Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,110 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
except Exception as e:
|
27 |
-
return {"error": str(e)}
|
28 |
-
|
29 |
-
# Gradio Interface
|
30 |
-
def gradio_interface(audio):
|
31 |
-
if audio is None:
|
32 |
-
return "Please record or upload an audio file."
|
33 |
-
result = analyze_call(audio)
|
34 |
-
if "error" in result:
|
35 |
-
return f"Error: {result['error']}"
|
36 |
-
return (
|
37 |
-
f"**Transcription:** {result['transcription']}\n\n"
|
38 |
-
f"**Sentiment:** {result['sentiment']}\n\n"
|
39 |
-
f"**Confidence:** {result['confidence']}"
|
40 |
-
)
|
41 |
-
|
42 |
-
# Create Gradio app
|
43 |
-
interface = gr.Interface(
|
44 |
-
fn=gradio_interface,
|
45 |
-
inputs=gr.Audio(type="filepath", label="Record or Upload Audio"),
|
46 |
-
outputs=gr.Textbox(label="Analysis Result", lines=5),
|
47 |
-
title="Real-Time Call Analysis",
|
48 |
-
description="Record or upload audio to analyze tone and sentiment in real time.",
|
49 |
-
live=False # Set to False to avoid constant re-runs
|
50 |
-
)
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
from transformers import pipeline
|
5 |
+
import librosa
|
6 |
|
7 |
+
class EmotionRecognizer:
|
8 |
+
def __init__(self):
|
9 |
+
self.classifier = pipeline(
|
10 |
+
"audio-classification",
|
11 |
+
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
|
12 |
+
device=0 if torch.cuda.is_available() else -1
|
13 |
+
)
|
14 |
+
self.sample_rate = 16000
|
15 |
|
16 |
+
def process_audio(self, audio_input):
|
17 |
+
try:
|
18 |
+
# Extract audio data and sample rate from gradio input
|
19 |
+
sample_rate, audio_data = audio_input
|
20 |
+
|
21 |
+
# Convert stereo to mono if necessary
|
22 |
+
if len(audio_data.shape) > 1:
|
23 |
+
audio_data = np.mean(audio_data, axis=1)
|
24 |
+
|
25 |
+
# Convert to float32 and normalize
|
26 |
+
audio_data = audio_data.astype(np.float32)
|
27 |
+
if np.max(np.abs(audio_data)) > 1.0:
|
28 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
29 |
+
|
30 |
+
# Resample if necessary
|
31 |
+
if sample_rate != self.sample_rate:
|
32 |
+
audio_data = librosa.resample(
|
33 |
+
y=audio_data,
|
34 |
+
orig_sr=sample_rate,
|
35 |
+
target_sr=self.sample_rate
|
36 |
+
)
|
37 |
+
|
38 |
+
# Ensure the audio isn't too short
|
39 |
+
if len(audio_data) < self.sample_rate:
|
40 |
+
# Pad audio if it's too short
|
41 |
+
audio_data = np.pad(audio_data, (0, self.sample_rate - len(audio_data)))
|
42 |
+
elif len(audio_data) > 10 * self.sample_rate:
|
43 |
+
# Take first 10 seconds if audio is too long
|
44 |
+
audio_data = audio_data[:10 * self.sample_rate]
|
45 |
+
|
46 |
+
# Make prediction
|
47 |
+
result = self.classifier({"array": audio_data, "sampling_rate": self.sample_rate})
|
48 |
+
|
49 |
+
# Format results
|
50 |
+
emotions_text = "\n".join([
|
51 |
+
f"{pred['label']}: {pred['score']*100:.2f}%"
|
52 |
+
for pred in result
|
53 |
+
])
|
54 |
+
|
55 |
+
# Prepare plot data
|
56 |
+
plot_data = {
|
57 |
+
"labels": [pred['label'] for pred in result],
|
58 |
+
"values": [pred['score'] * 100 for pred in result]
|
59 |
+
}
|
60 |
+
|
61 |
+
return emotions_text, plot_data
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error details: {str(e)}")
|
65 |
+
return f"Error processing audio: {str(e)}", None
|
66 |
|
67 |
+
def create_interface():
|
68 |
+
recognizer = EmotionRecognizer()
|
69 |
+
|
70 |
+
def process_audio_file(audio):
|
71 |
+
if audio is None:
|
72 |
+
return "Please provide an audio input.", None
|
73 |
+
return recognizer.process_audio(audio)
|
74 |
+
|
75 |
+
with gr.Blocks() as interface:
|
76 |
+
gr.Markdown("# Audio Emotion Recognition")
|
77 |
+
gr.Markdown("Record or upload audio to analyze the emotional content. The model works best with clear speech in English.")
|
78 |
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column():
|
81 |
+
audio_input = gr.Audio(
|
82 |
+
label="Upload or Record Audio",
|
83 |
+
type="numpy",
|
84 |
+
sources=["microphone", "upload"],
|
85 |
+
)
|
86 |
+
analyze_btn = gr.Button("Analyze Emotion")
|
87 |
+
gr.Markdown("Note: Audio will be automatically converted to mono and resampled if needed.")
|
88 |
+
|
89 |
+
with gr.Column():
|
90 |
+
output_text = gr.Textbox(
|
91 |
+
label="Results",
|
92 |
+
lines=5
|
93 |
+
)
|
94 |
+
output_plot = gr.BarPlot(
|
95 |
+
title="Emotion Confidence Scores",
|
96 |
+
x_title="Emotions",
|
97 |
+
y_title="Confidence (%)"
|
98 |
+
)
|
99 |
|
100 |
+
analyze_btn.click(
|
101 |
+
fn=process_audio_file,
|
102 |
+
inputs=[audio_input],
|
103 |
+
outputs=[output_text, output_plot]
|
104 |
+
)
|
105 |
+
|
106 |
+
return interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
if __name__ == "__main__":
|
109 |
+
demo = create_interface()
|
110 |
+
demo.launch(share=True)
|