Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -30,10 +30,11 @@ emotion_to_emoji = {
|
|
30 |
}
|
31 |
|
32 |
def add_emoji_to_label(label):
|
|
|
33 |
emoji = emotion_to_emoji.get(label.lower(), "")
|
34 |
return f"{label.capitalize()} {emoji}"
|
35 |
|
36 |
-
# Load the pre-trained SpeechBrain classifier
|
37 |
classifier = foreign_class(
|
38 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
39 |
pymodule_file="custom_interface.py",
|
@@ -47,16 +48,13 @@ def preprocess_audio(audio_file, apply_noise_reduction=False):
|
|
47 |
- Convert to 16kHz mono.
|
48 |
- Optionally apply noise reduction.
|
49 |
- Normalize the audio.
|
50 |
-
|
51 |
"""
|
52 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
53 |
-
|
54 |
if apply_noise_reduction and NOISEREDUCE_AVAILABLE:
|
55 |
y = nr.reduce_noise(y=y, sr=sr)
|
56 |
-
|
57 |
if np.max(np.abs(y)) > 0:
|
58 |
y = y / np.max(np.abs(y))
|
59 |
-
|
60 |
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
61 |
import soundfile as sf
|
62 |
sf.write(temp_file.name, y, sr)
|
@@ -64,18 +62,19 @@ def preprocess_audio(audio_file, apply_noise_reduction=False):
|
|
64 |
|
65 |
def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
66 |
"""
|
67 |
-
For
|
68 |
-
and return the majority-voted label.
|
69 |
"""
|
70 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
71 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
72 |
|
|
|
73 |
if total_duration <= segment_duration:
|
74 |
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
75 |
_, _, _, label = classifier.classify_file(temp_file)
|
76 |
os.remove(temp_file)
|
77 |
return label
|
78 |
-
|
79 |
step = segment_duration - overlap
|
80 |
segments = []
|
81 |
for start in np.arange(0, total_duration - segment_duration + 0.001, step):
|
@@ -101,10 +100,10 @@ def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duratio
|
|
101 |
|
102 |
def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
103 |
"""
|
104 |
-
Main prediction function
|
105 |
- Uses ensemble prediction if enabled.
|
106 |
- Otherwise, processes the entire audio at once.
|
107 |
-
|
108 |
"""
|
109 |
try:
|
110 |
if use_ensemble:
|
@@ -119,7 +118,7 @@ def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False,
|
|
119 |
|
120 |
def plot_waveform(audio_file):
|
121 |
"""
|
122 |
-
Generate a waveform plot for the given audio file
|
123 |
"""
|
124 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
125 |
plt.figure(figsize=(10, 3))
|
@@ -133,8 +132,8 @@ def plot_waveform(audio_file):
|
|
133 |
|
134 |
def predict_and_plot(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap):
|
135 |
"""
|
136 |
-
|
137 |
-
Returns a tuple: (emotion label with emoji, waveform image)
|
138 |
"""
|
139 |
emotion = predict_emotion(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap)
|
140 |
waveform = plot_waveform(audio_file)
|
@@ -152,7 +151,7 @@ with gr.Blocks(css=".gradio-container {background-color: #f7f7f7; font-family: A
|
|
152 |
with gr.Tabs():
|
153 |
with gr.TabItem("Emotion Recognition"):
|
154 |
with gr.Row():
|
155 |
-
#
|
156 |
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
157 |
use_ensemble = gr.Checkbox(label="Use Ensemble Prediction (for long audio)", value=False)
|
158 |
apply_noise_reduction = gr.Checkbox(label="Apply Noise Reduction", value=False)
|
@@ -171,18 +170,18 @@ with gr.Blocks(css=".gradio-container {background-color: #f7f7f7; font-family: A
|
|
171 |
|
172 |
with gr.TabItem("About"):
|
173 |
gr.Markdown("""
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
- Optional Noise Reduction.
|
180 |
-
- Visualization of the audio waveform.
|
181 |
-
- Emoji representation of the predicted emotion.
|
182 |
-
|
183 |
-
**Credits:**
|
184 |
-
- [SpeechBrain](https://speechbrain.github.io)
|
185 |
-
- [Gradio](https://gradio.app)
|
186 |
""")
|
187 |
|
188 |
if __name__ == "__main__":
|
|
|
30 |
}
|
31 |
|
32 |
def add_emoji_to_label(label):
|
33 |
+
"""Append an emoji corresponding to the emotion label."""
|
34 |
emoji = emotion_to_emoji.get(label.lower(), "")
|
35 |
return f"{label.capitalize()} {emoji}"
|
36 |
|
37 |
+
# Load the pre-trained SpeechBrain classifier
|
38 |
classifier = foreign_class(
|
39 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
40 |
pymodule_file="custom_interface.py",
|
|
|
48 |
- Convert to 16kHz mono.
|
49 |
- Optionally apply noise reduction.
|
50 |
- Normalize the audio.
|
51 |
+
Saves the processed audio to a temporary file and returns its path.
|
52 |
"""
|
53 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
|
|
54 |
if apply_noise_reduction and NOISEREDUCE_AVAILABLE:
|
55 |
y = nr.reduce_noise(y=y, sr=sr)
|
|
|
56 |
if np.max(np.abs(y)) > 0:
|
57 |
y = y / np.max(np.abs(y))
|
|
|
58 |
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
59 |
import soundfile as sf
|
60 |
sf.write(temp_file.name, y, sr)
|
|
|
62 |
|
63 |
def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
64 |
"""
|
65 |
+
For longer audio files, split into overlapping segments, predict each segment,
|
66 |
+
and return the majority-voted emotion label.
|
67 |
"""
|
68 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
69 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
70 |
|
71 |
+
# If the audio is short, process it directly
|
72 |
if total_duration <= segment_duration:
|
73 |
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
74 |
_, _, _, label = classifier.classify_file(temp_file)
|
75 |
os.remove(temp_file)
|
76 |
return label
|
77 |
+
|
78 |
step = segment_duration - overlap
|
79 |
segments = []
|
80 |
for start in np.arange(0, total_duration - segment_duration + 0.001, step):
|
|
|
100 |
|
101 |
def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
102 |
"""
|
103 |
+
Main prediction function:
|
104 |
- Uses ensemble prediction if enabled.
|
105 |
- Otherwise, processes the entire audio at once.
|
106 |
+
Returns the emotion label enhanced with an emoji.
|
107 |
"""
|
108 |
try:
|
109 |
if use_ensemble:
|
|
|
118 |
|
119 |
def plot_waveform(audio_file):
|
120 |
"""
|
121 |
+
Generate and return a waveform plot image for the given audio file.
|
122 |
"""
|
123 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
124 |
plt.figure(figsize=(10, 3))
|
|
|
132 |
|
133 |
def predict_and_plot(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap):
|
134 |
"""
|
135 |
+
Run emotion prediction and generate a waveform plot.
|
136 |
+
Returns a tuple: (emotion label with emoji, waveform image).
|
137 |
"""
|
138 |
emotion = predict_emotion(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap)
|
139 |
waveform = plot_waveform(audio_file)
|
|
|
151 |
with gr.Tabs():
|
152 |
with gr.TabItem("Emotion Recognition"):
|
153 |
with gr.Row():
|
154 |
+
# 'source' argument removed to avoid errors
|
155 |
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
156 |
use_ensemble = gr.Checkbox(label="Use Ensemble Prediction (for long audio)", value=False)
|
157 |
apply_noise_reduction = gr.Checkbox(label="Apply Noise Reduction", value=False)
|
|
|
170 |
|
171 |
with gr.TabItem("About"):
|
172 |
gr.Markdown("""
|
173 |
+
**Enhanced Emotion Recognition App**
|
174 |
+
|
175 |
+
- **Model:** SpeechBrain's wav2vec2 model fine-tuned on IEMOCAP for emotion recognition.
|
176 |
+
- **Features:**
|
177 |
+
- Ensemble Prediction for long audio files.
|
178 |
+
- Optional Noise Reduction.
|
179 |
+
- Visualization of the audio waveform.
|
180 |
+
- Emoji representation of the predicted emotion.
|
181 |
|
182 |
+
**Credits:**
|
183 |
+
- [SpeechBrain](https://speechbrain.github.io)
|
184 |
+
- [Gradio](https://gradio.app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
""")
|
186 |
|
187 |
if __name__ == "__main__":
|