len(norm) == 0:
+ return None
+ norm = {
+ "BN": BatchNorm2d,
+ # Fixed in https://github.com/pytorch/pytorch/pull/36382
+ "SyncBN": NaiveSyncBatchNorm if TORCH_VERSION <= (1, 5) else nn.SyncBatchNorm,
+ "FrozenBN": FrozenBatchNorm2d,
+ "GN": lambda channels: nn.GroupNorm(32, channels),
+ # for debugging:
+ "nnSyncBN": nn.SyncBatchNorm,
+ "naiveSyncBN": NaiveSyncBatchNorm,
+ }[norm]
+ return norm(out_channels)
+
+
+class AllReduce(Function):
+ @staticmethod
+ def forward(ctx, input):
+ input_list = [torch.zeros_like(input) for k in range(dist.get_world_size())]
+ # Use allgather instead of allreduce since I don't trust in-place operations ..
+ dist.all_gather(input_list, input, async_op=False)
+ inputs = torch.stack(input_list, dim=0)
+ return torch.sum(inputs, dim=0)
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ dist.all_reduce(grad_output, async_op=False)
+ return grad_output
+
+
+class NaiveSyncBatchNorm(BatchNorm2d):
+ """
+ In PyTorch<=1.5, `nn.SyncBatchNorm` has incorrect gradient
+ when the batch size on each worker is different.
+ (e.g., when scale augmentation is used, or when it is applied to mask head).
+
+ This is a slower but correct alternative to `nn.SyncBatchNorm`.
+
+ Note:
+ There isn't a single definition of Sync BatchNorm.
+
+ When ``stats_mode==""``, this module computes overall statistics by using
+ statistics of each worker with equal weight. The result is true statistics
+ of all samples (as if they are all on one worker) only when all workers
+ have the same (N, H, W). This mode does not support inputs with zero batch size.
+
+ When ``stats_mode=="N"``, this module computes overall statistics by weighting
+ the statistics of each worker by their ``N``. The result is true statistics
+ of all samples (as if they are all on one worker) only when all workers
+ have the same (H, W). It is slower than ``stats_mode==""``.
+
+ Even though the result of this module may not be the true statistics of all samples,
+ it may still be reasonable because it might be preferrable to assign equal weights
+ to all workers, regardless of their (H, W) dimension, instead of putting larger weight
+ on larger images. From preliminary experiments, little difference is found between such
+ a simplified implementation and an accurate computation of overall mean & variance.
+ """
+
+ def __init__(self, *args, stats_mode="", **kwargs):
+ super().__init__(*args, **kwargs)
+ assert stats_mode in ["", "N"]
+ self._stats_mode = stats_mode
+
+ def forward(self, input):
+ if comm.get_world_size() == 1 or not self.training:
+ return super().forward(input)
+
+ B, C = input.shape[0], input.shape[1]
+
+ mean = torch.mean(input, dim=[0, 2, 3])
+ meansqr = torch.mean(input * input, dim=[0, 2, 3])
+
+ if self._stats_mode == "":
+ assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.'
+ vec = torch.cat([mean, meansqr], dim=0)
+ vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
+ mean, meansqr = torch.split(vec, C)
+ momentum = self.momentum
+ else:
+ if B == 0:
+ vec = torch.zeros([2 * C + 1], device=mean.device, dtype=mean.dtype)
+ vec = vec + input.sum() # make sure there is gradient w.r.t input
+ else:
+ vec = torch.cat(
+ [mean, meansqr, torch.ones([1], device=mean.device, dtype=mean.dtype)], dim=0
+ )
+ vec = AllReduce.apply(vec * B)
+
+ total_batch = vec[-1].detach()
+ momentum = total_batch.clamp(max=1) * self.momentum # no update if total_batch is 0
+ total_batch = torch.max(total_batch, torch.ones_like(total_batch)) # avoid div-by-zero
+ mean, meansqr, _ = torch.split(vec / total_batch, C)
+
+ var = meansqr - mean * mean
+ invstd = torch.rsqrt(var + self.eps)
+ scale = self.weight * invstd
+ bias = self.bias - mean * scale
+ scale = scale.reshape(1, -1, 1, 1)
+ bias = bias.reshape(1, -1, 1, 1)
+
+ self.running_mean += momentum * (mean.detach() - self.running_mean)
+ self.running_var += momentum * (var.detach() - self.running_var)
+ return input * scale + bias
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/blocks.py b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d06fec22e472febbc960c49f747acddd2ab7208
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/blocks.py
@@ -0,0 +1,48 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+
+from torch import nn
+
+from .batch_norm import FrozenBatchNorm2d
+
+
+class CNNBlockBase(nn.Module):
+ """
+ A CNN block is assumed to have input channels, output channels and a stride.
+ The input and output of `forward()` method must be NCHW tensors.
+ The method can perform arbitrary computation but must match the given
+ channels and stride specification.
+
+ Attribute:
+ in_channels (int):
+ out_channels (int):
+ stride (int):
+ """
+
+ def __init__(self, in_channels, out_channels, stride):
+ """
+ The `__init__` method of any subclass should also contain these arguments.
+
+ Args:
+ in_channels (int):
+ out_channels (int):
+ stride (int):
+ """
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.stride = stride
+
+ def freeze(self):
+ """
+ Make this block not trainable.
+ This method sets all parameters to `requires_grad=False`,
+ and convert all BatchNorm layers to FrozenBatchNorm
+
+ Returns:
+ the block itself
+ """
+ for p in self.parameters():
+ p.requires_grad = False
+ FrozenBatchNorm2d.convert_frozen_batchnorm(self)
+ return self
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/README.md b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..778ed3da0bae89820831bcd8a72ff7b9cad8d4dd
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/README.md
@@ -0,0 +1,7 @@
+
+
+To add a new Op:
+
+1. Create a new directory
+2. Implement new ops there
+3. Delcare its Python interface in `vision.cpp`.
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign.h b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign.h
new file mode 100644
index 0000000000000000000000000000000000000000..2d95eac6e29d5e5624afbc6c545776d78ebc709c
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign.h
@@ -0,0 +1,130 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#pragma once
+#include
+
+namespace detectron2 {
+
+at::Tensor ROIAlign_forward_cpu(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ bool aligned);
+
+at::Tensor ROIAlign_backward_cpu(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio,
+ bool aligned);
+
+#ifdef WITH_CUDA
+at::Tensor ROIAlign_forward_cuda(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ bool aligned);
+
+at::Tensor ROIAlign_backward_cuda(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio,
+ bool aligned);
+#endif
+
+// Interface for Python
+inline at::Tensor ROIAlign_forward(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ bool aligned) {
+ if (input.is_cuda()) {
+#ifdef WITH_CUDA
+ return ROIAlign_forward_cuda(
+ input,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ aligned);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ return ROIAlign_forward_cpu(
+ input,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ aligned);
+}
+
+inline at::Tensor ROIAlign_backward(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio,
+ bool aligned) {
+ if (grad.is_cuda()) {
+#ifdef WITH_CUDA
+ return ROIAlign_backward_cuda(
+ grad,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ batch_size,
+ channels,
+ height,
+ width,
+ sampling_ratio,
+ aligned);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ return ROIAlign_backward_cpu(
+ grad,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ batch_size,
+ channels,
+ height,
+ width,
+ sampling_ratio,
+ aligned);
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.cpp b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..52fc83f8140b29de7b2ad3cb490b8cb672959e16
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.cpp
@@ -0,0 +1,508 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include
+#include "ROIAlign.h"
+
+namespace {
+
+// implementation taken from Caffe2
+template
+struct PreCalc {
+ int pos1;
+ int pos2;
+ int pos3;
+ int pos4;
+ T w1;
+ T w2;
+ T w3;
+ T w4;
+};
+
+template
+void pre_calc_for_bilinear_interpolate(
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int iy_upper,
+ const int ix_upper,
+ T roi_start_h,
+ T roi_start_w,
+ T bin_size_h,
+ T bin_size_w,
+ int roi_bin_grid_h,
+ int roi_bin_grid_w,
+ std::vector>& pre_calc) {
+ int pre_calc_index = 0;
+ for (int ph = 0; ph < pooled_height; ph++) {
+ for (int pw = 0; pw < pooled_width; pw++) {
+ for (int iy = 0; iy < iy_upper; iy++) {
+ const T yy = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < ix_upper; ix++) {
+ const T xx = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ T x = xx;
+ T y = yy;
+ // deal with: inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ PreCalc pc;
+ pc.pos1 = 0;
+ pc.pos2 = 0;
+ pc.pos3 = 0;
+ pc.pos4 = 0;
+ pc.w1 = 0;
+ pc.w2 = 0;
+ pc.w3 = 0;
+ pc.w4 = 0;
+ pre_calc[pre_calc_index] = pc;
+ pre_calc_index += 1;
+ continue;
+ }
+
+ if (y <= 0) {
+ y = 0;
+ }
+ if (x <= 0) {
+ x = 0;
+ }
+
+ int y_low = (int)y;
+ int x_low = (int)x;
+ int y_high;
+ int x_high;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+ T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ // save weights and indices
+ PreCalc pc;
+ pc.pos1 = y_low * width + x_low;
+ pc.pos2 = y_low * width + x_high;
+ pc.pos3 = y_high * width + x_low;
+ pc.pos4 = y_high * width + x_high;
+ pc.w1 = w1;
+ pc.w2 = w2;
+ pc.w3 = w3;
+ pc.w4 = w4;
+ pre_calc[pre_calc_index] = pc;
+
+ pre_calc_index += 1;
+ }
+ }
+ }
+ }
+}
+
+template
+void ROIAlignForward(
+ const int nthreads,
+ const T* input,
+ const T& spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ const T* rois,
+ T* output,
+ bool aligned) {
+ int n_rois = nthreads / channels / pooled_width / pooled_height;
+ // (n, c, ph, pw) is an element in the pooled output
+ // can be parallelized using omp
+ // #pragma omp parallel for num_threads(32)
+ for (int n = 0; n < n_rois; n++) {
+ int index_n = n * channels * pooled_width * pooled_height;
+
+ const T* offset_rois = rois + n * 5;
+ int roi_batch_ind = offset_rois[0];
+
+ // Do not use rounding; this implementation detail is critical
+ T offset = aligned ? (T)0.5 : (T)0.0;
+ T roi_start_w = offset_rois[1] * spatial_scale - offset;
+ T roi_start_h = offset_rois[2] * spatial_scale - offset;
+ T roi_end_w = offset_rois[3] * spatial_scale - offset;
+ T roi_end_h = offset_rois[4] * spatial_scale - offset;
+
+ T roi_width = roi_end_w - roi_start_w;
+ T roi_height = roi_end_h - roi_start_h;
+ if (aligned) {
+ AT_ASSERTM(
+ roi_width >= 0 && roi_height >= 0,
+ "ROIs in ROIAlign cannot have non-negative size!");
+ } else { // for backward-compatibility only
+ roi_width = std::max(roi_width, (T)1.);
+ roi_height = std::max(roi_height, (T)1.);
+ }
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // We do average (integral) pooling inside a bin
+ // When the grid is empty, output zeros == 0/1, instead of NaN.
+ const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
+
+ // we want to precalculate indices and weights shared by all channels,
+ // this is the key point of optimization
+ std::vector> pre_calc(
+ roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
+ pre_calc_for_bilinear_interpolate(
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ roi_bin_grid_h,
+ roi_bin_grid_w,
+ roi_start_h,
+ roi_start_w,
+ bin_size_h,
+ bin_size_w,
+ roi_bin_grid_h,
+ roi_bin_grid_w,
+ pre_calc);
+
+ for (int c = 0; c < channels; c++) {
+ int index_n_c = index_n + c * pooled_width * pooled_height;
+ const T* offset_input =
+ input + (roi_batch_ind * channels + c) * height * width;
+ int pre_calc_index = 0;
+
+ for (int ph = 0; ph < pooled_height; ph++) {
+ for (int pw = 0; pw < pooled_width; pw++) {
+ int index = index_n_c + ph * pooled_width + pw;
+
+ T output_val = 0.;
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) {
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ PreCalc pc = pre_calc[pre_calc_index];
+ output_val += pc.w1 * offset_input[pc.pos1] +
+ pc.w2 * offset_input[pc.pos2] +
+ pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];
+
+ pre_calc_index += 1;
+ }
+ }
+ output_val /= count;
+
+ output[index] = output_val;
+ } // for pw
+ } // for ph
+ } // for c
+ } // for n
+}
+
+template
+void bilinear_interpolate_gradient(
+ const int height,
+ const int width,
+ T y,
+ T x,
+ T& w1,
+ T& w2,
+ T& w3,
+ T& w4,
+ int& x_low,
+ int& x_high,
+ int& y_low,
+ int& y_high,
+ const int index /* index for debug only*/) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ w1 = w2 = w3 = w4 = 0.;
+ x_low = x_high = y_low = y_high = -1;
+ return;
+ }
+
+ if (y <= 0)
+ y = 0;
+ if (x <= 0)
+ x = 0;
+
+ y_low = (int)y;
+ x_low = (int)x;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+
+ // reference in forward
+ // T v1 = input[y_low * width + x_low];
+ // T v2 = input[y_low * width + x_high];
+ // T v3 = input[y_high * width + x_low];
+ // T v4 = input[y_high * width + x_high];
+ // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ return;
+}
+
+template
+inline void add(T* address, const T& val) {
+ *address += val;
+}
+
+template
+void ROIAlignBackward(
+ const int nthreads,
+ // may not be contiguous, and should be indexed using n_stride, etc
+ const T* grad_output,
+ const T& spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ T* grad_input,
+ const T* rois,
+ const int n_stride,
+ const int c_stride,
+ const int h_stride,
+ const int w_stride,
+ bool aligned) {
+ for (int index = 0; index < nthreads; index++) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* offset_rois = rois + n * 5;
+ int roi_batch_ind = offset_rois[0];
+
+ // Do not use rounding; this implementation detail is critical
+ T offset = aligned ? (T)0.5 : (T)0.0;
+ T roi_start_w = offset_rois[1] * spatial_scale - offset;
+ T roi_start_h = offset_rois[2] * spatial_scale - offset;
+ T roi_end_w = offset_rois[3] * spatial_scale - offset;
+ T roi_end_h = offset_rois[4] * spatial_scale - offset;
+
+ T roi_width = roi_end_w - roi_start_w;
+ T roi_height = roi_end_h - roi_start_h;
+ if (aligned) {
+ AT_ASSERTM(
+ roi_width >= 0 && roi_height >= 0,
+ "ROIs in ROIAlign do not have non-negative size!");
+ } else { // for backward-compatibility only
+ roi_width = std::max(roi_width, (T)1.);
+ roi_height = std::max(roi_height, (T)1.);
+ }
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ T* offset_grad_input =
+ grad_input + ((roi_batch_ind * channels + c) * height * width);
+
+ int output_offset = n * n_stride + c * c_stride;
+ const T* offset_grad_output = grad_output + output_offset;
+ const T grad_output_this_bin =
+ offset_grad_output[ph * h_stride + pw * w_stride];
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // We do average (integral) pooling inside a bin
+ const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
+
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) {
+ const T y = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T x = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ T w1, w2, w3, w4;
+ int x_low, x_high, y_low, y_high;
+
+ bilinear_interpolate_gradient(
+ height,
+ width,
+ y,
+ x,
+ w1,
+ w2,
+ w3,
+ w4,
+ x_low,
+ x_high,
+ y_low,
+ y_high,
+ index);
+
+ T g1 = grad_output_this_bin * w1 / count;
+ T g2 = grad_output_this_bin * w2 / count;
+ T g3 = grad_output_this_bin * w3 / count;
+ T g4 = grad_output_this_bin * w4 / count;
+
+ if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
+ // atomic add is not needed for now since it is single threaded
+ add(offset_grad_input + y_low * width + x_low, static_cast(g1));
+ add(offset_grad_input + y_low * width + x_high, static_cast(g2));
+ add(offset_grad_input + y_high * width + x_low, static_cast(g3));
+ add(offset_grad_input + y_high * width + x_high, static_cast(g4));
+ } // if
+ } // ix
+ } // iy
+ } // for
+} // ROIAlignBackward
+
+} // namespace
+
+namespace detectron2 {
+
+at::Tensor ROIAlign_forward_cpu(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ bool aligned) {
+ AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
+ AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
+
+ at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlign_forward_cpu";
+ at::checkAllSameType(c, {input_t, rois_t});
+
+ auto num_rois = rois.size(0);
+ auto channels = input.size(1);
+ auto height = input.size(2);
+ auto width = input.size(3);
+
+ at::Tensor output = at::zeros(
+ {num_rois, channels, pooled_height, pooled_width}, input.options());
+
+ auto output_size = num_rois * pooled_height * pooled_width * channels;
+
+ if (output.numel() == 0)
+ return output;
+
+ auto input_ = input.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(
+ input.scalar_type(), "ROIAlign_forward", [&] {
+ ROIAlignForward(
+ output_size,
+ input_.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ rois_.data_ptr(),
+ output.data_ptr(),
+ aligned);
+ });
+ return output;
+}
+
+at::Tensor ROIAlign_backward_cpu(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio,
+ bool aligned) {
+ AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
+ AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
+
+ at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlign_backward_cpu";
+ at::checkAllSameType(c, {grad_t, rois_t});
+
+ at::Tensor grad_input =
+ at::zeros({batch_size, channels, height, width}, grad.options());
+
+ // handle possibly empty gradients
+ if (grad.numel() == 0) {
+ return grad_input;
+ }
+
+ // get stride values to ensure indexing into gradients is correct.
+ int n_stride = grad.stride(0);
+ int c_stride = grad.stride(1);
+ int h_stride = grad.stride(2);
+ int w_stride = grad.stride(3);
+
+ auto rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(
+ grad.scalar_type(), "ROIAlign_forward", [&] {
+ ROIAlignBackward(
+ grad.numel(),
+ grad.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ grad_input.data_ptr(),
+ rois_.data_ptr(),
+ n_stride,
+ c_stride,
+ h_stride,
+ w_stride,
+ aligned);
+ });
+ return grad_input;
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cuda.cu b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cuda.cu
new file mode 100644
index 0000000000000000000000000000000000000000..2e05953b03089203d29bc304726afbca7ee5d464
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cuda.cu
@@ -0,0 +1,430 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include
+#include
+#include
+#include
+
+// TODO make it in a common file
+#define CUDA_1D_KERNEL_LOOP(i, n) \
+ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
+ i += blockDim.x * gridDim.x)
+
+template
+__device__ T bilinear_interpolate(
+ const T* bottom_data,
+ const int height,
+ const int width,
+ T y,
+ T x,
+ const int index /* index for debug only*/) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ return 0;
+ }
+
+ if (y <= 0)
+ y = 0;
+ if (x <= 0)
+ x = 0;
+
+ int y_low = (int)y;
+ int x_low = (int)x;
+ int y_high;
+ int x_high;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+ // do bilinear interpolation
+ T v1 = bottom_data[y_low * width + x_low];
+ T v2 = bottom_data[y_low * width + x_high];
+ T v3 = bottom_data[y_high * width + x_low];
+ T v4 = bottom_data[y_high * width + x_high];
+ T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ return val;
+}
+
+template
+__global__ void RoIAlignForward(
+ const int nthreads,
+ const T* bottom_data,
+ const T spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ const T* bottom_rois,
+ T* top_data,
+ bool aligned) {
+ CUDA_1D_KERNEL_LOOP(index, nthreads) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* offset_bottom_rois = bottom_rois + n * 5;
+ int roi_batch_ind = offset_bottom_rois[0];
+
+ // Do not use rounding; this implementation detail is critical
+ T offset = aligned ? (T)0.5 : (T)0.0;
+ T roi_start_w = offset_bottom_rois[1] * spatial_scale - offset;
+ T roi_start_h = offset_bottom_rois[2] * spatial_scale - offset;
+ T roi_end_w = offset_bottom_rois[3] * spatial_scale - offset;
+ T roi_end_h = offset_bottom_rois[4] * spatial_scale - offset;
+
+ T roi_width = roi_end_w - roi_start_w;
+ T roi_height = roi_end_h - roi_start_h;
+ if (!aligned) { // for backward-compatibility only
+ roi_width = max(roi_width, (T)1.);
+ roi_height = max(roi_height, (T)1.);
+ }
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ const T* offset_bottom_data =
+ bottom_data + (roi_batch_ind * channels + c) * height * width;
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // We do average (integral) pooling inside a bin
+ // When the grid is empty, output zeros == 0/1, instead of NaN.
+ const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
+
+ T output_val = 0.;
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
+ {
+ const T y = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T x = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ T val = bilinear_interpolate(
+ offset_bottom_data, height, width, y, x, index);
+ output_val += val;
+ }
+ }
+ output_val /= count;
+
+ top_data[index] = output_val;
+ }
+}
+
+template
+__device__ void bilinear_interpolate_gradient(
+ const int height,
+ const int width,
+ T y,
+ T x,
+ T& w1,
+ T& w2,
+ T& w3,
+ T& w4,
+ int& x_low,
+ int& x_high,
+ int& y_low,
+ int& y_high,
+ const int index /* index for debug only*/) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ w1 = w2 = w3 = w4 = 0.;
+ x_low = x_high = y_low = y_high = -1;
+ return;
+ }
+
+ if (y <= 0)
+ y = 0;
+ if (x <= 0)
+ x = 0;
+
+ y_low = (int)y;
+ x_low = (int)x;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+
+ // reference in forward
+ // T v1 = bottom_data[y_low * width + x_low];
+ // T v2 = bottom_data[y_low * width + x_high];
+ // T v3 = bottom_data[y_high * width + x_low];
+ // T v4 = bottom_data[y_high * width + x_high];
+ // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ return;
+}
+
+template
+__global__ void RoIAlignBackwardFeature(
+ const int nthreads,
+ const T* top_diff,
+ const int num_rois,
+ const T spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ T* bottom_diff,
+ const T* bottom_rois,
+ bool aligned) {
+ CUDA_1D_KERNEL_LOOP(index, nthreads) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* offset_bottom_rois = bottom_rois + n * 5;
+ int roi_batch_ind = offset_bottom_rois[0];
+
+ // Do not use rounding; this implementation detail is critical
+ T offset = aligned ? (T)0.5 : (T)0.0;
+ T roi_start_w = offset_bottom_rois[1] * spatial_scale - offset;
+ T roi_start_h = offset_bottom_rois[2] * spatial_scale - offset;
+ T roi_end_w = offset_bottom_rois[3] * spatial_scale - offset;
+ T roi_end_h = offset_bottom_rois[4] * spatial_scale - offset;
+
+ T roi_width = roi_end_w - roi_start_w;
+ T roi_height = roi_end_h - roi_start_h;
+ if (!aligned) { // for backward-compatibility only
+ roi_width = max(roi_width, (T)1.);
+ roi_height = max(roi_height, (T)1.);
+ }
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ T* offset_bottom_diff =
+ bottom_diff + (roi_batch_ind * channels + c) * height * width;
+
+ int top_offset = (n * channels + c) * pooled_height * pooled_width;
+ const T* offset_top_diff = top_diff + top_offset;
+ const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // We do average (integral) pooling inside a bin
+ const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
+
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
+ {
+ const T y = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T x = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ T w1, w2, w3, w4;
+ int x_low, x_high, y_low, y_high;
+
+ bilinear_interpolate_gradient(
+ height,
+ width,
+ y,
+ x,
+ w1,
+ w2,
+ w3,
+ w4,
+ x_low,
+ x_high,
+ y_low,
+ y_high,
+ index);
+
+ T g1 = top_diff_this_bin * w1 / count;
+ T g2 = top_diff_this_bin * w2 / count;
+ T g3 = top_diff_this_bin * w3 / count;
+ T g4 = top_diff_this_bin * w4 / count;
+
+ if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
+ atomicAdd(
+ offset_bottom_diff + y_low * width + x_low, static_cast(g1));
+ atomicAdd(
+ offset_bottom_diff + y_low * width + x_high, static_cast(g2));
+ atomicAdd(
+ offset_bottom_diff + y_high * width + x_low, static_cast(g3));
+ atomicAdd(
+ offset_bottom_diff + y_high * width + x_high, static_cast(g4));
+ } // if
+ } // ix
+ } // iy
+ } // CUDA_1D_KERNEL_LOOP
+} // RoIAlignBackward
+
+namespace detectron2 {
+
+at::Tensor ROIAlign_forward_cuda(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ bool aligned) {
+ AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
+ AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
+ at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlign_forward_cuda";
+ at::checkAllSameGPU(c, {input_t, rois_t});
+ at::checkAllSameType(c, {input_t, rois_t});
+ at::cuda::CUDAGuard device_guard(input.device());
+
+ auto num_rois = rois.size(0);
+ auto channels = input.size(1);
+ auto height = input.size(2);
+ auto width = input.size(3);
+
+ auto output = at::empty(
+ {num_rois, channels, pooled_height, pooled_width}, input.options());
+ auto output_size = num_rois * pooled_height * pooled_width * channels;
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+ dim3 grid(std::min(
+ at::cuda::ATenCeilDiv(
+ static_cast(output_size), static_cast(512)),
+ static_cast(4096)));
+ dim3 block(512);
+
+ if (output.numel() == 0) {
+ AT_CUDA_CHECK(cudaGetLastError());
+ return output;
+ }
+
+ auto input_ = input.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_forward", [&] {
+ RoIAlignForward<<>>(
+ output_size,
+ input_.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ rois_.data_ptr(),
+ output.data_ptr(),
+ aligned);
+ });
+ cudaDeviceSynchronize();
+ AT_CUDA_CHECK(cudaGetLastError());
+ return output;
+}
+
+// TODO remove the dependency on input and use instead its sizes -> save memory
+at::Tensor ROIAlign_backward_cuda(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio,
+ bool aligned) {
+ AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
+ AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
+
+ at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
+ at::CheckedFrom c = "ROIAlign_backward_cuda";
+ at::checkAllSameGPU(c, {grad_t, rois_t});
+ at::checkAllSameType(c, {grad_t, rois_t});
+ at::cuda::CUDAGuard device_guard(grad.device());
+
+ auto num_rois = rois.size(0);
+ auto grad_input =
+ at::zeros({batch_size, channels, height, width}, grad.options());
+
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+ dim3 grid(std::min(
+ at::cuda::ATenCeilDiv(
+ static_cast(grad.numel()), static_cast(512)),
+ static_cast(4096)));
+ dim3 block(512);
+
+ // handle possibly empty gradients
+ if (grad.numel() == 0) {
+ AT_CUDA_CHECK(cudaGetLastError());
+ return grad_input;
+ }
+
+ auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIAlign_backward", [&] {
+ RoIAlignBackwardFeature<<>>(
+ grad.numel(),
+ grad_.data_ptr(),
+ num_rois,
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ grad_input.data_ptr(),
+ rois_.data_ptr(),
+ aligned);
+ });
+ AT_CUDA_CHECK(cudaGetLastError());
+ return grad_input;
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated.h b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated.h
new file mode 100644
index 0000000000000000000000000000000000000000..a99c8ebddaa4936e26437b42d62e2b8355c655aa
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated.h
@@ -0,0 +1,115 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#pragma once
+#include
+
+namespace detectron2 {
+
+at::Tensor ROIAlignRotated_forward_cpu(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio);
+
+at::Tensor ROIAlignRotated_backward_cpu(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio);
+
+#ifdef WITH_CUDA
+at::Tensor ROIAlignRotated_forward_cuda(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio);
+
+at::Tensor ROIAlignRotated_backward_cuda(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio);
+#endif
+
+// Interface for Python
+inline at::Tensor ROIAlignRotated_forward(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio) {
+ if (input.is_cuda()) {
+#ifdef WITH_CUDA
+ return ROIAlignRotated_forward_cuda(
+ input,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ sampling_ratio);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ return ROIAlignRotated_forward_cpu(
+ input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
+}
+
+inline at::Tensor ROIAlignRotated_backward(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio) {
+ if (grad.is_cuda()) {
+#ifdef WITH_CUDA
+ return ROIAlignRotated_backward_cuda(
+ grad,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ batch_size,
+ channels,
+ height,
+ width,
+ sampling_ratio);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ return ROIAlignRotated_backward_cpu(
+ grad,
+ rois,
+ spatial_scale,
+ pooled_height,
+ pooled_width,
+ batch_size,
+ channels,
+ height,
+ width,
+ sampling_ratio);
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..7e5e1ffdccd0e2ced15fa34b4906388d371bffe2
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp
@@ -0,0 +1,522 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include
+#include "ROIAlignRotated.h"
+
+// Note: this implementation originates from the Caffe2 ROIAlignRotated Op
+// and PyTorch ROIAlign (non-rotated) Op implementations.
+// The key difference between this implementation and those ones is
+// we don't do "legacy offset" in this version, as there aren't many previous
+// works, if any, using the "legacy" ROIAlignRotated Op.
+// This would make the interface a bit cleaner.
+
+namespace detectron2 {
+
+namespace {
+template
+struct PreCalc {
+ int pos1;
+ int pos2;
+ int pos3;
+ int pos4;
+ T w1;
+ T w2;
+ T w3;
+ T w4;
+};
+
+template
+void pre_calc_for_bilinear_interpolate(
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int iy_upper,
+ const int ix_upper,
+ T roi_start_h,
+ T roi_start_w,
+ T bin_size_h,
+ T bin_size_w,
+ int roi_bin_grid_h,
+ int roi_bin_grid_w,
+ T roi_center_h,
+ T roi_center_w,
+ T cos_theta,
+ T sin_theta,
+ std::vector>& pre_calc) {
+ int pre_calc_index = 0;
+ for (int ph = 0; ph < pooled_height; ph++) {
+ for (int pw = 0; pw < pooled_width; pw++) {
+ for (int iy = 0; iy < iy_upper; iy++) {
+ const T yy = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < ix_upper; ix++) {
+ const T xx = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ // Rotate by theta around the center and translate
+ // In image space, (y, x) is the order for Right Handed System,
+ // and this is essentially multiplying the point by a rotation matrix
+ // to rotate it counterclockwise through angle theta.
+ T y = yy * cos_theta - xx * sin_theta + roi_center_h;
+ T x = yy * sin_theta + xx * cos_theta + roi_center_w;
+ // deal with: inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ PreCalc pc;
+ pc.pos1 = 0;
+ pc.pos2 = 0;
+ pc.pos3 = 0;
+ pc.pos4 = 0;
+ pc.w1 = 0;
+ pc.w2 = 0;
+ pc.w3 = 0;
+ pc.w4 = 0;
+ pre_calc[pre_calc_index] = pc;
+ pre_calc_index += 1;
+ continue;
+ }
+
+ if (y < 0) {
+ y = 0;
+ }
+ if (x < 0) {
+ x = 0;
+ }
+
+ int y_low = (int)y;
+ int x_low = (int)x;
+ int y_high;
+ int x_high;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+ T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ // save weights and indices
+ PreCalc pc;
+ pc.pos1 = y_low * width + x_low;
+ pc.pos2 = y_low * width + x_high;
+ pc.pos3 = y_high * width + x_low;
+ pc.pos4 = y_high * width + x_high;
+ pc.w1 = w1;
+ pc.w2 = w2;
+ pc.w3 = w3;
+ pc.w4 = w4;
+ pre_calc[pre_calc_index] = pc;
+
+ pre_calc_index += 1;
+ }
+ }
+ }
+ }
+}
+
+template
+void bilinear_interpolate_gradient(
+ const int height,
+ const int width,
+ T y,
+ T x,
+ T& w1,
+ T& w2,
+ T& w3,
+ T& w4,
+ int& x_low,
+ int& x_high,
+ int& y_low,
+ int& y_high) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ w1 = w2 = w3 = w4 = 0.;
+ x_low = x_high = y_low = y_high = -1;
+ return;
+ }
+
+ if (y < 0) {
+ y = 0;
+ }
+
+ if (x < 0) {
+ x = 0;
+ }
+
+ y_low = (int)y;
+ x_low = (int)x;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+
+ // reference in forward
+ // T v1 = input[y_low * width + x_low];
+ // T v2 = input[y_low * width + x_high];
+ // T v3 = input[y_high * width + x_low];
+ // T v4 = input[y_high * width + x_high];
+ // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ return;
+}
+
+template
+inline void add(T* address, const T& val) {
+ *address += val;
+}
+
+} // namespace
+
+template
+void ROIAlignRotatedForward(
+ const int nthreads,
+ const T* input,
+ const T& spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ const T* rois,
+ T* output) {
+ int n_rois = nthreads / channels / pooled_width / pooled_height;
+ // (n, c, ph, pw) is an element in the pooled output
+ // can be parallelized using omp
+ // #pragma omp parallel for num_threads(32)
+ for (int n = 0; n < n_rois; n++) {
+ int index_n = n * channels * pooled_width * pooled_height;
+
+ const T* current_roi = rois + n * 6;
+ int roi_batch_ind = current_roi[0];
+
+ // Do not use rounding; this implementation detail is critical
+ // ROIAlignRotated supports align == true, i.e., continuous coordinate
+ // by default, thus the 0.5 offset
+ T offset = (T)0.5;
+ T roi_center_w = current_roi[1] * spatial_scale - offset;
+ T roi_center_h = current_roi[2] * spatial_scale - offset;
+ T roi_width = current_roi[3] * spatial_scale;
+ T roi_height = current_roi[4] * spatial_scale;
+ T theta = current_roi[5] * M_PI / 180.0;
+ T cos_theta = cos(theta);
+ T sin_theta = sin(theta);
+
+ AT_ASSERTM(
+ roi_width >= 0 && roi_height >= 0,
+ "ROIs in ROIAlignRotated do not have non-negative size!");
+
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // We do average (integral) pooling inside a bin
+ const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
+
+ // we want to precalculate indices and weights shared by all channels,
+ // this is the key point of optimization
+ std::vector> pre_calc(
+ roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
+
+ // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
+ // Appropriate translation needs to be applied after.
+ T roi_start_h = -roi_height / 2.0;
+ T roi_start_w = -roi_width / 2.0;
+
+ pre_calc_for_bilinear_interpolate(
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ roi_bin_grid_h,
+ roi_bin_grid_w,
+ roi_start_h,
+ roi_start_w,
+ bin_size_h,
+ bin_size_w,
+ roi_bin_grid_h,
+ roi_bin_grid_w,
+ roi_center_h,
+ roi_center_w,
+ cos_theta,
+ sin_theta,
+ pre_calc);
+
+ for (int c = 0; c < channels; c++) {
+ int index_n_c = index_n + c * pooled_width * pooled_height;
+ const T* offset_input =
+ input + (roi_batch_ind * channels + c) * height * width;
+ int pre_calc_index = 0;
+
+ for (int ph = 0; ph < pooled_height; ph++) {
+ for (int pw = 0; pw < pooled_width; pw++) {
+ int index = index_n_c + ph * pooled_width + pw;
+
+ T output_val = 0.;
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) {
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ PreCalc pc = pre_calc[pre_calc_index];
+ output_val += pc.w1 * offset_input[pc.pos1] +
+ pc.w2 * offset_input[pc.pos2] +
+ pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];
+
+ pre_calc_index += 1;
+ }
+ }
+ output_val /= count;
+
+ output[index] = output_val;
+ } // for pw
+ } // for ph
+ } // for c
+ } // for n
+}
+
+template
+void ROIAlignRotatedBackward(
+ const int nthreads,
+ // may not be contiguous. should index using n_stride, etc
+ const T* grad_output,
+ const T& spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ T* grad_input,
+ const T* rois,
+ const int n_stride,
+ const int c_stride,
+ const int h_stride,
+ const int w_stride) {
+ for (int index = 0; index < nthreads; index++) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* current_roi = rois + n * 6;
+ int roi_batch_ind = current_roi[0];
+
+ // Do not use rounding; this implementation detail is critical
+ // ROIAlignRotated supports align == true, i.e., continuous coordinate
+ // by default, thus the 0.5 offset
+ T offset = (T)0.5;
+ T roi_center_w = current_roi[1] * spatial_scale - offset;
+ T roi_center_h = current_roi[2] * spatial_scale - offset;
+ T roi_width = current_roi[3] * spatial_scale;
+ T roi_height = current_roi[4] * spatial_scale;
+ T theta = current_roi[5] * M_PI / 180.0;
+ T cos_theta = cos(theta);
+ T sin_theta = sin(theta);
+
+ AT_ASSERTM(
+ roi_width >= 0 && roi_height >= 0,
+ "ROIs in ROIAlignRotated do not have non-negative size!");
+
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ T* offset_grad_input =
+ grad_input + ((roi_batch_ind * channels + c) * height * width);
+
+ int output_offset = n * n_stride + c * c_stride;
+ const T* offset_grad_output = grad_output + output_offset;
+ const T grad_output_this_bin =
+ offset_grad_output[ph * h_stride + pw * w_stride];
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
+ // Appropriate translation needs to be applied after.
+ T roi_start_h = -roi_height / 2.0;
+ T roi_start_w = -roi_width / 2.0;
+
+ // We do average (integral) pooling inside a bin
+ const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
+
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) {
+ const T yy = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T xx = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ // Rotate by theta around the center and translate
+ T y = yy * cos_theta - xx * sin_theta + roi_center_h;
+ T x = yy * sin_theta + xx * cos_theta + roi_center_w;
+
+ T w1, w2, w3, w4;
+ int x_low, x_high, y_low, y_high;
+
+ bilinear_interpolate_gradient(
+ height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high);
+
+ T g1 = grad_output_this_bin * w1 / count;
+ T g2 = grad_output_this_bin * w2 / count;
+ T g3 = grad_output_this_bin * w3 / count;
+ T g4 = grad_output_this_bin * w4 / count;
+
+ if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
+ // atomic add is not needed for now since it is single threaded
+ add(offset_grad_input + y_low * width + x_low, static_cast(g1));
+ add(offset_grad_input + y_low * width + x_high, static_cast(g2));
+ add(offset_grad_input + y_high * width + x_low, static_cast(g3));
+ add(offset_grad_input + y_high * width + x_high, static_cast(g4));
+ } // if
+ } // ix
+ } // iy
+ } // for
+} // ROIAlignRotatedBackward
+
+at::Tensor ROIAlignRotated_forward_cpu(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio) {
+ AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
+ AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
+
+ at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlign_forward_cpu";
+ at::checkAllSameType(c, {input_t, rois_t});
+
+ auto num_rois = rois.size(0);
+ auto channels = input.size(1);
+ auto height = input.size(2);
+ auto width = input.size(3);
+
+ at::Tensor output = at::zeros(
+ {num_rois, channels, pooled_height, pooled_width}, input.options());
+
+ auto output_size = num_rois * pooled_height * pooled_width * channels;
+
+ if (output.numel() == 0) {
+ return output;
+ }
+
+ auto input_ = input.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(
+ input.scalar_type(), "ROIAlignRotated_forward", [&] {
+ ROIAlignRotatedForward(
+ output_size,
+ input_.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ rois_.data_ptr(),
+ output.data_ptr());
+ });
+ return output;
+}
+
+at::Tensor ROIAlignRotated_backward_cpu(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio) {
+ AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
+ AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
+
+ at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlignRotated_backward_cpu";
+ at::checkAllSameType(c, {grad_t, rois_t});
+
+ at::Tensor grad_input =
+ at::zeros({batch_size, channels, height, width}, grad.options());
+
+ // handle possibly empty gradients
+ if (grad.numel() == 0) {
+ return grad_input;
+ }
+
+ // get stride values to ensure indexing into gradients is correct.
+ int n_stride = grad.stride(0);
+ int c_stride = grad.stride(1);
+ int h_stride = grad.stride(2);
+ int w_stride = grad.stride(3);
+
+ auto rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(
+ grad.scalar_type(), "ROIAlignRotated_forward", [&] {
+ ROIAlignRotatedBackward(
+ grad.numel(),
+ grad.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ grad_input.data_ptr(),
+ rois_.data_ptr(),
+ n_stride,
+ c_stride,
+ h_stride,
+ w_stride);
+ });
+ return grad_input;
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cuda.cu b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cuda.cu
new file mode 100644
index 0000000000000000000000000000000000000000..9c376fc6973b75b34967faf870a9f85a3ee430be
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cuda.cu
@@ -0,0 +1,443 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include
+#include
+#include
+#include
+
+// TODO make it in a common file
+#define CUDA_1D_KERNEL_LOOP(i, n) \
+ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
+ i += blockDim.x * gridDim.x)
+
+// Note: this implementation originates from the Caffe2 ROIAlignRotated Op
+// and PyTorch ROIAlign (non-rotated) Op implementations.
+// The key difference between this implementation and those ones is
+// we don't do "legacy offset" in this version, as there aren't many previous
+// works, if any, using the "legacy" ROIAlignRotated Op.
+// This would make the interface a bit cleaner.
+
+namespace detectron2 {
+
+namespace {
+
+template
+__device__ T bilinear_interpolate(
+ const T* input,
+ const int height,
+ const int width,
+ T y,
+ T x) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ return 0;
+ }
+
+ if (y < 0) {
+ y = 0;
+ }
+
+ if (x < 0) {
+ x = 0;
+ }
+
+ int y_low = (int)y;
+ int x_low = (int)x;
+ int y_high;
+ int x_high;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+ // do bilinear interpolation
+ T v1 = input[y_low * width + x_low];
+ T v2 = input[y_low * width + x_high];
+ T v3 = input[y_high * width + x_low];
+ T v4 = input[y_high * width + x_high];
+ T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ return val;
+}
+
+template
+__device__ void bilinear_interpolate_gradient(
+ const int height,
+ const int width,
+ T y,
+ T x,
+ T& w1,
+ T& w2,
+ T& w3,
+ T& w4,
+ int& x_low,
+ int& x_high,
+ int& y_low,
+ int& y_high) {
+ // deal with cases that inverse elements are out of feature map boundary
+ if (y < -1.0 || y > height || x < -1.0 || x > width) {
+ // empty
+ w1 = w2 = w3 = w4 = 0.;
+ x_low = x_high = y_low = y_high = -1;
+ return;
+ }
+
+ if (y < 0) {
+ y = 0;
+ }
+
+ if (x < 0) {
+ x = 0;
+ }
+
+ y_low = (int)y;
+ x_low = (int)x;
+
+ if (y_low >= height - 1) {
+ y_high = y_low = height - 1;
+ y = (T)y_low;
+ } else {
+ y_high = y_low + 1;
+ }
+
+ if (x_low >= width - 1) {
+ x_high = x_low = width - 1;
+ x = (T)x_low;
+ } else {
+ x_high = x_low + 1;
+ }
+
+ T ly = y - y_low;
+ T lx = x - x_low;
+ T hy = 1. - ly, hx = 1. - lx;
+
+ // reference in forward
+ // T v1 = input[y_low * width + x_low];
+ // T v2 = input[y_low * width + x_high];
+ // T v3 = input[y_high * width + x_low];
+ // T v4 = input[y_high * width + x_high];
+ // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+
+ w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
+
+ return;
+}
+
+} // namespace
+
+template
+__global__ void RoIAlignRotatedForward(
+ const int nthreads,
+ const T* input,
+ const T spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ const T* rois,
+ T* top_data) {
+ CUDA_1D_KERNEL_LOOP(index, nthreads) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* current_roi = rois + n * 6;
+ int roi_batch_ind = current_roi[0];
+
+ // Do not use rounding; this implementation detail is critical
+ // ROIAlignRotated supports align == true, i.e., continuous coordinate
+ // by default, thus the 0.5 offset
+ T offset = (T)0.5;
+ T roi_center_w = current_roi[1] * spatial_scale - offset;
+ T roi_center_h = current_roi[2] * spatial_scale - offset;
+ T roi_width = current_roi[3] * spatial_scale;
+ T roi_height = current_roi[4] * spatial_scale;
+ T theta = current_roi[5] * M_PI / 180.0;
+ T cos_theta = cos(theta);
+ T sin_theta = sin(theta);
+
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ const T* offset_input =
+ input + (roi_batch_ind * channels + c) * height * width;
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
+ // Appropriate translation needs to be applied after.
+ T roi_start_h = -roi_height / 2.0;
+ T roi_start_w = -roi_width / 2.0;
+
+ // We do average (inte gral) pooling inside a bin
+ const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
+
+ T output_val = 0.;
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
+ {
+ const T yy = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T xx = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ // Rotate by theta around the center and translate
+ T y = yy * cos_theta - xx * sin_theta + roi_center_h;
+ T x = yy * sin_theta + xx * cos_theta + roi_center_w;
+
+ T val = bilinear_interpolate(offset_input, height, width, y, x);
+ output_val += val;
+ }
+ }
+ output_val /= count;
+
+ top_data[index] = output_val;
+ }
+}
+
+template
+__global__ void RoIAlignRotatedBackwardFeature(
+ const int nthreads,
+ const T* top_diff,
+ const int num_rois,
+ const T spatial_scale,
+ const int channels,
+ const int height,
+ const int width,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio,
+ T* bottom_diff,
+ const T* rois) {
+ CUDA_1D_KERNEL_LOOP(index, nthreads) {
+ // (n, c, ph, pw) is an element in the pooled output
+ int pw = index % pooled_width;
+ int ph = (index / pooled_width) % pooled_height;
+ int c = (index / pooled_width / pooled_height) % channels;
+ int n = index / pooled_width / pooled_height / channels;
+
+ const T* current_roi = rois + n * 6;
+ int roi_batch_ind = current_roi[0];
+
+ // Do not use rounding; this implementation detail is critical
+ // ROIAlignRotated supports align == true, i.e., continuous coordinate
+ // by default, thus the 0.5 offset
+ T offset = (T)0.5;
+ T roi_center_w = current_roi[1] * spatial_scale - offset;
+ T roi_center_h = current_roi[2] * spatial_scale - offset;
+ T roi_width = current_roi[3] * spatial_scale;
+ T roi_height = current_roi[4] * spatial_scale;
+ T theta = current_roi[5] * M_PI / 180.0;
+ T cos_theta = cos(theta);
+ T sin_theta = sin(theta);
+
+ T bin_size_h = static_cast(roi_height) / static_cast(pooled_height);
+ T bin_size_w = static_cast(roi_width) / static_cast(pooled_width);
+
+ T* offset_bottom_diff =
+ bottom_diff + (roi_batch_ind * channels + c) * height * width;
+
+ int top_offset = (n * channels + c) * pooled_height * pooled_width;
+ const T* offset_top_diff = top_diff + top_offset;
+ const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
+
+ // We use roi_bin_grid to sample the grid and mimic integral
+ int roi_bin_grid_h = (sampling_ratio > 0)
+ ? sampling_ratio
+ : ceil(roi_height / pooled_height); // e.g., = 2
+ int roi_bin_grid_w =
+ (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
+
+ // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
+ // Appropriate translation needs to be applied after.
+ T roi_start_h = -roi_height / 2.0;
+ T roi_start_w = -roi_width / 2.0;
+
+ // We do average (integral) pooling inside a bin
+ const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
+
+ for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
+ {
+ const T yy = roi_start_h + ph * bin_size_h +
+ static_cast(iy + .5f) * bin_size_h /
+ static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5
+ for (int ix = 0; ix < roi_bin_grid_w; ix++) {
+ const T xx = roi_start_w + pw * bin_size_w +
+ static_cast(ix + .5f) * bin_size_w /
+ static_cast(roi_bin_grid_w);
+
+ // Rotate by theta around the center and translate
+ T y = yy * cos_theta - xx * sin_theta + roi_center_h;
+ T x = yy * sin_theta + xx * cos_theta + roi_center_w;
+
+ T w1, w2, w3, w4;
+ int x_low, x_high, y_low, y_high;
+
+ bilinear_interpolate_gradient(
+ height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high);
+
+ T g1 = top_diff_this_bin * w1 / count;
+ T g2 = top_diff_this_bin * w2 / count;
+ T g3 = top_diff_this_bin * w3 / count;
+ T g4 = top_diff_this_bin * w4 / count;
+
+ if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
+ atomicAdd(
+ offset_bottom_diff + y_low * width + x_low, static_cast(g1));
+ atomicAdd(
+ offset_bottom_diff + y_low * width + x_high, static_cast(g2));
+ atomicAdd(
+ offset_bottom_diff + y_high * width + x_low, static_cast(g3));
+ atomicAdd(
+ offset_bottom_diff + y_high * width + x_high, static_cast(g4));
+ } // if
+ } // ix
+ } // iy
+ } // CUDA_1D_KERNEL_LOOP
+} // RoIAlignRotatedBackward
+
+at::Tensor ROIAlignRotated_forward_cuda(
+ const at::Tensor& input,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int sampling_ratio) {
+ AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
+ AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
+ at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
+
+ at::CheckedFrom c = "ROIAlignRotated_forward_cuda";
+ at::checkAllSameGPU(c, {input_t, rois_t});
+ at::checkAllSameType(c, {input_t, rois_t});
+ at::cuda::CUDAGuard device_guard(input.device());
+
+ auto num_rois = rois.size(0);
+ auto channels = input.size(1);
+ auto height = input.size(2);
+ auto width = input.size(3);
+
+ auto output = at::empty(
+ {num_rois, channels, pooled_height, pooled_width}, input.options());
+ auto output_size = num_rois * pooled_height * pooled_width * channels;
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+ dim3 grid(std::min(
+ at::cuda::ATenCeilDiv(
+ static_cast(output_size), static_cast(512)),
+ static_cast(4096)));
+ dim3 block(512);
+
+ if (output.numel() == 0) {
+ AT_CUDA_CHECK(cudaGetLastError());
+ return output;
+ }
+
+ auto input_ = input.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES(
+ input.scalar_type(), "ROIAlignRotated_forward", [&] {
+ RoIAlignRotatedForward<<>>(
+ output_size,
+ input_.data_ptr(),
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ rois_.data_ptr(),
+ output.data_ptr());
+ });
+ cudaDeviceSynchronize();
+ AT_CUDA_CHECK(cudaGetLastError());
+ return output;
+}
+
+// TODO remove the dependency on input and use instead its sizes -> save memory
+at::Tensor ROIAlignRotated_backward_cuda(
+ const at::Tensor& grad,
+ const at::Tensor& rois,
+ const float spatial_scale,
+ const int pooled_height,
+ const int pooled_width,
+ const int batch_size,
+ const int channels,
+ const int height,
+ const int width,
+ const int sampling_ratio) {
+ AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
+ AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
+
+ at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
+ at::CheckedFrom c = "ROIAlign_backward_cuda";
+ at::checkAllSameGPU(c, {grad_t, rois_t});
+ at::checkAllSameType(c, {grad_t, rois_t});
+ at::cuda::CUDAGuard device_guard(grad.device());
+
+ auto num_rois = rois.size(0);
+ auto grad_input =
+ at::zeros({batch_size, channels, height, width}, grad.options());
+
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+ dim3 grid(std::min(
+ at::cuda::ATenCeilDiv(
+ static_cast(grad.numel()), static_cast(512)),
+ static_cast(4096)));
+ dim3 block(512);
+
+ // handle possibly empty gradients
+ if (grad.numel() == 0) {
+ AT_CUDA_CHECK(cudaGetLastError());
+ return grad_input;
+ }
+
+ auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
+ AT_DISPATCH_FLOATING_TYPES(
+ grad.scalar_type(), "ROIAlignRotated_backward", [&] {
+ RoIAlignRotatedBackwardFeature<<>>(
+ grad.numel(),
+ grad_.data_ptr(),
+ num_rois,
+ spatial_scale,
+ channels,
+ height,
+ width,
+ pooled_height,
+ pooled_width,
+ sampling_ratio,
+ grad_input.data_ptr(),
+ rois_.data_ptr());
+ });
+ AT_CUDA_CHECK(cudaGetLastError());
+ return grad_input;
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h
new file mode 100644
index 0000000000000000000000000000000000000000..7c389c6cbdbefdfb623296b0918c27c634d621bb
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h
@@ -0,0 +1,35 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#pragma once
+#include
+
+namespace detectron2 {
+
+at::Tensor box_iou_rotated_cpu(
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2);
+
+#ifdef WITH_CUDA
+at::Tensor box_iou_rotated_cuda(
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2);
+#endif
+
+// Interface for Python
+// inline is needed to prevent multiple function definitions when this header is
+// included by different cpps
+inline at::Tensor box_iou_rotated(
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2) {
+ assert(boxes1.device().is_cuda() == boxes2.device().is_cuda());
+ if (boxes1.device().is_cuda()) {
+#ifdef WITH_CUDA
+ return box_iou_rotated_cuda(boxes1.contiguous(), boxes2.contiguous());
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+
+ return box_iou_rotated_cpu(boxes1.contiguous(), boxes2.contiguous());
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..f2b02d171077d96fcaf29b585fa6a678af1f2842
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
@@ -0,0 +1,39 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include "box_iou_rotated.h"
+#include "box_iou_rotated_utils.h"
+
+namespace detectron2 {
+
+template
+void box_iou_rotated_cpu_kernel(
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2,
+ at::Tensor& ious) {
+ auto num_boxes1 = boxes1.size(0);
+ auto num_boxes2 = boxes2.size(0);
+
+ for (int i = 0; i < num_boxes1; i++) {
+ for (int j = 0; j < num_boxes2; j++) {
+ ious[i * num_boxes2 + j] = single_box_iou_rotated(
+ boxes1[i].data_ptr(), boxes2[j].data_ptr());
+ }
+ }
+}
+
+at::Tensor box_iou_rotated_cpu(
+ // input must be contiguous:
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2) {
+ auto num_boxes1 = boxes1.size(0);
+ auto num_boxes2 = boxes2.size(0);
+ at::Tensor ious =
+ at::empty({num_boxes1 * num_boxes2}, boxes1.options().dtype(at::kFloat));
+
+ box_iou_rotated_cpu_kernel(boxes1, boxes2, ious);
+
+ // reshape from 1d array to 2d array
+ auto shape = std::vector{num_boxes1, num_boxes2};
+ return ious.reshape(shape);
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu
new file mode 100644
index 0000000000000000000000000000000000000000..e3403c11796cb313771b8b6350c793b9fbdfbcaa
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu
@@ -0,0 +1,130 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#include
+#include
+#include
+#include
+#include "box_iou_rotated_utils.h"
+
+namespace detectron2 {
+
+// 2D block with 32 * 16 = 512 threads per block
+const int BLOCK_DIM_X = 32;
+const int BLOCK_DIM_Y = 16;
+
+template
+__global__ void box_iou_rotated_cuda_kernel(
+ const int n_boxes1,
+ const int n_boxes2,
+ const T* dev_boxes1,
+ const T* dev_boxes2,
+ T* dev_ious) {
+ const int row_start = blockIdx.x * blockDim.x;
+ const int col_start = blockIdx.y * blockDim.y;
+
+ const int row_size = min(n_boxes1 - row_start, blockDim.x);
+ const int col_size = min(n_boxes2 - col_start, blockDim.y);
+
+ __shared__ float block_boxes1[BLOCK_DIM_X * 5];
+ __shared__ float block_boxes2[BLOCK_DIM_Y * 5];
+
+ // It's safe to copy using threadIdx.x since BLOCK_DIM_X >= BLOCK_DIM_Y
+ if (threadIdx.x < row_size && threadIdx.y == 0) {
+ block_boxes1[threadIdx.x * 5 + 0] =
+ dev_boxes1[(row_start + threadIdx.x) * 5 + 0];
+ block_boxes1[threadIdx.x * 5 + 1] =
+ dev_boxes1[(row_start + threadIdx.x) * 5 + 1];
+ block_boxes1[threadIdx.x * 5 + 2] =
+ dev_boxes1[(row_start + threadIdx.x) * 5 + 2];
+ block_boxes1[threadIdx.x * 5 + 3] =
+ dev_boxes1[(row_start + threadIdx.x) * 5 + 3];
+ block_boxes1[threadIdx.x * 5 + 4] =
+ dev_boxes1[(row_start + threadIdx.x) * 5 + 4];
+ }
+
+ if (threadIdx.x < col_size && threadIdx.y == 0) {
+ block_boxes2[threadIdx.x * 5 + 0] =
+ dev_boxes2[(col_start + threadIdx.x) * 5 + 0];
+ block_boxes2[threadIdx.x * 5 + 1] =
+ dev_boxes2[(col_start + threadIdx.x) * 5 + 1];
+ block_boxes2[threadIdx.x * 5 + 2] =
+ dev_boxes2[(col_start + threadIdx.x) * 5 + 2];
+ block_boxes2[threadIdx.x * 5 + 3] =
+ dev_boxes2[(col_start + threadIdx.x) * 5 + 3];
+ block_boxes2[threadIdx.x * 5 + 4] =
+ dev_boxes2[(col_start + threadIdx.x) * 5 + 4];
+ }
+ __syncthreads();
+
+ if (threadIdx.x < row_size && threadIdx.y < col_size) {
+ int offset = (row_start + threadIdx.x) * n_boxes2 + col_start + threadIdx.y;
+ dev_ious[offset] = single_box_iou_rotated(
+ block_boxes1 + threadIdx.x * 5, block_boxes2 + threadIdx.y * 5);
+ }
+}
+
+at::Tensor box_iou_rotated_cuda(
+ // input must be contiguous
+ const at::Tensor& boxes1,
+ const at::Tensor& boxes2) {
+ using scalar_t = float;
+ AT_ASSERTM(
+ boxes1.scalar_type() == at::kFloat, "boxes1 must be a float tensor");
+ AT_ASSERTM(
+ boxes2.scalar_type() == at::kFloat, "boxes2 must be a float tensor");
+ AT_ASSERTM(boxes1.is_cuda(), "boxes1 must be a CUDA tensor");
+ AT_ASSERTM(boxes2.is_cuda(), "boxes2 must be a CUDA tensor");
+ at::cuda::CUDAGuard device_guard(boxes1.device());
+
+ auto num_boxes1 = boxes1.size(0);
+ auto num_boxes2 = boxes2.size(0);
+
+ at::Tensor ious =
+ at::empty({num_boxes1 * num_boxes2}, boxes1.options().dtype(at::kFloat));
+
+ bool transpose = false;
+ if (num_boxes1 > 0 && num_boxes2 > 0) {
+ scalar_t *data1 = boxes1.data_ptr(),
+ *data2 = boxes2.data_ptr();
+
+ if (num_boxes2 > 65535 * BLOCK_DIM_Y) {
+ AT_ASSERTM(
+ num_boxes1 <= 65535 * BLOCK_DIM_Y,
+ "Too many boxes for box_iou_rotated_cuda!");
+ // x dim is allowed to be large, but y dim cannot,
+ // so we transpose the two to avoid "invalid configuration argument"
+ // error. We assume one of them is small. Otherwise the result is hard to
+ // fit in memory anyway.
+ std::swap(num_boxes1, num_boxes2);
+ std::swap(data1, data2);
+ transpose = true;
+ }
+
+ const int blocks_x =
+ at::cuda::ATenCeilDiv(static_cast(num_boxes1), BLOCK_DIM_X);
+ const int blocks_y =
+ at::cuda::ATenCeilDiv(static_cast(num_boxes2), BLOCK_DIM_Y);
+
+ dim3 blocks(blocks_x, blocks_y);
+ dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y);
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+ box_iou_rotated_cuda_kernel<<>>(
+ num_boxes1,
+ num_boxes2,
+ data1,
+ data2,
+ (scalar_t*)ious.data_ptr());
+
+ AT_CUDA_CHECK(cudaGetLastError());
+ }
+
+ // reshape from 1d array to 2d array
+ auto shape = std::vector{num_boxes1, num_boxes2};
+ if (transpose) {
+ return ious.view(shape).t();
+ } else {
+ return ious.view(shape);
+ }
+}
+
+} // namespace detectron2
diff --git a/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h
new file mode 100644
index 0000000000000000000000000000000000000000..d8757ec376e8703e1edc5f76bf5ef214620bd69f
--- /dev/null
+++ b/preprocess/humanparsing/mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h
@@ -0,0 +1,363 @@
+// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+#pragma once
+
+#include
+#include
+
+#ifdef __CUDACC__
+// Designates functions callable from the host (CPU) and the device (GPU)
+#define HOST_DEVICE __host__ __device__
+#define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
+#else
+#include
+#define HOST_DEVICE
+#define HOST_DEVICE_INLINE HOST_DEVICE inline
+#endif
+
+namespace detectron2 {
+
+namespace {
+
+template
+struct RotatedBox {
+ T x_ctr, y_ctr, w, h, a;
+};
+
+template
+struct Point {
+ T x, y;
+ HOST_DEVICE_INLINE Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
+ HOST_DEVICE_INLINE Point operator+(const Point& p) const {
+ return Point(x + p.x, y + p.y);
+ }
+ HOST_DEVICE_INLINE Point& operator+=(const Point& p) {
+ x += p.x;
+ y += p.y;
+ return *this;
+ }
+ HOST_DEVICE_INLINE Point operator-(const Point& p) const {
+ return Point(x - p.x, y - p.y);
+ }
+ HOST_DEVICE_INLINE Point operator*(const T coeff) const {
+ return Point(x * coeff, y * coeff);
+ }
+};
+
+template
+HOST_DEVICE_INLINE T dot_2d(const Point& A, const Point& B) {
+ return A.x * B.x + A.y * B.y;
+}
+
+// R: result type. can be different from input type
+template
+HOST_DEVICE_INLINE R cross_2d(const Point& A, const Point& B) {
+ return static_cast(A.x) * static_cast(B.y) -
+ static_cast(B.x) * static_cast(A.y);
+}
+
+template
+HOST_DEVICE_INLINE void get_rotated_vertices(
+ const RotatedBox& box,
+ Point (&pts)[4]) {
+ // M_PI / 180. == 0.01745329251
+ double theta = box.a * 0.01745329251;
+ T cosTheta2 = (T)cos(theta) * 0.5f;
+ T sinTheta2 = (T)sin(theta) * 0.5f;
+
+ // y: top --> down; x: left --> right
+ pts[0].x = box.x_ctr + sinTheta2 * box.h + cosTheta2 * box.w;
+ pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
+ pts[1].x = box.x_ctr - sinTheta2 * box.h + cosTheta2 * box.w;
+ pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
+ pts[2].x = 2 * box.x_ctr - pts[0].x;
+ pts[2].y = 2 * box.y_ctr - pts[0].y;
+ pts[3].x = 2 * box.x_ctr - pts[1].x;
+ pts[3].y = 2 * box.y_ctr - pts[1].y;
+}
+
+template
+HOST_DEVICE_INLINE int get_intersection_points(
+ const Point (&pts1)[4],
+ const Point (&pts2)[4],
+ Point (&intersections)[24]) {
+ // Line vector
+ // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
+ Point vec1[4], vec2[4];
+ for (int i = 0; i < 4; i++) {
+ vec1[i] = pts1[(i + 1) % 4] - pts1[i];
+ vec2[i] = pts2[(i + 1) % 4] - pts2[i];
+ }
+
+ // Line test - test all line combos for intersection
+ int num = 0; // number of intersections
+ for (int i = 0; i < 4; i++) {
+ for (int j = 0; j < 4; j++) {
+ // Solve for 2x2 Ax=b
+ T det = cross_2d(vec2[j], vec1[i]);
+
+ // This takes care of parallel lines
+ if (fabs(det) <= 1e-14) {
+ continue;
+ }
+
+ auto vec12 = pts2[j] - pts1[i];
+
+ T t1 = cross_2d(vec2[j], vec12) / det;
+ T t2 = cross_2d(vec1[i], vec12) / det;
+
+ if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
+ intersections[num++] = pts1[i] + vec1[i] * t1;
+ }
+ }
+ }
+
+ // Check for vertices of rect1 inside rect2
+ {
+ const auto& AB = vec2[0];
+ const auto& DA = vec2[3];
+ auto ABdotAB = dot_2d(AB, AB);
+ auto ADdotAD = dot_2d(DA, DA);
+ for (int i = 0; i < 4; i++) {
+ // assume ABCD is the rectangle, and P is the point to be judged
+ // P is inside ABCD iff. P's projection on AB lies within AB
+ // and P's projection on AD lies within AD
+
+ auto AP = pts1[i] - pts2[0];
+
+ auto APdotAB = dot_2d(AP, AB);
+ auto APdotAD = -dot_2d(AP, DA);
+
+ if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
+ (APdotAD <= ADdotAD)) {
+ intersections[num++] = pts1[i];
+ }
+ }
+ }
+
+ // Reverse the check - check for vertices of rect2 inside rect1
+ {
+ const auto& AB = vec1[0];
+ const auto& DA = vec1[3];
+ auto ABdotAB = dot_2d(AB, AB);
+ auto ADdotAD = dot_2d(DA, DA);
+ for (int i = 0; i < 4; i++) {
+ auto AP = pts2[i] - pts1[0];
+
+ auto APdotAB = dot_2d(AP, AB);
+ auto APdotAD = -dot_2d(AP, DA);
+
+ if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
+ (APdotAD <= ADdotAD)) {
+ intersections[num++] = pts2[i];
+ }
+ }
+ }
+
+ return num;
+}
+
+template
+HOST_DEVICE_INLINE int convex_hull_graham(
+ const Point (&p)[24],
+ const int& num_in,
+ Point (&q)[24],
+ bool shift_to_zero = false) {
+ assert(num_in >= 2);
+
+ // Step 1:
+ // Find point with minimum y
+ // if more than 1 points have the same minimum y,
+ // pick the one with the minimum x.
+ int t = 0;
+ for (int i = 1; i < num_in; i++) {
+ if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
+ t = i;
+ }
+ }
+ auto& start = p[t]; // starting point
+
+ // Step 2:
+ // Subtract starting point from every points (for sorting in the next step)
+ for (int i = 0; i < num_in; i++) {
+ q[i] = p[i] - start;
+ }
+
+ // Swap the starting point to position 0
+ auto tmp = q[0];
+ q[0] = q[t];
+ q[t] = tmp;
+
+ // Step 3:
+ // Sort point 1 ~ num_in according to their relative cross-product values
+ // (essentially sorting according to angles)
+ // If the angles are the same, sort according to their distance to origin
+ T dist[24];
+#ifdef __CUDACC__
+ // compute distance to origin before sort, and sort them together with the
+ // points
+ for (int i = 0; i < num_in; i++) {
+ dist[i] = dot_2d(q[i], q[i]);
+ }
+
+ // CUDA version
+ // In the future, we can potentially use thrust
+ // for sorting here to improve speed (though not guaranteed)
+ for (int i = 1; i < num_in - 1; i++) {
+ for (int j = i + 1; j < num_in; j++) {
+ T crossProduct = cross_2d(q[i], q[j]);
+ if ((crossProduct < -1e-6) ||
+ (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
+ auto q_tmp = q[i];
+ q[i] = q[j];
+ q[j] = q_tmp;
+ auto dist_tmp = dist[i];
+ dist[i] = dist[j];
+ dist[j] = dist_tmp;
+ }
+ }
+ }
+#else
+ // CPU version
+ std::sort(
+ q + 1, q + num_in, [](const Point& A, const Point& B) -> bool {
+ T temp = cross_2d(A, B);
+ if (fabs(temp) < 1e-6) {
+ return dot_2d(A, A) < dot_2d(B, B);
+ } else {
+ return temp > 0;
+ }
+ });
+ // compute distance to origin after sort, since the points are now different.
+ for (int i = 0; i < num_in; i++) {
+ dist[i] = dot_2d(q[i], q[i]);
+ }
+#endif
+
+ // Step 4:
+ // Make sure there are at least 2 points (that don't overlap with each other)
+ // in the stack
+ int k; // index of the non-overlapped second point
+ for (k = 1; k < num_in; k++) {
+ if (dist[k] > 1e-8) {
+ break;
+ }
+ }
+ if (k == num_in) {
+ // We reach the end, which means the convex hull is just one point
+ q[0] = p[t];
+ return 1;
+ }
+ q[1] = q[k];
+ int m = 2; // 2 points in the stack
+ // Step 5:
+ // Finally we can start the scanning process.
+ // When a non-convex relationship between the 3 points is found
+ // (either concave shape or duplicated points),
+ // we pop the previous point from the stack
+ // until the 3-point relationship is convex again, or
+ // until the stack only contains two points
+ for (int i = k + 1; i < num_in; i++) {
+ while (m > 1) {
+ auto q1 = q[i] - q[m - 2], q2 = q[m - 1] - q[m - 2];
+ // cross_2d() uses FMA and therefore computes round(round(q1.x*q2.y) -
+ // q2.x*q1.y) So it may not return 0 even when q1==q2. Therefore we
+ // compare round(q1.x*q2.y) and round(q2.x*q1.y) directly. (round means
+ // round to nearest floating point).
+ if (q1.x * q2.y >= q2.x * q1.y)
+ m--;
+ else
+ break;
+ }
+ // Using double also helps, but float can solve the issue for now.
+ // while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2])
+ // >= 0) {
+ // m--;
+ // }
+ q[m++] = q[i];
+ }
+
+ // Step 6 (Optional):
+ // In general sense we need the original coordinates, so we
+ // need to shift the points back (reverting Step 2)
+ // But if we're only interested in getting the area/perimeter of the shape
+ // We can simply return.
+ if (!shift_to_zero) {
+ for (int i = 0; i < m; i++) {
+ q[i] += start;
+ }
+ }
+
+ return m;
+}
+
+template
+HOST_DEVICE_INLINE T polygon_area(const Point (&q)[24], const int& m) {
+ if (m <= 2) {
+ return 0;
+ }
+
+ T area = 0;
+ for (int i = 1; i < m - 1; i++) {
+ area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
+ }
+
+ return area / 2.0;
+}
+
+template
+HOST_DEVICE_INLINE T rotated_boxes_intersection(
+ const RotatedBox& box1,
+ const RotatedBox& box2) {
+ // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
+ // from rotated_rect_intersection_pts
+ Point intersectPts[24], orderedPts[24];
+
+ Point pts1[4];
+ Point pts2[4];
+ get_rotated_vertices(box1, pts1);
+ get_rotated_vertices(box2, pts2);
+
+ int num = get_intersection_points