Spaces:
Sleeping
Sleeping
File size: 1,107 Bytes
d9d5c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import torch
import cnn
from torchvision import transforms
from PIL import Image
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor()
])
model = cnn.CNN(2)
model = model.to("cpu")
model.load_state_dict(torch.load("cnn_model.pth", weights_only=True, map_location="cpu"))
model.eval()
label = ["Kucing", "Anjing"]
def inference(image):
image = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image)
output = torch.nn.functional.softmax(output, dim=1)
predicted_class = torch.argmax(output, dim=1).item()
score = output[0][predicted_class]
return f'Ini adalah {label[predicted_class]} dengan kecocokan sebesar {score * 100}'
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
inputs = gr.Image(type="pil")
with gr.Column():
btn = gr.Button("Cek")
pred = gr.Text(label="Prediction")
btn.click(fn=inference, inputs=inputs, outputs=pred)
demo.queue().launch() |